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1. Introduction

Let (xn) be observations of an autoregressive AR(2) model

xn = θ1xn−1 + θ2xn−2 + εn, n = 1, 2, . . . . (1.1)

Throughout this paper we assume that (εn) is a sequence of independent identically distributed (i.i.d.) random variables
with Eε1 = 0, 0 < Eε21 = σ

2 < ∞, and x0 = x−1 = 0. The variance σ 2 is known (or unknown in Section 4). The process
(1.1) is assumed to be unstable, that is, both roots of the characteristic polynomial

P (z) = z2 − θ1z − θ2 (1.2)

lie on or inside the unit circle. The model (1.1) is a particular case of unstable autoregressive processes AR(p) which have
been studied by many authors due to their applications in automatic control, identification and in modeling economic
and financial time series (we refer the reader to Anderson [2], Ahtola and Tiao [1], Dickey and Fuller [5], Chan and
Wei [4], Greenwood and Shiryaev [8], Greenwood and Wefelmeyer [9], Jeganathan [11,12], Rao [16] for details and further
references).
A commonly used estimate of parameter vector θ = (θ1, θ2)′ is the least squares estimate (LSE)

θ(n) = (θ1(n), θ2(n))′ = M−1n
n∑
k=1

Xk−1xk, Mn =
n∑
k=1

Xk−1X ′k−1, (1.3)

∗ Corresponding author.
E-mail addresses: galtchou@math.u-strasbg.fr, leonid.galtchouk@math.unistra.fr (L. Galtchouk), vvkonev@vmm.tsu.ru (V. Konev).

0047-259X/$ – see front matter© 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmva.2010.07.009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82193833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/jmva
http://www.elsevier.com/locate/jmva
mailto:galtchou@math.u-strasbg.fr
mailto:leonid.galtchouk@math.unistra.fr
mailto:vvkonev@vmm.tsu.ru
http://dx.doi.org/10.1016/j.jmva.2010.07.009


L. Galtchouk, V. Konev / Journal of Multivariate Analysis 101 (2010) 2616–2636 2617

where Xk = (xk, xk−1)′; the prime denotes the transpose;M−1n denotes the inverse of matrixMn if detMn > 0 andM
−1
n = 0

otherwise.
It is well known that
√
n(θ(n)− θ) L

H⇒ N (0, F), as n→∞,

for all θ ∈ Λ, whereΛ is the stability region of process (1.1), that is,

Λ = {θ = (θ1, θ2)
′
: −1+ θ2 < θ1 < 1− θ2, |θ2| < 1}, (1.4)

F = F(θ) is a positive definite matrix (see, e.g., [2, Th. 5.5.7]), L
H⇒ indicates convergence in law. If θ belongs to the boundary

∂Λ of the stability regionΛ, the limiting distribution of LSE is no longer normal. Moreover, there is no one universal limiting
distribution for all θ ∈ ∂Λ and the corresponding set of limiting distributions numbers 6 different types depending on the
values of roots z1 and z2 of the polynomial (1.2). Each limiting distribution of LSE on the boundary coincides with that of
the ratio of certain Brownian functionals (we refer the reader to the paper of Chan and Wei [4] for general results on the
limiting distributions of the least squares estimates for unstable AR(p) processes and further details).
As is known, a similar situation arises in the case of AR(1) process

xn = θxn−1 + εn, (1.5)

forwhich the limiting distributions of the least squares estimate are not normal at the end-points θ = ±1 of stability interval
(−1, 1) (seeWhite [18], Lai and Siegmund [14]). Lai and Siegmund [14] for a first order non-explosive autoregressive process
(1.5) proposed to use a sequential sampling scheme and proved that the sequential least squares estimate for θ with the
stopping time based on the observed Fisher information is asymptotically normal uniformly in θ ∈ [−1, 1] in contrast with
the ordinary LSE.
In the paper we develop a sequential sampling scheme for estimating parameter vector θ = (θ1, θ2)′ in model (1.1). We

will use the sequential least squares estimate defined by the formula

θ(τ (h)) = M−1τ(h)
τ (h)∑
k=1

Xk−1xk, (1.6)

where τ = τ(h) is the stopping time for the threshold h > 0:

τ = τ(h) = inf

{
n ≥ 1 :

n∑
k=1

(x2k−1 + x
2
k−2) ≥ hσ

2

}
, inf{∅} = +∞. (1.7)

This construction of sequential estimate is similar to that proposed in the paper of Lai and Siegmund for AR(1) which is
defined as

θ̂τ =

(
τ∑
k=1

x2k−1

)−1
τ∑
k=1

xk−1xk, τ = inf

{
n ≥ 1 :

n∑
k=1

x2k−1 ≥ hσ
2

}
. (1.8)

It should be noted, however, that the first factor in (1.6) is a random matrix and not a random variable, as in (1.8), and this
makes additional difficulties.
For AR(1) the stopping time (1.8) turns the denominator in the estimate (1.8) practically into a constant hσ 2 and this

allows one to use the central limit theorem for martingales. In the case of AR(2) the stopping time (1.7) enables one to
control the inverse matrixM−1τ(h) in (1.6) only partially since it remains random. Nevertheless, we will see that such a change
of time also enables one to improve the properties of the estimate (1.3).
In our paper (2006) we proved the following result.

Theorem 1.1. For any compact set K ⊂ Λ1,

lim
h→∞

sup
θ∈K
sup
t∈R2

∣∣∣Pθ (M1/2τ(h)(θ(τ (h))− θ) ≤ t
)
− Φ2(t/σ)

∣∣∣ = 0,
whereΦ2(t) = Φ(t1)Φ(t2), Φ is the standard normal distribution function,

Λ1 = {θ = (θ1, θ2)
′
: − 1+ θ2 < θ1 < 1− θ2, − 1 ≤ θ2 < 1}, t = (t1, t2)′.

This theorem implies, in particular, that estimate (1.6) is asymptotically normal not only inside the stability region (1.4)
but also on the part of its boundary {θ = (θ1,−1)′ : −2 < θ1 < 2} in contrast to the LSE (1.3).
The goal of this paper is to prove the asymptotic normality of the estimate (1.6) and (1.7) in thewhole region [Λ] including

its boundary ∂Λ.
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Our main result (Theorem 3.1) claims that, as h→∞,

