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SUMMARY

The pathways regulating formation of the germinal
center (GC) dark zone (DZ) and light zone (LZ) are un-
known. In this study we show that FOXO1 transcrip-
tion factor expression was restricted to the GC DZ
and was required for DZ formation, since its absence
in mice led to the loss of DZ gene programs and
the formation of LZ-only GCs. FOXO1-negative GC
B cells displayed normal somatic hypermutation
but defective affinity maturation and class switch
recombination. The function of FOXO1 in sustaining
the DZ program involved the trans-activation of the
chemokine receptor CXCR4, and cooperation with
the BCL6 transcription factor in the trans-repression
of genes involved in immune activation, DNA repair,
and plasma cell differentiation. These results also
have implications for the role of FOXO1 in lymphoma-
genesis because they suggest that constitutive
FOXO1 activity might be required for the oncogenic
activity of deregulated BCL6 expression.

INTRODUCTION

Germinal centers (GCs) are specialized environments where

mature B lymphocytes (B cells) undergo repeated rounds of

clonal expansion and secondary diversification of their immuno-

globulin (Ig) genes. The purpose of the GC reaction is the gener-

ation of high-affinity B cells destined to differentiate into memory

B cells and plasma cells and support immune adaptive re-

sponses (De Silva and Klein, 2015; Victora and Nussenzweig,

2012). GC B cells are also cells of origin for a majority of B cell

non-Hodgkin lymphomas, which are caused by genetic alter-

ations leading to the deregulation of pathways especially rele-

vant to GC physiology (Basso and Dalla-Favera, 2015).
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GCs are organized into two topologically and functionally

distinct compartments: the dark zone (DZ), where proliferative

expansion and Ig somatic hypermutation (SHM) occur; and the

light zone (LZ), where B cells expressing high-affinity antibodies

are selected in response to cues provided by follicular dendritic

cells (FDCs) and T follicular helper lymphocytes and where they

undergo class switch recombination (CSR). Recent studies have

provided important insights into the complex dynamics of GC

physiology by showing that GC B cells cyclically transit between

LZ andDZ, thus replacing the classic definition of centrocytes (or

LZ GC B cells) and centroblasts (or DZ GC B cells) as irreversible

B cell developmental stages. The iterative transit of GC B cells

between these two compartments sequentially links SHM-based

Ig diversification to affinity selection events and drives the pro-

gressive increase in B cell receptor affinities (Allen et al., 2007;

Oprea and Perelson, 1997; Victora et al., 2010). It has been pro-

posed that transit between LZ and DZ is prompted by external

cues found in each of the two GC compartments (Victora et al.,

2012; Victora and Nussenzweig, 2012). This idea has been

recently challenged to suggest that the DZ-to-LZ transition is

driven by a cellular ‘‘timer’’ of yet unknown nature, which is cycli-

cally reset by T-cell-dependent affinity-based selection events in

the LZ (Bannard et al., 2013; Gitlin et al., 2014). Although several

transcription factors have been identified for their involvement

in the establishment or maintenance of the GC structure, little

is known about those that drive DZ versus LZ polarity and GC

B cell interzonal transit.

Because the pathogenesis of GC-derived B cell lymphomas

often involves the deregulation of key pathways controlling GC

development, our attention was captured by FOXO1, a member

of the Fox-O family of Forkhead transcription factors (Eijkelen-

boom and Burgering, 2013; Hedrick, 2009) that is recurrently tar-

geted by specific mutations in Burkitt lymphoma (BL) and diffuse

large B cell lymphoma (DLBCL) (Morin et al., 2011, 2013; Pas-

qualucci et al., 2014; Schmitz et al., 2012; Trinh et al., 2013).

FOXO1 has been shown to play essential activities at critical

stage transitions during B cell development (Dengler et al.,

2008; Srinivasan et al., 2009). Its role has been characterized in
c.
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Figure 1. FOXO1 Protein Expression Is Restricted to the GC Dark Zone

(A and B) Relative mRNA amounts of FOXO gene family members in human (A) and mouse (B) GC B cells, as measured by quantitative RT-PCR (average ± SD;

n = 3). Data are shown as fold change relative to the gene with the lowest expression (arbitrarily set to 1), after normalization to the expression of a reference

housekeeping gene (Actb, beta-actin).

(C) Immunofluorescence on paraffin sections of human tonsil tissue. CD23 labels follicular dendritic cells (i.e., light zone; LZ) and AID the dark zone (DZ),

respectively. Scale bars represent 100 mm.

(D) Immunofluorescence on paraffin section of murine spleen (10 days post-SRBC immunization). Bcl6 staining is used to identify GC B cells. Scale bars

represent 50 mm.

(E and F) Relative Foxo1mRNA amounts in human (E) and mouse (F) DZ versus LZ GC B cells (average ± SD; n = 3). Data are shown as fold change relative to the

expression in LZ GC B cells (arbitrarily set to 1), after normalization to Actb expression.

(G and H) Immunoblot analysis in purified human tonsillar B cell populations (abbreviations are as follows: Na, naive B cells; CB, CD77+ GCB cells) (G) and LZ and

DZGCB cells (H). Naive B cells were purifiedwith anti-IgD antibodies, which can transiently inducemodest activation of BCR signaling (Rickert, 2013). Shown are

the results of one representative experiment out of three.
greater detail in immature B cells, where FOXO1 controls the

expression of stage-specific genes either directly or through

complex transcriptional interactions (Lin et al., 2010; Mansson

et al., 2012). FOXO1 deletion during early B cell development re-

sults in loss of Il7ra, Rag1, and Rag2 expression, defective V to

(D)J rearrangement, and a severe developmental blockade at

the pro-B cell stage due to compromised proliferation, survival,

and differentiation (Amin and Schlissel, 2008; Dengler et al.,

2008). Relatively less characterized is the role of FOXO1 in

mature B cells and, in particular, GC development. Previous

work shows that ablation of FOXO1 in mature B cells does not

apparently interfere with GC development, but prevents CSR

both in vivo and in vitro, a defect that has been attributed to

reduced transcription of activation-induced cytidine deaminase

(AID) (Dengler et al., 2008; Omori et al., 2006).