M1/2τ(h)(θ(τ (h))− θ)
L
H⇒ N (0, σ 2I), (1.9)

for any θ = (θ1, θ2)
′ inside the stability region Λ (1.4) and on its boundary ∂Λ, where I is the identity matrix. Thus the

sequential estimate (1.6) and (1.7) has a unique normal asymptotic distribution in the closure [Λ] of the stability region
(1.4). It will be observed that the normalizing factorM1/2τ(h) and the limiting distribution in (1.9) remain the same in thewhole
region [Λ] in contrast to the case of the LSE (1.3), which has seven different limiting distributions in [Λ]. The convergence of
the sequential estimate (1.6) and (1.7) to the normal distribution in (1.9) is not uniform in θ for θ ∈ [Λ]. It can be explained
by the fact that in the case, when the polynomial (1.2) has one root inside and the other on the unit circle, the rates of
information provided by sample values xn about the unknown parameters θ1 and θ2 may differ greatly.
Theorem 3.1 permits setting up tests of hypotheses about θ and forming asymptotic confidence regions for θ on the basis

of standard normal distribution for the sequential estimate (1.6). It will be noted that solving the above problems on the
basis of limiting distributions for LSE (1.3) is complicated by the fact that one needs some knowledge about the location
of unknown parameters (see [4] for details) to determine both the normalizing factor for the estimate deviation and the
appropriate limiting distribution.
In the paperwe study the estimation problem for the unstable AR(2) process and show that one can reduce the number of

limiting distributions in the least squaresmethod to one bymaking use of a special stopping time. It is difficult to conjecture
the result of applying the proposed stopping rule for the general AR(p) case but one can hope that it may also be useful
in overcoming the drastic differences of behavior of the AR(p) process at different ‘unstable’ points on the boundary of the
stability region.
The remainder of this paper is arranged as follows. Section 2 gives the asymptotic distribution of the stopping time

(1.7) (Theorem 2.1) and some properties of the observed Fisher informationmatrix. In Section 3 the asymptotic normality of
sequential estimate (1.6) for unstable AR(2)model is established (Theorem3.1). Section 4 proposes the sequential estimation
scheme for the case of unknown variance σ 2 in model (1.1). Section 5 contains some technical results.

2. Properties of the stopping time τ(h) and the observed Fisher information matrixMn

In this section the attention is mainly focused on the case when the unknown parameter θ = (θ1, θ2)
′ belongs to the

boundary ∂Λ of the stability region (1.4). The boundary ∂Λ includes three sides:

Γ1 = {θ : −θ1 + θ2 = 1,−2 < θ1 < 0} , Γ2 = {θ : θ1 + θ2 = 1, 0 < θ1 < 2} ,
Γ3 = {θ : −2 < θ1 < 2, θ2 = −1} (2.1)

and three apexes (0, 1), (−2,−1), (2,−1). Denote

A =
(
θ1 θ2
1 0

)
, B =

(
1 0
0 0

)
,

W (n)(t) =
1

σ
√
n

[nt]∑
i=0

εi, W (n)
1 (t) =

1
σ
√
n

[nt]∑
i=0

(−1)iεi, 0 ≤ t ≤ 1, (2.2)

and introduce the following functionals

J1(x; t) =
∫ t

0
x2(s)ds, J2(x; t) =

∫ t

0

(∫ s

0
x(u)du

)2
ds, (2.3)

J3(x; y; t) =
∫ t

0
(x2(s)+ y2(s))ds, J4(x; t) =

(∫ t

0
x(s)ds

)2
.

Theorem 2.1. Let τ(h) be defined by (1.7), a and b be real roots of the polynomial (1.2),−1 ≤ a < b ≤ 1. Then, for each θ ∈ Λ,

Pθ − lim
h→∞

τ(h)/h = 1/tr F , F − AFA′ = B. (2.4)

Moreover, for each θ ∈ ∂Λ, as h→∞,

τ(h)
ψ(θ, h)

L
H⇒


ν1(W1) = inf{t ≥ 0 : J1(W1; t) ≥ 1} if θ ∈ Γ1,
ν2(W ) = inf{t ≥ 0 : J1(W ; t) ≥ 1} if θ ∈ Γ2,
ν3(W ,W1) = inf{t ≥ 0 : J3(W ;W1; t) ≥ 1} if θ ∈ Γ3 ∪ {(0, 1)},
ν4(W ) = inf{t ≥ 0 : J2(W ; t) ≥ 1} if θ = (2,−1),
ν5(W1) = inf{t ≥ 0 : J2(W1; t) ≥ 1} if θ = (−2,−1),

(2.5)
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where inf{∅} = ∞, Λ is defined in (1.4),

ψ(θ, h) =


(1+ b)

√
h/2 if θ ∈ Γ1,

(1− a)
√
h/2 if θ ∈ Γ2,√

2h sinϕ if θ = (2 cosϕ,−1)′ ∈ Γ3,√
2h if θ = (0, 1),

(h/2)1/4 if θ ∈ {(−2,−1), (2,−1)},

(2.6)

W (t),W1(t) are independent standard Brownian motions.

Proof. Assertion (2.4) easily follows from Lemma 3.12 in [6].
For θ ∈ ∂Λwe decompose the original process (1.1) into two processes (uk)k≥1 and (vk)k≥1 using the transformation

QXk = (uk, vk)′, (2.7)

where Q is a non-degenerate constant matrix of size 2 × 2 which will be chosen later depending on the values of
θ. The limiting relation (2.5) for θ ∈ ∪3i=1 Γi has been proved in [7], Theorem 2.2. It remains to consider the apexes
(2,−1), (−2,−1), (0, 1). Denote

Q1 =
(
1 0
1 −1

)
, Q2 =

(
1 −b
1 −a

)
, Q3 =

(
1 0
1 1

)
. (2.8)

For θ = (2,−1), making use of Q1 in (2.7) one obtains

vk =

k∑
j=1

εj, uk =
k∑
j=1

(xj − xj−1) =
k∑
j=1

vj =

k∑
j=1

j∑
i=1

εi,

n∑
k=1

‖Xk−1‖2 =
n∑
k=1

u2k−1 +
n∑
k=1

u2k−2 = 2
n∑
k=1

u2k−1 − u
2
n−1. (2.9)

By the definition of τ(h) in (1.7), one gets

Pθ
{
τ(h) ≤ th1/4

}
= Pθ

[th
1/4
]∑

k=1

‖Xk−1‖2 ≥ hσ 2


= Pθ

 2
hσ 2

[th1/4]∑
k=1

u2k−1 −
1
hσ 2
u2
[th1/4]−1 ≥ 1

 . (2.10)

Further we show (by the argument similar to that in the proof of Lemma 2.3 in Section 5) that the sum

Sn(t) =
1
n4σ 2

[nt]∑
k=1

u2k−1 = J2(W (n)
; t)+ g(n)(t),

where g(n)(t) is a random process such that, for any δ > 0,

lim
n→∞

Pθ(|g(n)(t)| > δ) = 0.

Now we check that

lim
n→∞

u2n/n
4
= 0 Pθ-a.s. (2.11)

By the Cauchy inequality and the law of iterated logarithms we have

u2n/n
4
≤ n−3

n∑
k=1

(
k∑
j=1

εi

)2
,

n∑
k=1

1
k3

(
k∑
j=1

εi

)2
<∞ Pθ-a.s.

These inequalities, by virtue of the Kronecker Lemma, imply (2.11).
From here and (2.10) and (2.11), we obtain

Pθ (τ (h)/ψ(θ, h) ≤ t) = Pθ(ν
(n)
θ ≤ t)+ βθ(h),

where ν(n)θ = inf{t ≥ 0 : J2(W
(n)
; t) ≥ 1}, limh→∞ βθ(h) = 0.

W (n)(t) is given in (2.2). This, by the functional Donsker theorem (see [3]), leads to (2.5) for θ = (2,−1).
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The case of the apexes (0, 1), (−2,−1) can be considered similarly with the use of Theorem 5.14 given in Section 5.
Hence Theorem 2.1. �

Nowwe will establish some properties of the observed Fisher information matrixMn. Introduce the following subsets of
the closed region [Λ]:

Λd = [Λ] \

2⋃
i=1

Bi, Λd = Λd,1 +Λd,2; (2.12)

Λd,1 = Λd ∩ Vd, Λd,2 = Λd \Λd,1;

Vd =
{
θ : −2+

d
√
2
≤ θ1 ≤ 0,

−θ21

4
+
d2

8
< θ2 ≤ 1+ θ1

}
∪

{
θ : 0 ≤ θ1 ≤ 2−

d
√
2
,
−θ21

4
+
d2

8
≤ θ2 ≤ 1− θ1

}
;

Bi are open balls of radius d > 0 centered at the apexes (−2,−1), (2,−1).
In view of Theorem 1.1, it suffices to study the properties of Mn only for the parametric subset Λd,1 and the apexes

(−2,−1), (2,−1). In the case of Λd,1, one can use the transformation (2.7) with the matrix Q2 and −1 ≤ a < b ≤ 1.
Substituting (2.7) and Q2 inMn (1.3) yields

Mn = Q−1Sn(Q ′)−1 = Q−1R−1n JnR
−1
n (Q

′)−1, (2.13)

where Jn = Rn Sn Rn, Rn = diag
(
(u, u)−1/2n , (v, v)−1/2n

)
,

Jn =
(
1 ξn
ξn 1

)
, Sn =

(
(u, u)n (u, v)n
(u, v)n (v, v)n

)
; (2.14)

ξn = (u, u)−1/2n (v, v)−1/2n (u, v)n, (u, v)n =
n∑
k=1

uk−1vk−1. (2.15)

Proposition 2.2. For any d > 0 and δ > 0,

lim
h→∞

sup
θ∈Λd,1

Pθ
(
‖Jτ(h) − T (θ1, θ2)‖ > δ

)
= 0; (2.16)

T (θ1, θ2) =
(
1 r(a, b)

r(a, b) 1

)
, r(a, b) =

√
1− a2

√
1− b2

1− ab
. (2.17)

The proof of Proposition 2.2 is given in Section 5.
Furtherwe consider the asymptotic behavior of thematrix Jn in the extreme caseswhen the process xk is ‘‘most’’ unstable,

that is, θ coincides with one of the apexes (−2,−1), (2,−1) of the parametric region [Λ].
For θ = (2,−1)we take the matrix Q1 from (2.8). This yields

uk =
k∑
j=0

j∑
i=0

εi, vk =

k∑
j=0

εj, k ≥ 1, u0 = v0 = ε0 = 0. (2.18)

For θ = (−2,−1)we take the matrix Q3 from (2.8). This implies

uk = (−1)k
k∑
j=1

j∑
i=1

(−1)iεi, vk =

k∑
j=1

(−1)jεj.

Lemma 2.3. Let ξn be given by (2.15) and θ ∈ {(−2,−1), (2,−1)}. Then

ξn
L
H⇒

{
ϕ(W ) if θ = (2,−1),
ϕ(W1) if θ = (−2,−1),

as n→∞; (2.19)

ϕ(W ) = 2−1J−1/22 (W ; 1)J−1/21 (W ; 1)J4(W ; 1). (2.20)

The proof of Lemma 2.3 is given in Section 5.

3. Asymptotic normality

It is known that the sequential least squares estimate (1.6) and (1.7) is asymptotically normal just like the ordinary LSE
for any value of θ in the stability regionΛ. Moreover, according to Theorem 1.1, this convergence of sequential LSE to normal
law is uniform in θ belonging to any compact set inΛ supplementedwith the part of its boundary corresponding to complex
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roots of the polynomial (1.2). In this section, we will show that in contrast with the ordinary LSE (cf. Chen andWei [4]), the
sequential LSE is asymptotically normal also on the boundary ∂Λ of the stability regionΛ.

Theorem 3.1. Let τ(h), θ(τ (h)) and Mτ(h) be as in (1.3), (1.6) and (1.7). Then

lim
h→∞

sup
t∈R2

∣∣∣Pθ (M1/2τ(h)(θ(τ (h))− θ) ≤ t
)
− Φ2(t/σ)

∣∣∣ = 0, (3.1)

for all θ ∈ [Λ], where Φ2(t) = Φ(t1)Φ(t2), t = (t1, t2)′, Φ is the standard normal distribution function; [Λ] is the closure of
the stability region (1.4).

Proof. By Theorem 1.1, we show (3.1) for θ ∈ Γ1 ∪ Γ2 ∪ {(0, 1), (−2,−1), (2,−1)}. If θ ∈ Γ1 ∪ Γ2 ∪ {(0, 1)}, the minimal
and the maximal roots a and b of the polynomial (1.2) satisfy the inequalities −1 ≤ a < b ≤ 1. Using the transformation
(2.7) with Q2 we decompose the original process (1.1) into two processes (uk) and (vk)which obey the equations

uk = auk−1 + εk, vk = bvk−1 + εk, u0 = v0 = 0. (3.2)

Since the matrix Q2 is non-degenerate, (2.13) implies

M1/2n = Q
−1
2 R

−1
n J

1/2
n . (3.3)

Substituting this matrix in the standardized deviation of the sequential estimate (1.6), one gets

M1/2τ(h)(θ(τ (h))− θ) = J
−1/2
τ(h) Rτ(h)

τ (h)∑
k=1

Q2Xk−1εk = J
−1/2
τ(h) Zτ(h), (3.4)

where Zn =
(
(u, u)−1/2n

∑n
k=1 uk−1εk, (v, v)

−1/2
n

∑n
k=1 vk−1εk

)′
. Further we note that Proposition 2.2 implies that, for any

δ > 0,

lim
h→∞

sup
θ∈Γ1∪Γ2∪{(0,1)}

Pθ
(
‖J−1/2τ(h) − I‖ > δ

)
= 0. (3.5)

Therefore in order to prove (3.1) for θ ∈ Γ1 ∪ Γ2 ∪ {(0, 1)} it suffices to establish the following result.

Proposition 3.2. Let θ ∈ Γ1 ∪ Γ2 ∪ {(0, 1)}. Then, for each constant vector λ = (λ1, λ2)
′
∈ R2 with ‖λ‖ = 1, the random

variable

Yh = λ′Zτ(h)/σ (3.6)

is asymptotically normal with mean 0 and unit variance, as h→∞, that is,

lim
h→∞

sup
t∈R
|Pθ(Yh ≤ t)− Φ(t)| = 0.