In order to analyze in greater detail the role of FOXO1 in GC

development, we studied mice engineered to specifically delete

FOXO1 in GC B cells. We show that, in contrast to the initial find-

ings in mature B cells (Dengler et al., 2008), GC development in

the absence of FOXO1 is only apparently normal. In fact, FOXO1

deletion prevented the formation of GC DZs, consistent with its

restricted expression and the lack of PI3K signaling in this

compartment. FOXO1 was also essential for antibody affinity

maturation as well as CSR and functions in part by licensing

the activity of BCL6, a GCmaster regulator (Basso and Dalla-Fa-

vera, 2012). These findings have implications for our understand-

ing of the normal physiology of the GC reaction and the role of
Imm
FOXO1 mutations in the pathogenesis of GC-derived B cell

lymphomas.

RESULTS

Polarity of the PI3K-FOXO1 Axis in GCs
In order to comprehensively determine the pattern of expression

of FOXO family members in GC B cells, we examined mRNA

expression of FOXO1 (Foxo1), FOXO3A (Foxo3a), and FOXO4

(Foxo4). The results show that FOXO1 (Foxo1) was the only fam-

ily member effectively expressed in human and murine GC B

cells (Figures 1A and 1B). FOXO1 protein expression was

confirmed by immunofluorescence and immunoblot analyses

in GC B cells—where notably, expression was restricted to the

DZ (Figures 1C, 1D, and 1H)—and in naive B cells (Figures 1C

and 1G). DZ GC B cells showed almost ubiquitous nuclear

expression of FOXO1 (Figures 1C and 1D). The polarity in

FOXO1 protein expression correlated with about 3-fold higher

expression of FOXO1 transcripts in DZ GC B cells (Figures 1E

and 1F), suggesting transcriptional regulation. Because the ac-

tivity of FOXO factors and their subcellular localization is also

controlled by the phosphatidylinositol 30 OH kinase (PI3K)

pathway (Burgering, 2008), we examined the presence of

Ser473-phosphorylated AKT kinase, a bona fide surrogate of

PI3K pathway activity, in purified DZ and LZ GC B cells. We

found that PI3K activity was virtually absent in DZ B cells and

was restricted to LZ B cells (Figure 1H). Thus, DZ B cells were
unity 43, 1064–1074, December 15, 2015 ª2015 Elsevier Inc. 1065



characterized by FOXO1 nuclear expression and absence of

PI3K signaling, whereas PI3K signaling was detected in LZ GC

B cells, where FOXO1 expression was largely absent.

FOXO1 Is Essential for the Development and
Maintenance of the GC Dark Zone
To understand the contributions of FOXO1 to the control of GC

programs, we analyzed mice in which Foxo1 was conditionally

deleted in GC B cells by crossing mice carrying floxed Foxo1 al-

leles (Foxo1fl/fl) (Paik et al., 2007) with Cg1-cre animals (Casola

et al., 2006). The resulting Foxo1fl/fl3Cg1cre mice were able to

generate normal numbers of GCs and Bcl6+ GC B cells upon

immunization with sheep red blood cells (SRBCs), despite the

complete lack of Foxo1 expression in these cells (Figures 2A,

2B, and S1A–S1C). However, Foxo1-null GCs were completely

devoid of phenotypic DZs, which are typically identified by the

surface expression of the Cxcr4 chemokine receptor, Cd86,

and Cd83 (Cxcr4hiCd86loCd83lo) (Victora et al., 2010, 2012),

and were entirely composed of B cells displaying the phenotype

of LZ cells (Cxcr4loCd86hi) (Figures 2C and 2D). This specific

defect was not seen in Foxo1+/fl mice, which developed GCs

with normal polarity (Figures 2C and 2D). The absence of DZs

was already apparent in early GCs (day 4) and continued

throughout the GC reaction (Figures S1D and S1E), although it

did not prevent GCs from persisting until late stages (21 days)

(Figure S1F and S1G). Post-GC differentiation was not affected,

as shown by the normal number of plasma cells at 3 weeks post-

immunization (Figures S1H and S1I). Although cell division is

known to be largely restricted to the DZ in normal GCs (Allen

et al., 2007; Gitlin et al., 2014; Victora et al., 2010), Foxo1-null,

LZ-only GCs contained a fraction of proliferating B cells equiva-

lent to that observed in Foxo1+/+ GCs (Figures 2E and 2F), sug-

gesting that cell cycle and phenotypic polarity can be uncoupled

in GC B cells (see Discussion).

The loss of the DZ compartment in Foxo1-null GCs was

confirmed by the analysis of gene expression profiles, which

showed a significant (p % 10�3) absence of gene signatures

associated with the DZ program and the predominance of signa-

tures characteristic of LZGCB cells (Figure 2G). Only minor tran-

scriptional changes were observed in Foxo1+/fl GC B cells, which

were consistent with their normal LZ and DZ distribution and

suggestive of a negligible effect ofFoxo1partial loss (Figure S2A).