Themain difficulty in the analysis of Yh is that the stopping time (1.7) enables one to control the sums (u, u)τ(h), (v, v)τ(h)
in the denominators of (3.6) only partially because one of them or both are random variables even in the asymptotic as
h→∞.
The proof of Proposition 3.2 is given in Section 5. The key idea of the proof is to replace Yh by a more tractable random

variable Ỹh equivalent to Yh in distribution by making use of the Skorohod coupling theorem and then apply the Central
Limit Theorem for martingales. Section 5 contains also the proof of Theorem 3.1 for the case of θ ∈ {(−2,−1), (2,−1)}.
This case is considered separately because thematrix Jn in (3.3) converges, according to Lemma 2.3, only in distribution. �

4. Case of unknown variance

In this section, we extend the sequential estimation scheme to model (1.1) with unknown variance. It is shown that
the sequential least squares estimate modified to embrace this case remains asymptotically normal uniformly in θ for any
compact set in the regionΛ1 = Λ ∪ Γ3 (Theorem 4.1) and it is asymptotically normal in the closure of the stability region
[Λ] (Theorem 4.2).
Suppose that the variance σ 2 in (1.1) is unknown. A commonly used estimate for σ 2 in autoregressive processes on the

basis of observations (x1, . . . , xn) is defined as

σ̂ 2n = n
−1

n∑
k=1

(xk − θ′(n)Xk−1)2, (4.1)

where θ(n) is the least squares estimate of θ defined in (1.3). Now we must modify the stopping time (1.7). At first sight,
to this end one should replace σ 2 in (1.7) by σ̂ 2n . However, we will use a different modification similar to that proposed by
Lai and Siegmund for AR(1) model, which turns out to be more convenient in the theoretic studies. Define the sequential
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estimate as

θ(τ̂ (h)) = M−1
τ̂ (h)

τ̂ (h)∑
k=1

Xk−1xk, (4.2)

τ̂ (h) = inf

{
n ≥ 3 :

n∑
k=1

(x2k−1 + x
2
k−2) ≥ hs

2
n

}
, (4.3)

where s2n = σ̂
2
n ∨ δn, δn is a sequence of positive numbers with δn → 0.

The main results of this section are stated in the following theorems.

Theorem 4.1. For any compact set K ⊂ Λ1,

lim
h→∞

sup
θ∈K
sup
t∈R2

∣∣∣Pθ (M1/2τ̂ (h)(θ(τ̂ (h))− θ)/σ̂τ̂ (h) ≤ t
)
− Φ2(t)

∣∣∣ = 0, (4.4)

whereΦ2(t) = Φ(t1)Φ(t2), Φ is the standard normal distribution function,

Λ1 = {θ = (θ1, θ2)
′
: −1+ θ2 < θ1 < 1− θ2, − 1 ≤ θ2 < 1}, t = (t1, t2)′.

Theorem 4.2. For any θ ∈ [Λ],

lim
h→∞

sup
t∈R2

∣∣∣Pθ (M1/2τ̂ (h)(θ(τ̂ (h))− θ)/σ̂τ̂ (h) ≤ t
)
− Φ2(t)

∣∣∣ = 0.
We omit the proofs of Theorems 4.1 and 4.2 which are similar to those of Theorems 1.1 and 3.1 though they become

more laborious.

5. Auxiliary propositions

This section contains the proofs of some results used in this paper.

5.1. Proof of Proposition 2.2

First we prove three lemmas.

Lemma 5.1. For each m = 1, 2, . . . and for any δ > 0,
lim
h→∞

sup
θ∈[Λ]

Pθ(τ (h) < m) = 0, lim
h→∞

sup
θ∈[Λ]

Pθ(1/τ(h) > δ) = 0. (5.1)

Proof. These equations follow from the definition of τ(h) in (1.7). �

Lemma 5.2. For any δ > 0,

lim
h→∞

sup
θ∈[Λ]

Pθ

(∣∣∣∣∣ 1τ(h)
τ(h)∑
k=1

ε2k − σ
2

∣∣∣∣∣ > δ

)
= 0.

Proof. One has Pθ
(∣∣∣ 1τ(h)∑τ(h)

k=1 ε
2
k − σ

2
∣∣∣ > δ

)
≤ Pθ(τ (h) < m)+ Pθ

(∣∣∣∣∣1n
n∑
k=1

ε2k − σ
2

∣∣∣∣∣ > δ for some n ≥ m

)
.

Lemma 5.1 and the strong law of large numbers yields the result. �

Lemma 5.3. Let (uk)k≥0 and (vk)k≥0 be the processes defined in (3.2). Then, for each d > 0 and any δ > 0,

lim
h→∞

sup
θ∈Λd,1

Pθ
(
|τ(h)(u, u)−1τ(h) − (1− a

2)/σ 2| > δ
)
= 0, (5.2)

lim
h→∞

sup
θ∈Λd,1

Pθ
(
|τ(h)(v, v)−1τ(h) − (1− b

2)/σ 2| > δ
)
= 0.

Proof. Since these relations are similar, we verify only (5.2). First we show that, for each d > 0 and any δ > 0,

lim
h→∞

sup
θ∈Λd,1,
−θ1+θ2<1

Pθ
(
|τ(h)(u, u)−1τ(h) − (1− a

2)/σ 2| > δ
)
= 0. (5.3)



L. Galtchouk, V. Konev / Journal of Multivariate Analysis 101 (2010) 2616–2636 2623

Squaring both sides of the first equation in (3.2) and summing give

(1− a2)
τ(h)∑
j=1

u2j−1 = u
2
0 − u

2
τ(h) + 2a

τ(h)∑
j=1

uj−1εj +
τ(h)∑
j=1

ε2j .

This, in view of (2.16) and the estimate
∑n−1
k=1 ε

2
k ≤ 4

∑n
k=1 u

2
k−1, yields

|τ(h)(u, u)−1τ(h) − (1− a
2)/σ 2| ≤

u2τ(h)
σ 2(u, u)τ(h)

+

2
∣∣∣∣τ(h)∑
k=1
uk−1εk

∣∣∣∣
σ 2(u, u)τ(h)

+

∣∣∣∣τ(h)∑
k=1
(ε2k − σ

2)

∣∣∣∣
(σ 2/4)

τ(h)−1∑
k=1

ε2k

. (5.4)

By Lemma 5.2, we have to show that, for each d > 0 and any δ > 0,

lim
h→∞

sup
θ∈Λd,1∩{−θ1+θ2<1}

Pθ
(
u2τ(h)(u, u)

−1
τ(h) > δ

)
= 0, (5.5)

lim
h→∞

sup
θ∈Λd,1∩{−θ1+θ2<1}

Pθ

(∣∣∣∣∣τ(h)∑
k=1

uk−1εk

∣∣∣∣∣ (u, u)−1τ(h) > δ

)
= 0. (5.6)

One has

Pθ
(
u2τ (u, u)

−1
τ > δ

)
≤ Pθ(τ < m)+ Pθ

(
u2n(u, u)