A considerable fraction of a gene signature that distinguishes DZ

from LZ GC B cells in both human and mouse (Victora et al.,

2012) was differentially expressed in Foxo1-null as compared

to Foxo1+/+ GC B cells (Figure S2B, Table S1). The expression

pattern of these genes in Foxo1-null cells largely resembled

that of LZ GC B cells, and included Cxcr4 and Cxcr5, which

encode for chemokine receptors with a critical role in the main-

tenance of GC architectural polarity (Allen et al., 2004; Nie

et al., 2004); Cd86, which encodes for the ligand of Cd28 and

Ctla4 and is differentially enriched in the surface of LZ GC B cells

(Victora et al., 2010); and Prdm1 and Irf4, which encode for

transcription factors required for plasma cell differentiation (Fig-

ure S2B, Table S1; Klein et al., 2006; Shapiro-Shelef et al., 2003).

Notably, DZ-specific genes like Aicda and Tcf3 and the LZ gene

Cd83 were not found to be differentially expressed (Figures S2C

and S2D; Table S1). Quantitative analysis confirmed the altered

expression patterns of these gene transcripts (Figure 2H). In
1066 Immunity 43, 1064–1074, December 15, 2015 ª2015 Elsevier In
agreement with these results (Allen et al., 2004; Bannard et al.,

2013), Foxo1-null GCs lacked proper stromal polarization and

showed an even distribution of the follicular dendritic cell (FDC)

network throughout this B cell compartment (Figure 2I). Overall,

these results demonstrate that FOXO1 expression is an essential

requirement in the establishment and maintenance of GC polar-

ity and the DZ GC B cell phenotype.

Normal SHM but Loss of Affinity Maturation in
Foxo1-Null GCs
Next, we investigated whether the loss of DZs in Foxo1-null GCs

resulted in altered SHM, which is considered a typical DZ func-

tion (De Silva and Klein, 2015; Victora and Nussenzweig,

2012), as well as SHM-based affinity maturation, a process

coupled to the cyclic transit of GC B cells between DZ and LZ

(Allen et al., 2007; Gitlin et al., 2014; Victora et al., 2010). To

this end, we immunized GC-specific Foxo1-null mice and

Foxo1+/+ littermates with 4-hydroxy-3-nitrophenyl-acetyl (NP)

hapten conjugated to keyhole limpet hemocyanin (KLH), which

induces T-cell-dependent immune responses (Allen et al.,

1988; Shih et al., 2002). The magnitude of the GC response

and the defects in GC polarity observed upon SRBC immuniza-

tion (Figures 2 and S1) were also reproduced in response to

NP-KLH (Figure S3A). Because the identity of the mutations at

IgV regions conferring high and low affinity for the NP-hapten

are known (Weiss and Rajewsky, 1990), with this approach it is

possible to (1) analyze SHM activity by examining the number

of mutations in IgV regions and (2) to accurately assess affinity

maturation by examining the appearance of NP-specific muta-

tions in Lambda1-chain-bearing antibodies expressing the

V186.2 VH gene, which dominate the anti-NP response (Allen

et al., 1988; Shih et al., 2002). The results of this analysis showed

that Foxo1-null GCs had a severely reduced number of B cells

carrying CDR1 Trp33-Leu (W33L) high-affinity mutations

(24.7% versus 60.5% in Foxo1+/+ GCs, p < 2 3 10�4; Figure 3A)

and consequently were defective in affinity maturation. This

conclusion was further supported by the significant decrease

in the numbers of NP-binding and Ig-Lambda-positive cells in

Foxo1-null GCs (Figure S3B). However, the mutational load at

day 14 post-immunization was not significantly lower in either

the V186.2 regions (2.01 3 10�2 versus 1.53 3 10�2, p = 0.17),

which were subjected to NP-driven selection, or in the JH4 intron

(2.80 versus 2.63, p = 0.83), which was not under selection

(Figures 3B–3D). The evidence of normal SHM activity was

consistent with normal Aicda mRNA and Aid protein expression

(Figure S4). Thus, FOXO1 is not required for SHM, which can

function even in a LZ context, but it is necessary for effective af-

finity maturation.

Defective CSR in Foxo1-Null GC
As previously observed in Foxo1fl/fl;Cd21-cre mice (Dengler

et al., 2008), we found that the fraction of IgG1-switched B cells

in Foxo1-null GCs was severely reduced, with the subsequent

accumulation of IgM+ GC B cells (Figures 4A and 4B). The defect

in class-switch recombination was also observed in splenic

B cells cultured ex-vivo and stimulated to switch to IgG1 (and

IgG3) with lipopolysaccharide plus interleukin-4, as previously

reported (Figure S5; Dengler et al., 2008). However, Aid expres-

sion in Foxo1-null GCs appeared to be unaltered in vivo
c.



Figure 2. Loss of Dark Zone in Foxo1-Null

GCs

(A) Immunofluorescence analysis of Foxo1 and

Bcl6 protein expression on paraffin-embedded

mouse spleen sections from Foxo1fl/fl3Cg1cre,

Foxo1+/fl3Cg1cre, and Foxo1+/+3Cg1cre mice.

Scale bars represent 100 mm.

(B) Percentage of splenic GC B cells (B220+

CD95hiPNAhi) in Foxo1+/+ (n = 9), Foxo1+/fl (n = 6),

and Foxo1fl/fl (n = 8) mice, as measured by cyto-

fluorimetric analysis 10 days post-SRBC immuni-

zation.

(C) Representative contour plots of GC B cell DZ

(Cxcr4hiCd86lo) and LZ (Cxcr4loCd86hi) pop-

ulations (n = 6 mice per genotype, 10 days post-

SRBC immunization).

(D) Quantification of DZ versus LZ cell ratios (ratio

of percentages of GC B cells in DZ or LZ gates), as

displayed in (C) (average ± SD; n = 6).

(E) DZ versus LZ distribution (contour plots) and

cell cycle profile histograms (DAPI = DNA content)

of GC B cells from Foxo1+/+ and Foxo1fl/fl mice (n =

3, one representative is displayed). Analysis was

performed 8 days post-SRBC immunization.