−1
n > δ for some n ≥ m

)
. (5.7)

It is known (see, [14]) that

lim
m→∞

sup
|a|≤1

Pθ(u2n(u, u)
−1
n > δ for some n ≥ m) = 0. (5.8)

Applying this and Lemma 5.1 in (5.7) yields (5.5). To prove (5.6) we use the representation∣∣∣∣∣τ(h)∑
k=1

uk−1εk

∣∣∣∣∣
/
(u, u)τ(h) = ζτ(h)max

(
τ(h)

(u, u)τ(h)
,

(
τ(h)

(u, u)τ(h)

)1/4 1
4
√
τ(h)

)
,

where ζn = |
∑n
k=1 uk−1εk|/max

(
n, (u, u)3/4n

)
. By Lemmas 5.1 and 5.2 and applying the uniform law of large numbers for

martingales (see [14]) one comes to (5.6). Combining (5.4)–(5.5) and Lemma 5.2 one gets (5.3). It remains to show that, for
each d > 0 and δ > 0,

lim
h→∞

sup
θ∈Λd,1∩{−θ1+θ2<1}

Pθ(|τ(h)/(u, u)τ(h) − (1− a2)/σ 2| > δ) = 0. (5.9)

If θ1 + θ2 = 1, then a = −1 and the process uk in (3.2) satisfies the limiting relation (see, e.g., [15])

lim inf
n→∞

n∑
k=1

u2k/(n
2/ log log n) =

σ 2

4
a.s. (5.10)

By making use of the inequality

Pθ
(

τ(h)
(u, u)τ(h)

> δ

)
≤ Pθ(τ < m)+ Pθ

(
n

(u, u)n
> δ for some n ≥ m

)
and (5.10), we come to (5.9). This completes the proof of Lemma 5.3. �

Now we can prove Proposition 2.2. We have to show that, for each d > 0 and any δ > 0,

lim
h→∞

sup
θ∈Λd,1

Pθ
(
|ξτ(h) − r(a, b)| > δ

)
= 0. (5.11)

Denote

η
(l)
h = Ah

τ(h)∑
k=l

uk−lvk−l, l = 1, . . . , τ (h), Ah = (u, u)
−1/2
τ(h) (v, v)

−1/2
τ(h) . (5.12)
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From Eq. (3.2), one gets for l = 1, . . . , τ (h)− 1,
τ(h)∑
k=l

uk−lvk−l =
τ(h)∑
k=l+1

(auk−l−1 + εk−l) (bvk−l−1 + εk−l)

= ab
τ(h)∑
k=l+1

uk−l−1vk−l−1 + a
τ(h)∑
k=l+1

uk−l−1εk−l + b
τ(h)∑
k=l+1

vk−l−1εk−l +

τ(h)∑
k=l+1

ε2k−l.

Substituting this in (5.12) yields

η
(l)
h = abη

(l+1)
h + zτ(h)−l, 1 ≤ l < τ(h);

zτ−l = Ah

(
a

τ∑
k=l+1

uk−l−1εk−l + b
τ∑

k=l+1

vk−l−1εk−l +

τ∑
k=l+1

ε2k−l

)
. (5.13)

Putting ζm = η
(τ (h)−m)
h one comes to the equation

ζm = abζm−1 + zm, 1 ≤ m < τ(h), ζ0 = 0.

Solving this equation one finds

ξτ(h) = ζτ(h)−1 =

τ(h)−2∑
j=0

(ab)jzτ(h)−1−j.

Introducing the sums

Sm =
m∑
l=0

(ab)l, m ≥ 0, (5.14)

one can rewrite this formula as follows

ξτ(h) = Sτ(h)−2z1 +
τ(h)−3∑
j=0

Sj(zτ(h)−1−j − zτ(h)−2−j). (5.15)

By making use of (5.13) one can easily verify that

zτ(h)−1−j − zτ(h)−2−j = Ah(auτ(h)−2−jετ(h)−j−1 + bvτ(h)−2−jετ(h)−j−1 + ε2τ(h)−j−1).

Substituting this in (5.15) one obtains

ξτ(h) = ξ
(1)
h + ξ

(2)
h + ξ

(3)
h ; (5.16)

ξ
(1)
h = Ah

τ(h)−1∑
k=1

Sτ(h)−1−kε2k , ξ
(2)
h = aAh

τ(h)−1∑
k=2

Sτ(h)−1−kuk−1εk,

ξ
(3)
h = bAh

τ(h)−1∑
k=2

Sτ(h)−1−kvk−1εk.

(5.17)

To show (5.11) we have to check that, for each d > 0 and δ > 0,

lim
h→∞

sup
θ∈Λd,1

Pθ(|ξ
(1)
h − r(a, b)| > δ) = 0,

lim
h→∞

sup
θ∈Λd,1

Pθ(|ξ
(i)
h | > δ) = 0, i = 2, 3.

(5.18)

First we will verify the equalities for some subsets ofΛd,1: for any q ∈]0, 1[

lim
h→∞

sup
θ∈Λd,1∩{θ:|ab|≤q}

Pθ(|ξ
(1)
h − r(a, b)| > δ) = 0,

lim
h→∞

sup
θ∈Λd,1∩{θ:|ab|≤q}

Pθ(|ξ
(i)
h | > δ) = 0, i = 2, 3.

(5.19)

Denoting limn→∞ Sn = (1− ab)−1 = S∗ we rewrite ξ
(1)
h as

ξ
(1)
h = AhS

∗

τ(h)−1∑
k=1

ε2k +Wh, Wh = Ah
τ(h)−1∑
k=1

(Sτ(h)−1−k − S∗)ε2k . (5.20)
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By Lemmas 5.1 and 5.3 one gets

AhS∗
τ−1∑
k=1

ε2k =
√
1− a2

√
1− b2(1− ab)−1 + αh, (5.21)

where αh satisfies, for d > 0, 0 < q < 1, and δ > 0, the limiting relation

lim
h→∞

sup
θ∈Λd,1∩{θ:|ab|≤q}

Pθ(|αh| > δ) = 0. (5.22)

For |Wh|, on the set (τ (h) > N + 1), one has the following estimate

|Wh| ≤ max
n≥N
|Sn − S∗|

(
τ(h)

(u, u)τ(h)

) 1
2
(

τ(h)
(v, v)τ(h)

) 1
2 1
τ(h)

τ(h)−1∑
k=1

ε2k

+ max
n≥1
|Sn − S∗|

(
τ(h)

(u, u)τ(h)

) 1
2
(

τ(h)
(v, v)τ(h)

) 1
2
(
1
τ(h)

τ(h)−1∑
k=1

ε2k −
1
τ(h)

τ(h)−N−1∑
k=1

ε2k

)
.

From here, in view of the inequalities,

max
n≥N
|Sn − S∗| ≤ qN+1/(1− q), max

n≥1
|Sn − S∗| ≤ q/(1− q),

by applying Lemmas 5.1–5.3, we obtain

lim
h→∞

sup
θ∈Λd,1∩{θ:|ab|≤q}

Pθ(|Wh| > δ) = 0.