(F) Percentage of GC B cells at different stages of

the cell cycle (as shown in E; mean ± SEM; n = 3).

(G) Gene set enrichment analysis for DZ and

LZ mouse gene signatures (Victora et al., 2012)

in Foxo1+/+ (WT) and Foxo1fl/fl (KO) GC B cell

expression data (see also Figure S2, Table S1).

(H) Relative mRNA amounts (quantitative RT-PCR)

of Foxo1, and Cxcr4, Cxcr5 chemokine receptor

genes in Foxo1+/+ and Foxo1-null GC B cells

(average ± SD; n = 3).

(I) Immunofluorescence analysis in Foxo1+/+ and

Foxo1-null GCs, 10 days post-SRBC immunization

(spleen). Two representative GCs in two different

animals are shown per genotype. Cd21 highlights

follicular dendritic cells. mAid is normally polarized

to the DZ in Foxo1+/+ GCs (Victora et al., 2012).

Scale bars represent 100 mm.

See also Figures S1 and S2.
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Figure 3. Normal Somatic Hypermutation, but Loss of Affinity Matu-

ration in Foxo1-Null GCs

(A) Percentage of NP high-affinity clones (carrying theW33Lmutation in CDR1)

in purified bulk GC B cells of Foxo1+/+ and Foxo1fl/fl mice, 14 days post-im-

munization with NP-KLH (average ± SD). Each dot corresponds to a single

animal (�30 unique clones/mouse; Mann-Whitney test).

(B) Distribution of the number of mutations per unique clones (VH186.2

segment). Numbers in the center of each pie refer to the number of individual

sequences and (in brackets) number of analyzed animals.

(C) Mutation frequencies (number of mutations per 100 base pairs) in VH186.2

IgHV segments (average ± SD; n = 3; Mann-Whitney test).

(D) Mutation frequencies (number of mutations per segment) in JH4 intron

(average ± SEM; n = 6) (p > 0.05, NS; Mann-Whitney test).

See also Figures S3 and S4.
(Figure S4). Therefore, we considered the possibility that

absence of Foxo1 would preclude normal transcription at the

immunoglobulin locus (i.e., Ighg1) and as a result, prevent class

switch recombination (CSR). This notion was also suggested by

the reduction in Ighg1 transcripts observed in the gene expres-

sion profiles of these cells (Table S1).

We then used quantitative RT-PCR to conclusively assess the

relative abundance of the diverse array of transcripts originating
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from the IgH locus in GC B cell fractions and observed a severe

reduction in germline (GLT) and post-switch (PST) transcripts

arising from Ighg1 in Foxo1-null B cells, in accordance with the

lack of surface IgG1 expression (Figure 4C). Ighg2b also showed

defective production of GLTs and PSTs in the splenic GC B cell

population, whereas the abundance of I-mu, IghA, or Ighg3

transcripts was not altered (Figures S6A and S6B). These obser-

vations were consistent with the quantification of switched GC B

cells as measured by flow cytometry analysis (Figure S6C).

These defects suggested a specific function for FOXO1 in regu-

lating immunoglobulin GLTs, which was congruous with the

presence of FOXO1 binding in three regions within the immuno-

globulin heavy chain locus (IgH) in human GC B cells (Figure S6D

and Table S2). These FOXO1-bound regions were specifically

located at the I-mu and 30 regulatory enhancers (Manis et al.,

2002), as well as within a central super-enhancer region that

lies centromeric to IGHA1 (Figure S6D; Qian et al., 2014). This

binding pattern was in agreement with the involvement of

FOXO1 in the transcriptional regulation of the IgH locus. An

equivalent spatial distribution of super-enhancers has been re-

ported at themurine Ig locus (Kieffer-Kwon et al., 2013), implying

a substantial conservation of local regulatory features across

species. In addition, gene expression analysis of Foxo1-null

GC B cells showed a severe reduction in Basic leucine zipper

transcription factor ATF-like (Batf) transcripts (Figure S2B, Table

S1). Batf is required for the expression of Ig germline transcripts

and for effective CSR (Ise et al., 2011). Taken together, these re-

sults indicate that Foxo1 is required for CSR in vivo and suggest

that impaired CSR in Foxo1-null GCs is at least in part due to

defective transcriptional regulation at the IgH locus, specifically

of germline transcripts and of Batf.

FOXO1 Transcriptional Program
To better understand the basis for FOXO1’s requirement in the

maintenance of the DZ program, we dissected its transcriptional

network in GC B cells. By combining chromatin immunoprecip-

itation followed by deep sequencing (ChIP-seq) with gene

expression profiling, we could identify genomic loci bound by

FOXO1, the expression of which changed in coordination with

FOXO1 expression. ChIP-seq analysis performed in two distinct

pools of GC B cells (CD77+) isolated from human tonsils identi-

fied�4,500 genomic regions bound by FOXO1 in both biological

replicates (Table S2). About half of these regions were found in

close proximity (�5 kb/+4 kb) to transcription start sites (TSS;

21%) or at intragenic regions (29%), and the other half (50%)

of FOXO1-bound regions were located within intergenic regions

(Figure 5A). FOXO1 binding at gene promoters occurred mainly

in close proximity (±1 kb) to TSS (Figure 5B), as commonly

observed for other transcription factors (Koudritsky and Do-

many, 2008). However, FOXO1 was preferentially found at distal

regions (>5 kb from the TSS), suggesting that it might have an

important cis-regulatory role through direct participation at

enhancer elements (Figure 5B). As expected, FOXO1-bound re-

gions were significantly enriched for FOXO1 consensus binding

sites (p % 10�10; Figure 5C, Table S3).