This and (5.20)–(5.22) imply (5.19). Similarly one shows (5.19) for i = 2, 3.
Thus we have verified all limiting relationships (5.19) which give the asymptotic convergence of random variables ξ (i)h

on the parametric set Λd,1 with the additional condition |ab| ≤ q. It remains to show that ξ
(i)
h converges on the set Λd,1. It

will be observed that, by the definition of parametric set Λd,1 in (2.12), there exists a number q∗ ∈ (0, 1) such that for all
q∗ ≤ q < 1 the corresponding setΛd,1 ∩ {θ : |ab| ≤ q} contains all points ofΛd,1 except for those lying in some vicinity of
the apex (0, 1). On the other hand, function r(a, b) in (5.18) vanishes when |ab| approaches 1. Therefore, for a given δ > 0,
there exists a number q̃ ≥ q∗ such that, for every θ ∈ Λd,1 ∩ {θ : |ab| ≥ q̃}, the inequality

√
1− a2

√
1− b2 < δ/3 holds

and therefore

r(a, b) < δ/3. (5.23)

Consider ξ (1)h . Since Sn ≤ 1 for negative ab, then, in view of Lemmas 5.1 and 5.3, |ξ
(1)
h | can be estimated as

|ξ
(1)
h | ≤

(
τ(h)

(u, u)τ(h)

) 1
2
(

τ(h)
(v, v)τ(h)

) 1
2 1
τ(h)

τ(h)−1∑
k=1

ε2k =
√
(1− a2)(1− b2)+ αh,

where limh→∞ supθ∈Λd,1 Pθ(|αh| > δ/3) = 0. From here and (5.23) one has

|ξ
(1)
h − r(a, b)| ≤ 2δ/3+ αh.

Therefore, for any∆ > 0, there exists a number h0 such that for all h ≥ h0

sup
θ∈Λd,1∩{θ:|ab|>q̃}

Pθ(|ξ
(1)
h − r(a, b)| > δ) ≤ ∆. (5.24)

By (5.20), for any∆ > 0, there exists a number h1 such that for all h ≥ h1

sup
θ∈Λd,1∩{θ:|ab|≤q̃}

Pθ(|ξ
(1)
h − r(a, b)| > δ) ≤ ∆. (5.25)

Combining (5.24) and (5.25) we come to (5.18).
Further we estimate |ξ (2)h | for θ ∈ Λd,1 ∩ {θ : |ab| > q̃} as

|ξ
(2)
h | ≤

(
τ(h)

(v, v)τ(h)

)1/2 ( 1
τ(h)

τ(h)−1∑
k=2

ε2k

)1/2
=

√
1− b2 + α(1)h ,

where α(1)h satisfies limh→∞ supθ∈Λd,1 Pθ(|α
(1)
h | > δ/3) = 0.

This enables us, as in the case of ξ (1)h , to show (5.18) for i = 2. The case of ξ
(3)
h can be studied by a similar way. Hence

Proposition 2.2. �
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5.2. Proof of Lemma 2.3

Consider the case when θ = (2,−1). Denote

f (n)(t) =
1
n

[nt−1]∑
j=0

W (n)
j
n
, It(f ) =

∫ t

0
f (s)ds, (5.26)

whereW (n)
t is given in (2.2). Then the nominator in (2.15) becomes

n∑
k=1

uk−1vk−1 = n3
n∑
k=1

f (n)
(
k
n

)
W (n)
k−1
n

1
n
. (5.27)

It will be observed that

f (n)(t) = I [nt−1]
n
(W (n))+ r (1)n (t), |r (1)n (t)| ≤ ω(W

(n)
; [0, 1]; 1/n), (5.28)

where ω(f ; E; δ) denotes the oscillation of a function f : E → R of radius δ > 0, that is, ω(f ; E; δ) = sup|x−y|≤δ,x,y∈E |f (x)−
f (y)|. By (5.26) and (5.28)

r (1)n (t) ≤ max1≤i≤n
|εi|/
√
n→ 0 a.s. (5.29)

Substituting (5.28) in (5.27) yields
n∑
k=1

uk−1vk−1 = n3
n∑
k=1

I k−1
n
(W (n))W (n)

k−1
n

1
n
+ n3r (2)n , (5.30)

where r (2)n =
∑n
k=1 r

(1)
n
( k
n

)
W (n)
k−1
n

1
n . Note that in view of (5.29),

|r (2)n | ≤ max0≤t≤1
|W (n)
t | · max

1≤i≤n

|εi|
√
n
= max
1≤k≤n

1
√
n

∣∣∣∣∣ k∑
i=1

εi

∣∣∣∣∣ max1≤i≤n

|εi|
√
n
.

We show that, for any δ > 0,

lim
n→∞

Pθ
(
|r (2)n | > δ

)
= 0. (5.31)

By applying the Kolmogorov inequality one gets, for any δ > 0 and∆ > 0,

Pθ
(
|r (2)n | > δ

)
≤ Pθ

(
max
1≤i≤n

|εi|
√
n
> ∆

)
+
∆2σ 2

δ2
.

This implies (5.31). Now we rewrite (5.30) as
n∑
k=1

uk−1vk−1 = n3
∫ 1

0
It(W (n))W (n)

t dt + n
3r (3)n + n

3r (4)n ; (5.32)

|r (3)n | ≤ ω
(
I [tn−1]

n
(W (n))W (n)

[tn−1]
n
; [0, 1];

1
n

)
≤ 2 max

1≤k≤n

1
√
n

∣∣∣∣∣ k∑
i=1

εi

∣∣∣∣∣ max1≤i≤n

|εi|
√
n

r (4)n = An + Bn, An =
∫ 1

0

(
I [tn−1]

n
(W (n))− It(W (n))

)
W (n)
[tn−1]
n
dt,

Bn =
∫ 1

0
It(W (n))

(
W (n)
[tn−1]
n
−W (n)

t

)
dt.

For An and Bn one has the estimates

|An| ≤ n−1 max
0≤t≤1
|W (n)
t |

2
= n−2 max

1≤k≤n

∣∣∣∣∣ n∑
i=1

εi

∣∣∣∣∣
2

;

|Bn| ≤ max
0≤t≤1
|It(W (n))| · max

1≤i≤n
|εi|/
√
n ≤ max

0≤t≤1
|W (n)
t | · max

1≤i≤n
|εi|/
√
n.

From here and (5.32), it follows that, for any δ > 0,

lim
n→∞

Pθ(|r (i)n | > δ) = 0, i = 3, 4. (5.33)
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Consider now the sums in the denominator of (2.15). One can show that

(u, u)n = n4
∫ 1

0
I2t (W

(n))dt + n4r (5)n , (v, v)n = n2
∫ 1

0

(
W (n)
t

)2
dt + n2r (6)n ,

where r (5)n and r
(6)
n are such that, for any δ > 0,

lim
n→∞

Pθ(|r (i)n | > δ) = 0, i = 5, 6. (5.34)

Substituting (5.30) and (5.34) in (2.15) yields

ξn = ϕ(W (n))+ rn, (5.35)

where rn, in view of (5.31), (5.33) and (5.34), satisfies, for any δ > 0, the relation

lim
n→∞

Pθ(|rn| > δ) = 0.