Consistent with a role for FOXO1 in DZ formation, FOXO1

binding occurred preferentially at promoters of genes differen-

tially expressed between DZ and LZ GC B cells (Figure 5D).

Specifically, FOXO1 binding was detected at the promoter
c.



Figure 4. Defective IgG1 Class Switch Recombination in Foxo1-Null GCs

(A) Flow cytometry analysis of Ig class-switch events in Foxo1+/+ and Foxo1fl/fl mouse GC B cells (spleen). Representative data for one out of three animals per

genotype are displayed. The shadowed histograms correspond to surface IgM expression in non-GC B cells and are used here as a reference.

(B) Percentage of IgM+ (left) and IgG1+ (right) GC B cells in Foxo1+/+, Foxo1+/fl, and Foxo1fl/fl mice. Analysis was performed 14 days post-SRBC immunization

(n = 3; Student’s t test, two-tailed, unequal variance).

(C) Relative mRNA amounts measured by quantitative RT-PCR of germline (GLT) and post-switch (PST) IgG1 transcripts in FACS-sorted naive (Na) and in GC

B cells of Foxo1+/+ and Foxo1fl/fl mice (average ± SD; n = 3). GLT transcript amounts are shown for one out of three distinct primer sets.

See also Figures S5 and S6 and Table S6.
regions of genes that displayed significant downregulation (137

genes) or upregulation (235 genes) in DZ B cells (Table S2).

This observation suggests a dual function for this factor both

as a repressor and activator of transcription, and/or indicates

the presence of indirect gene targets where FOXO1 might have

no regulatory function despite binding to their promoters (see

Discussion).

A majority of genes bound by FOXO1 and downregulated

in DZ GC B cells were involved in the control of archetypal LZ

programs, including B cell receptor (BCR) and CD40 signaling,

T-cell-mediated activation, and cytokine and chemokine

signaling (Table S2). In addition, we detected FOXO1 binding

about 900 bp upstream of the PRDM1-beta isoform, and we

showed that, as previously suggested (Vogel et al., 2014), its
Imm
binding contributes to PRDM1 repression, consistent with the

lack of PRDM1 expression in DZB cells (see below and Figure 6).

The loci bound by FOXO1 and upregulated in DZ GC B cells

were significantly enriched in positive modulators of proliferation

(cell cycle and DNA replication) and negative modulators of DNA

repair (e.g., MDM2 and MDM3, which negatively control TP53)

(Table S2). Of particular relevance was the upregulation of

CXCR4, which encodes a chemokine receptor required for the

organization of normal LZ and DZ compartments. Loss of

CXCR4 expression has been previously demonstrated to pre-

vent GC B cells from transiting to the DZ (Allen et al., 2004; Ban-

nard et al., 2013; Nie et al., 2004). Collectively, these results

suggest that FOXO1 might contribute to the LZ-to-DZ transition

by silencing signaling pathways characteristic of the GC LZ
Figure 5. FOXO1 Transcriptional Network in

GC B Cells

(A) Summary of the distribution of genomic bound

regions (ChIP-seq) in human CD77+ GC B cells.

Regions are annotated as promoter (�5 kb/+4 kb

around the transcription start site, TSS), intronic,

exonic, or intergenic. The distribution of active,

poised, silenced, and other regions based on the

repertoire of histone modifications is shown per

each type of bound loci (Ernst et al., 2011).

(B) Distribution of FOXO1 peaks in relation to

their distance from the closest TSS for all the re-

gions (left) or only for the regions found in proximity

(�5 kb/+4 kb) of the TSS (right).

(C) Position weight matrix of FOXO1 binding site

motif.

(D) Pre-ranked gene set enrichment analysis of the

most significantly (top 250) FOXO1-bound genes in

the genes differentially expressed between DZ and

LZ B cells.

See also Tables S2 and S3.
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Figure 6. Cooperative Transcriptional Control by FOXO1 and BCL6

(A) Overlap of FOXO1 and BCL6 bound promoters (�5 kb/+4 kb around TSS), as consistently assessed by ChIP-seq in two biological replicates of human (CD77+)

GC B cells.

(B) Distribution of FOXO1 (top) or BCL6 (bottom) bound peaks in relationship to their distance from each other’s closest peak.

(C) Schematic representation of the pathways affected by BCL6 and FOXO1 coordinately (green) or in a specific fashion.

(D) ChIP-seq read tracks for PRDM1, CXCR4, and CLOCK loci. Red boxes highlight the bound regions subcloned in luciferase reporter vectors used in (E).

(E) Relative reporter activity measured in transient luciferase (nanoluc) reporter assays performed in Ramos B cell line, using vectors featuring the same regulatory

regions highlighted in red in (D) (average ± SD; n = 6). Abbreviations are as follows: dnFOXO1, dominant-negative FOXO1; FOXO1-3A, constitutively active

FOXO1 (Nakae et al., 2000).

See also Table S4.
program (activation and differentiation) while sustaining those

functions typical of DZ GC B cells (cell proliferation and negative

modulation of DNA repair).

Cooperative Transcriptional Control by FOXO1
and BCL6
Although a number of transcription factors have been shown to

be required for GC development, little is known about the

possible relationship among their activities. In order to explore

this issue, and in particular to identify transcription factors impor-

tant for FOXO1 function in GC B cells, we used the MINDy and

MARINa algorithms, which predict modulators of transcriptional

networks based on mutual information analysis of gene expres-

sion and on the co-regulation of transcriptional signatures,

respectively (Lefebvre et al., 2010; Wang et al., 2009). This initial

analysis identified FOXO1 as amodulator of the activity of BCL6,

a GC-specific proto-oncogene and master regulator of GC

formation.

To further explore this relationship, we first investigated the

possible overlap in target gene binding by BCL6 and FOXO1

via paired ChIP-seq analysis in two independent biological rep-

licates of human GC B cells. This analysis revealed a significant

overlap between genomic regions bound by these two transcrip-

tion factors (p = 2.2 3 10�16). This overlap involved �500 loci
1070 Immunity 43, 1064–1074, December 15, 2015 ª2015 Elsevier In
corresponding to 25% of all BCL6-bound promoters (496 out

of 1,943) and 50% of FOXO1-bound promoters (496 out of

984) (Figure 6A; Table S4). Overall, a majority of FOXO1-bound

regions were found to cluster in close proximity (<1,000 bp) to

BCL6-bound regions, whereas BCL6 binding occurred with

FOXO1 in a distinct group of targets, as well as in a large number

of additional loci (Figure 6B).

These results identified pathways co-regulated by BCL6 and

FOXO1 through binding to the same regulatory regions, path-

ways independently regulated by each gene, as well as those

co-regulated through distinct targeting (Figure 6C; Table S4).

The set of FOXO1 and BCL6 co-bound genes downregulated

in DZ B cells was significantly enriched for genes involved in

the modulation of BCR signaling, T-cell-mediated B cell activa-

tion, and plasma cell differentiation (PRDM1). Conversely, other

BCL6-dependent GC cellular programs, including apoptosis, as

well as the interferon, interleukin, and Toll-like receptor signaling

pathways (Basso et al., 2010; Ci et al., 2009), were not included

among the FOXO1 target gene repertoire (Figure 6C; Table S4).

Of interest was the dual and complementary action of FOXO1

and BCL6 on modulating DNA repair—by BCL6-mediated sup-

pression of TP53 (Phan and Dalla-Favera, 2004)—and activation

of its negative regulatorMDM2 by FOXO1, and enforcing or sus-

taining proliferation—through suppression of the cell-cycle
c.



arrest gene CDKN1A (Phan et al., 2005) by BCL6 and activation

of positive cell cycle modulators by FOXO1.

To further address the functional relationship between FOXO1

and BCL6 in the modulation of specific gene targets, we per-

formed reporter assays in a GC-derived BL cell line (Ramos),

which expresses both BCL6 and nuclear FOXO1.We specifically

analyzed the effects of FOXO1 and BCL6 on a group of target

promoter and regulatory regions (PRDM1, CXCR4, and CLOCK)

that display differential binding by either one or both of these

two factors at their regulatory regions. In these assays, FOXO1

activity was manipulated by using a dominant-negative form

(FOXO1D256; dnFOXO1) that acts by displacing endogenous

FOXO1 from its targets, or by using a constitutively active,

AKT-insensitive form of FOXO1 (FOXO1-3A) (Nakae et al., 2000).

As a representative example of BCL6 and FOXO1 shared tar-

gets that are downregulated in DZ B cells, we tested the regula-

tory region located just upstream of the PRDM1-beta isoform

(Figure 6D, top). Whereas co-expression of FOXO1 and BCL6

decreased PRDM1 reporter activity significantly, expression of

dnFOXO1 was able to override BCL6 repression. Conversely,

the presence of FOXO1-3A restored BCL6 repression, suggest-

ing that at thisPRDM1 regulatory region, BCL6-mediated repres-

sion is dependent on FOXO1 (Figure 6E, top). Modulation of the

CXCR4 locus was tested as an example of a BCL6 and FOXO1

co-bound target that is upregulated in DZ B cells. The analyzed

CXCR4 regulatory region, located in a putative enhancer 50 to
CXCR4 (Figure 6D, middle), was unresponsive to BCL6, whereas

it was activated by FOXO1-3A expression. These data suggest

that FOXO1, but not BCL6, contributes toCXCR4 transcriptional

activation, as genomic binding does not always imply transcrip-

tional regulation (Figure 6E, middle). Finally, we tested the

BCL6-bound promoter region of a canonical BCL6 target

(CLOCK), which is specifically downregulated in GC B cells (Fig-

ure 6D, bottom; Basso et al., 2010). Consistent with theChIP-seq

profile at this locus (bound only by BCL6), transcription of the

CLOCK reporter construct was efficiently repressed by BCL6

but unresponsive to FOXO1 (Figure 6E, bottom).

Overall, the data described above suggest that FOXO1 and

BCL6 cooperate in the transcriptional modulation of a subset

of targets including the plasma cell master regulator PRDM1

and point to a licensing role for FOXO1 in a fraction of the

BCL6 transcriptional repertoire in GC B cells.

DISCUSSION

The first finding of our study is that the GC DZ zone is character-

ized by the expression of FOXO1 with the consequent absence

of PI3K signaling, which is detectable only in the LZ. Although

we cannot exclude undetectable low activity of PI3K signaling

that might be required to support ‘‘tonic’’ BCR signaling in DZ

B cells (Srinivasan et al., 2009), the clear inverse relationship be-

tween FOXO1 expression and AKT phosphorylation, as well as

the observation that the early experimental activation of PI3K

in GC B cells causes the disappearance of the DZ (see the

accompanying paper by Sander et al. [2015]), is consistent

with a major polarized role of PI3K restricted to the LZ. This

idea, together with previous results showing that NF-kB, a major

transcriptional hub for several pathways including BCR, TNF re-

ceptor, and Toll-like receptor signaling, is not active in DZ B cells
Imm
(Basso et al., 2004; Shaffer et al., 2001), further supports the

conclusion that the DZ is essentially a proliferative compartment,

mainly dedicated to clonal expansion and sheltered from any

immune activation signals. The absence or active repression of

critical B cell pathways would make DZ B cells immune to pre-

mature activation and differentiation prior to proper clonal

expansion and affinity selection.