One can check that the functional ϕ(x) given by (2.20) is continuous everywhere in C[0, 1] except for the point x(t) ≡ 0.
Since theWiener measure of the set D = {x ≡ 0} equals zero we can apply the Donsker theorem to this functional in (5.35).
This leads to (2.19). It remains to verify that 0 ≤ ϕ(W ) ≤ 1. It is obvious that the function ϕ(W ) in (2.20) can be viewed as
the inner product of the functions

x(t) = J
−1/2
2 (W ; 1)

∫ t

0
W (s)ds, y(t) = J

−1/2
1 (W ; 1)W (t).

The equality ϕ(W ) = 1 is possible iff the functions x(t) and y(t) are linearly dependent, that is, x(t) = Cy(t), 0 ≤ t ≤ 1,
for some constant C . However this does not hold with probability one, because x(t) is absolutely continuous and y(t) is
non-differentiable almost everywhere. Hence the case θ = (2,−1). Similarly one can show (2.19) for θ = (−2,−1). Hence
Lemma 2.3. �

5.3. Additional properties of the sums (u, u)τ(h) and (v, v)τ(h)

In addition to Lemma 5.3 we will need the following results.

Lemma 5.4. For each d > 0 and δ > 0,

lim
h→∞

sup
θ∈Λd,1∩(θ:θ1≤0)

Pθ
(∣∣∣∣hσ 2(u, u)−1τ(h) − 2(1+ ab)

(1− ab)(1− b2)

∣∣∣∣ > δ

)
= 0, (5.36)

lim
h→∞

sup
θ∈Λd,1

Pθ(|(v, v)−1τ(h) − (1− b
2)/τ(h)| > δ) = 0, (5.37)

lim
h→∞

sup
θ∈Λd,1∩(θ:θ1>0)

Pθ
(∣∣∣∣hσ 2(v, v)−1τ(h) − 2(1+ ab)

(1− ab)(1− a2)

∣∣∣∣ > δ

)
= 0, (5.38)

lim
h→∞

sup
θ∈Λd,1

Pθ(|(u, u)−1τ(h) − (1− a
2)/τ(h)| > δ) = 0. (5.39)

Proof of Lemma 5.4. Consider first (5.37) and (5.39). By Lemma 5.3

τ(h)(u, u)−1τ(h) = 1− a
2
+ α1(h), τ (h)(v, v)−1τ(h) = 1− b

2
+ α2(h),

where α1(h) and α2(h) satisfy, for any δ > 0, the relations

lim
h→∞

sup
θ∈Λd,1

Pθ(|αi(h)| > δ) = 0, i = 1, 2. (5.40)

Therefore

(u, u)−1τ(h) − (1− a
2)/τ(h) = α1(h)/τ(h), (v, v)−1τ(h) − (1− b

2)/τ(h) = α2(h)/τ(h).

These equalities and (5.40) imply (5.37) and (5.39). Denote

th = hσ 2 (u, u)−1τ(h) − 2(1+ ab)/((1− ab)(1− b
2)).

By the definition of stopping time τ(h) in (1.7), one has

hσ 2 =
τ(h)−1∑
k=1

‖Xk−1‖2 + αh‖Xτ(h)−1‖2 =
τ(h)∑
k=1

′
‖Xk−1‖2,
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where the prime at the sum sign means that the last addend is taken with the correction factor αh providing the validity of
the left-hand side equality, 0 < αh ≤ 1. This equality implies

hσ 2(u, u)−1τ(h) = (u, u)
−1
τ(h)tr

τ(h)∑
k=1

′Xk−1X ′k−1

= trQ−1
(

1 (u, v)τ(h)/(u, u)τ(h)
(u, v)τ(h)/(u, u)τ(h) (v, v)τ(h)/(u, u)τ(h)

)
(Q−1)′. (5.41)

By Lemma 5.3

(v, v)τ

(u, u)τ
=

τ

(u, u)τ

(v, v)τ

τ
=

[
1− a2

σ 2
+ α1(h)

]
(v, v)τ(h)/τ(h). (5.42)

Since, on the setΛd,1 ∩ (θ : θ1 ≤ 0), parameter b is bounded away from the end-points of the interval (−1, 1), then, for any
δ > 0,

lim
h→∞

sup
θ∈Λd,1∩(θ:θ1≤0)

Pθ
(
|(τ (h))−1(v, v)τ(h) − σ 2(1− b2)−1| > δ

)
= 0.

This and (5.42) yield (v, v)τ/(u, u)τ = (1− a2)/(1− b2)+α3(h),where α3(h) satisfies the following relation for any δ > 0

lim
h→∞

sup
θ∈Λd,1

Pθ(|α3(h)| > δ) = 0. (5.43)

In view of (5.42) and Lemma 5.3 we rewrite the cross-term in (5.41) as

(u, v)τ(h)
(u, u)τ(h)

=

(
(v, v)τ(h)

(u, u)τ(h)

)1/2
(u, v)τ(h)

(u, u)1/2τ(h)(v, v)
1/2
τ(h)

=
1− a2

1− ab
+ α4(h), (5.44)

where α4(h), in virtue of Proposition 2.2, has the property (5.43). Hence

hσ 2

(u, u)τ(h)
= trQ−1

(
1 (1− a2)/(1− ab)

(1− a2)/(1− ab) (1− a2)/(1− b2)

)
(Q−1)′ + rh;

rh = trQ−1
(
0 α4(h)

α4(h) α3(h)

)
(Q−1)′.

One can easily verify that

trQ−1
(

1 (1− a2)/(1− ab)
(1− a2)/(1− ab) (1− a2)/(1− b2)

)
(Q−1)′ =

2(1+ ab)
(1− ab)(1− b2)

.

From here and (5.37), we come to the assertion of Lemma 5.4. �

5.4. The Skorohod coupling theorem. Proof of Proposition 3.2

By Theorem 2.1, on the boundary ∂Λ of the stability region (1.4), the stopping time τ(h) (1.7) converges in distribution to
some functional of one or two Brownian motions. In order to prove Proposition 3.2 we need to strengthen this convergence
by applying the following result.

Theorem 5.5 (Extended Skorohod Coupling; See Theorem 4.30 and Corollary 6.12 in [13]). Let f , f1, f2, . . . be measurable
functions from a Borel space S to a Polish space T , and let η, η1, η2, . . . be random elements in S with fn(ηn)

L
→ f (η). Then

there exists a probability space with some random elements η̃ L
= η and η̃n

L
= ηn, n ∈ N, with fn(η̃n)→ f (η̃) a.s.