The phenotype of Foxo1-null GCs, i.e., a fully formed but

LZ-only GC, is notable in that it suggests a re-evaluation of a

number of functions that are considered to typically characterize

the DZ phenotype. First, the presence of actively proliferating

cells displaying the phenotype of LZ B cells indicate that rapid

proliferative expansion is not a specific program of DZ cells,

but rather that it can be instructed at the initiation of the GC re-

action and after each round of DZ cyclic reentry by signals that

can be independent of a full DZ phenotype. Second, SHM, a

typical function of DZ centroblasts (De Silva and Klein, 2015; Vic-

tora and Nussenzweig, 2012), can apparently also occur in LZ B

cells, suggesting that AID induction and the entire machinery of

SHM can be activated independent of the DZ program.

Conversely, the selection of B cells expressing high-affinity anti-

bodies to T-cell-dependent antigens, a function normally

executed in the LZ of the GCs (Victora and Nussenzweig,

2012), is impaired in Foxo1-null LZ-only GCs. We suggest that

absence of DZ programs and the premature initiation of signals

promoting the activation and survival of GC B cells in Foxo1-

null GCs might prevent effective affinity maturation by overriding

the affinity selection checkpoints controlling cyclic re-entry of

GC B cells from LZ to DZ. This notion is consistent with the

constitutive expression of immune activation and BCR signaling

programs observed in Foxo1-null GCs. Thus, a function of

FOXO1 in GC B cells is to actively enforce the suppression of

these programs as LZ cells transit into the DZ during cyclic

reentry. The requirement for FOXO1 in this process might also

explain why the simple repositioning of GC B cells, as it occurs

in Cxcr4-deficient GCs (Allen et al., 2004; Bannard et al., 2013),

is not sufficient to change their phenotype.

Our results confirm previous reports indicating that FOXO1

is required for CSR, a LZ-typical function that is surprisingly

lost in the absence of DZ B cells. However, in contrast with pre-

vious reports (Dengler et al., 2008; Omori et al., 2006), we

conclude that the CSR defect in these cells is apparently not

due to a defect in AID expression, which we found normally

active. This finding is further supported by the normal activity

of SHM and the selective CSR defect involving only some Ig

isotypes. We attribute the discrepancy with the previous report

to the fact that our results show that in vivo, AID is normally

present in Foxo1-null GC B cells, whereas previous conclusions

were based on the lack of CSR and low AID expression in non-

GC B cells activated in vitro (Dengler et al., 2008; Omori et al.,

2006), a less physiological context where we have in fact

confirmed the suboptimal induction of AID. Conversely, our re-

sults indicate that defective CSR might be at least in part due

to faulty activation of Ig sterile transcripts in the absence of

FOXO1, as suggested by the decreased expression of these

transcripts in Foxo1-null GC B cells, as well as by the binding

of FOXO1 to critical enhancer elements within the Ig locus.

Nonetheless, we cannot fully exclude that indirect effects

caused by reduced expression of additional factors (i.e., Batf)
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in Foxo1-null GC B cells could also contribute to the defects in

CSR (Ise et al., 2011).

Our analyses identify a large number of genes that are bound

and differentially expressed in correlation with FOXO1 expres-

sion. However, none of these genes can be conclusively defined

as a direct transcriptional FOXO1 target based only on combined

ChIP-seq and GEP analysis. A second and related complication

in the interpretation of our results is that both upregulated and

downregulated genes appear in the set of candidate FOXO1 tar-

gets. This result might again reflect the indirect nature of some

targets and/or the possible dual activity of FOXO1 as a trans-

repressor or trans-activator and is in line with previous conflict-

ing conclusions on its transcriptional function (Glauser and

Schlegel, 2007; Greer and Brunet, 2005).

The set of direct and/or indirect target genes displays a signif-

icant enrichment in pathways that are consistent with a DZ func-

tion of FOXO1. We consider the overlap of the FOXO1 program

with the BCL6 program to be of particular relevance, given the

central regulatory role of BCL6 in GC physiology andGC-derived

malignancies (Basso and Dalla-Favera, 2012; Hatzi and Melnick,

2014). Notably, a significant fraction of loci bound and appar-

ently regulated by FOXO1 coincide with those bound and

repressed by BCL6, including genes involved in the modulation

of B cell receptor (BCR) signaling, T-cell-mediated B cell activa-

tion, and plasma cell differentiation (PRDM1). In the case of

PRDM1 we have shown that the trans-repressive function of

BCL6 was dependent on the activity of FOXO1 on the same pro-

moter region, an observation that suggests a strong cooperative

action between these two transcription factors in establishing

functions critical for DZ development. In addition to common

programs, each gene appeared to have a separate set of targets,

which, in the case of FOXO1, involved mostly a positive correla-

tion with gene programs supporting cell proliferation. It is worth

noting, however, that among those genes separately controlled

by either transcription factor, we find some coherently regulating

the same functions, but via opposite control of negative and pos-

itive regulators. Notable examples of these cooperative mecha-

nisms are represented by the negative regulation of DNA repair,

via upregulation of the negative regulator of TP53 MDM2 by

FOXO1 and direct downregulation of TP53 by BCL6, and the

positive regulation of cell proliferation via upregulation of cell cy-

cle and DNA regulation genes by FOXO1 and trans-repression of

the cell cycle arrest gene CDKN1A by BCL6.

Finally, the results herein provide some clues on the role of

FOXO1 mutations in lymphomagenesis. Missense mutations,

predominantly clustering on residues involved in PI3K-medi-

ated phosphorylation and inactivation of FOXO1, are detectable

in �12% of BL and �9% of DLBCL (Morin et al., 2011, 2013;

Pasqualucci et al., 2014; Schmitz et al., 2012; Trinh et al.,

2013). The recurrent and clustered nature of these mutations

strongly supports their pathogenetic role in these malignancies.

Initial functional analysis of such mutations has suggested that

they might induce resistance to PI3K-mediated phosphorylation

and inactivation in the cytoplasm (Trinh et al., 2013). The results

of the present study suggest that constitutively active FOXO1

might contribute to malignant transformation by pathologically

maintaining part of the DZ GC B cell program, including consti-

tutive cell proliferation, blocking differentiation, and impairing

DNA repair. The requirement of FOXO1 for BCL6-dependent
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repression of PRDM1 suggests that constitutive FOXO1 activity

might also be required for the oncogenic activity of deregulated

BCL6 expression.

EXPERIMENTAL PROCEDURES

Mouse Strains and Immunization

Foxo1fl/fl mice (FVB.129S6(Cg)-Foxo1tm1Rdp/J [Paik et al., 2007] back-

crossed for >10 generations into the C57BL/6J background) and Cg1-cre

(B6.129P2(Cg)-Ighg1tm1(IRES-cre)Cgn/J) mice (Casola et al., 2006) were

crossed to obtain GC-specific Foxo1-null animals. Mice were housed in spe-

cific-pathogen-free environments, and experiments conformed to the ethical

principles and guidelines of our Institutional Animal Care and Use Committee.

�10- to 12-week-old mice were immunized with SRBCs (Cocalico Biologi-

cals) or NP (4-hydroxy-3-nitrophenyl-acetyl) conjugated to KLH (BioSearch),

mixed 1:1 in complete Freund’s adjuvant (CFA; Sigma), by intraperitoneal

injection (Victora et al., 2012).

B Cell Isolation and Flow Cytometry Analysis

Mononuclear cells were isolated from spleens of immunized mice with the

Mouse B cell Isolation Kit (Miltenyi), as previously described (Victora et al.,

2012). Cell pools were stained with specific antibodies (Table S5) and analyzed

or sorted with a BD LSRII (or BD Fortessa) or a BD FACSAria device, respec-

tively. GC B cell fractions were isolated as previously described (Victora et al.,

2012). Further details on staining and flow cytometry procedures are provided

in the Supplemental Experimental Procedures. FlowJo software (TreeStar;

RRID: nif-0000-30575) was used for data analyses and plot rendering.

Immunofluorescence Analysis

All immunofluorescence analyses were performed on formalin-fixed, paraffin-

embedded sections from mouse and human secondary lymphoid tissues, as

previously described (Cattoretti, 2013; Cattoretti et al., 2006). The procedures

are detailed in the Supplemental Experimental Procedures, and the antibody

list is provided in Table S5.

Ex Vivo Class Switch Recombination and Affinity Maturation

Analyses

For ex vivo class switch recombination assays, murine B cells were activated

in vitro by co-stimulation with lypopolysaccharide (LPS) and mouse inter-

leukin-4 (IL-4) for 3–4 days. Conditional deletion of Foxo1 in Foxo1fl/fl B cells

was achieved with 45min incubation with TAT-Cre (Excellgen). Cells were har-

vested at the end point and processed for gene expression and phenotypic

analysis.

For the analysis of somatic hypermutation events and affinity maturation, we

isolated genomic DNA from sortedmurine GCB cells, 14 days after NP-KLH im-

munization. The IgH VH186.2-JH2 segment was amplified via high-fidelity PCR,

as described (Schwickert et al., 2009). PCRproductswere subclonedand single

colonies selected for Sanger sequencing. Sequence analysis and alignments

were done with the HighV-Quest tool (The International Immunogenetics

Information System, IMGT) (Lefranc, 2011). Only clones corresponding to the

V186.2 gene (IGHV 72*01, IMGT nomenclature) were considered in the analysis.

Additional technical details are provided in the Supplemental Experimental

Procedures.

Luciferase Reporter Assays

The Ramos Burkitt lymphoma cell line (ATCC CRL-1596) was electroporated

(Neon system, Life Technologies) in multiple (6–10) replicates with reporter

constructs encoding for Nanoluc luciferase (Promega) under the control of

selected human regulatory regions (Supplemental Experimental Procedures).

At 3 days post-electroporation, cells were harvested and reporter activity was

measured with the Nano-Glo Luciferase Assay System (Promega).

Gene Expression Analyses via Quantitative RT-PCR and Microarray

Profiling

cDNA was obtained from total RNA using a linear amplification method

(Ovation RNA Amplification System; NuGEN), and it was subsequently

used for SYBR green-based quantitative RT-PCR analysis or 30 IVT expression
c.



analysis (GeneChip Mouse Genome 430.2 arrays, Affymetrix). Primer se-

quences are detailed in Table S6. A detailed account of the experimental pro-

cedures for gene expression experiments and bioinformatics analysis of these

data is included in the Supplemental Experimental Procedures.

ChIP-Seq Analyses

ChIP-seq experiments were performed on two independent samples of human

tonsilar GC B cells after formaldehyde crosslinking and ultrasonication, via

standard techniques. A detailed protocol of experimental procedures, with de-

tails on antibodies, chromatin immunoprecipitation steps, library preparation,

and bioinformatics pipeline for data analysis can be found in the Supplemental

Experimental Procedures.

Statistic Analyses

GraphPad Prism v.6.0 software (GraphPad, RRID: rid_000081) was used for all

statistical analyses. The specific use of parametric (t tests) and non-parametric

tests (Fisher’s exact test and Mann-Whitney test) is reported in each figure

legend.

ACCESSION NUMBERS

The gene expression profiling data have been deposited in the GEO database

under accession number GSE69216. The ChIP-seq data have been deposited

in the GEO database under accession number GSE68349.
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Supplemental Information includes six figures, six tables, and Supplemental

Experimental Procedures and can be found with this article online at http://

dx.doi.org/10.1016/j.immuni.2015.10.015.
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