LetW = (W (t))t≥0 andW1 = (W1(t))t≥0 be independent Brownian motions and ε = (ε1, ε2, . . .) be a sequence of i.i.d.
random variables with Eε1 = 0 and Eε21 = σ

2, which does not depend onW ,W1. Random elements
η = (ε,W ,W1)

take on values in the space S = R∞ × C(R+) × C(R+), where C(R+) is the set of continuous functions on R+ = [0,∞).
Define the metric on S as ρ(η′, η′′) = ρ1(ε′, ε′′)+ ρ2(W ′,W ′′)+ ρ3(W ′1,W

′′

1 ),where

ρ1(ε
′, ε′′) =

∑
k≥1

2−k
|ε′k − ε

′′

k |

1+ |ε′k − ε
′′

k |
,

ρi(x, y) =
∑
k≥1

2−k
max
1≤t≤k
|x(t)− y(t)|

1+ max
1≤t≤k
|x(t)− y(t)|

, i = 2, 3.
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Let (S,B(S), Pη) be the corresponding Borel space with the distribution Pη induced by η, that is, Pη = Pε×PW ×PW1 . Now
we prove Proposition 3.2.
Assume that θ ∈ Γ1∪Γ2. Consider only the casewhen θ ∈ Γ1 (the case θ ∈ Γ2 is similar). For θ ∈ Γ1 the processes (uk)k≥0

and (vk)k≥0 are described by Eq. (3.2) with a = −1 and |b| < 1. Let us apply the Skorohod Theorem 5.5 to the functional

fn(η) =
1
√
n

τ(h)∑
k=1

v2k−1, n = [h/2],

and put ηn ≡ η. By Lemma 5.3 and Theorem 2.1 we have

fn(η)
L
→ ν1(W1)σ 2/(1− b) = f (η).

By Theorem 5.5 there exists η̃ = (ε̃, W̃ , W̃1) such that

η̃ = (ε̃, W̃ , W̃1)
L
= η = (ε,W ,W1),

fn(η̃) =
1
√
n

τ̃ (h)∑
k=1

ṽ2k−1
a.s.
→

ν1(W̃1)σ 2

1− b
= f (η̃), n = [h/2].

(5.45)

It should be noted that all the sequences (x̃k), (ũk), (ṽk) and the stopping time τ̃ are defined by formulae (1.1), (1.7) and
(3.2) with a given θ ∈ Γ1 replacing in them ε = (εk) by ε̃ = (ε̃k). Besides we define a counterpart Ỹh for Yh in (3.6) by the
formula

Ỹh =
λ1

σ
√
(ũ, ũ)τ̃ (h)

τ̃ (h)∑
k=1

ũk−1ε̃k +
λ2

σ
√
(ṽ, ṽ)τ̃ (h)

τ̃ (h)∑
k=1

ṽk−1ε̃k. (5.46)

By the construction the distribution of the random variable Ỹh coincides with that of Yh and therefore, for our purposes, it
suffices to study its asymptotic distribution as h→∞. In view of (5.45) and Lemma 5.4, we rewrite Ỹh as

Ỹh =
1

σ 2
√
h

τ̃ (h)∑
k=1

g̃k−1ε̃k + r1(h);

g̃k−1 =
λ1
√
2

1+ b
ũk−1 + λ2

√
1− b

ν1(W̃1)
(2h)1/4ṽk−1;

r1(h) =
1
√
h
t1h

τ̃ (h)∑
k=1

ũk−1ε̃k +
(
1
h

)1/4
t2h

τ̃ (h)∑
k=1

ṽk−1ε̃k;

(5.47)

t1h =
λ1

σ 2

( hσ 2

(ũ, ũ)τ̃ (h)

) 1
2

−

√
2

1+ b

 , t2h =
2
1
4 λ2

σ 2

(σ 2√(h/2)
(ṽ, ṽ)τ̃ (h)

) 1
2

−

√
(1− b)

ν1(W̃1)

 .
Let us show that, for any δ > 0,

lim
h→∞

P′θ(|r1(h)| > δ) = 0, (5.48)

where P ′θ is the distribution of the process (x̃k). We rewrite r1(h) as

r1(h) =
t1h
√
h

τ̃ (h)−1∑
k=1

ũk−1ε̃k +
t1h
√
h
ũτ̃ (h)−1ε̃τ̃ (h) +

(
1
h

)1/4
t2h

τ̃ (h)∑
k=1

ṽk−1ε̃k.

For any δ > 0 and any C > 0, we have the estimate

P′θ(|r1(h)| > δ) ≤ P′θ

(
1
√
h

∣∣∣∣∣τ̃ (h)−1∑
k=1

ũk−1ε̃k

∣∣∣∣∣ > C
)
+ P′θ

(
|t1h |C >

δ

3

)
+ P′θ

(
|ũτ̃ (h)−1ε̃τ̃ (h)|
√
h

>

√
δ

3

)

+ P′θ
(
|t1h | >

√
δ/3

)
+ P′θ

(
1
h1/4

∣∣∣∣∣ τ̃ (h)∑
k=1

ṽk−1ε̃k

∣∣∣∣∣ > C
)
+ P′θ

(
|t2h |C >

δ

3

)
. (5.49)

Now we will study each term in the right-hand side of (5.49).
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Lemma 5.6. For each θ ∈ Γ1,

lim
C→∞

sup
h>0

P′θ

(
1
√
h

∣∣∣∣∣τ̃ (h)−1∑
k=1

ũk−1ε̃k

∣∣∣∣∣ > C
)
= 0. (5.50)

Lemma 5.7. For each δ > 0,

lim
h→∞

P′θ
(
h−1/2|ũτ̃ (h)−1ε̃τ̃ (h)| > δ

)
= 0. (5.51)

Lemma 5.8. For any 0 < C <∞ and a > 0,

P′θ

(
1
h1/4

∣∣∣∣∣ τ̃ (h)∑
k=1

ṽk−1ε̃k

∣∣∣∣∣ ≥ C
)
≤
a
C
+ P′θ

(
1
√
h

τ̃ (h)∑
k=1

ṽ2k−1 ≥ a

)
. (5.52)

Lemma 5.9. For any a > 0 and∆ > 0,

lim
h→∞

P′θ

(
1
√
h

τ̃ (h)∑
k=1

ṽ2k−1 ≥ a

)
≤ P′θ(ν1(W̃1) ≥ a

′), (5.53)

where a′ = a
√
2(1+ b)−1

(
σ 2(1− b2)−1 +∆

)−1.
Proof of Lemma 5.6. By the definition of τ(h) in (1.7), one has

E′θ

(
1
√
h

τ̃ (h)−1∑
k=1

ũk−1ε̃k

)2
≤
σ 2

h
‖Q‖2E′θ

(
τ̃ (h)−1∑
k=1

‖X̃k−1‖2
)
≤ σ 4‖Q‖2,

where E′θ is the expectation with respect to P
′

θ . This implies (5.50). �

Proof of Lemma 5.7. One has

P′θ
(
|ũτ̃ (h)−1ε̃τ̃ (h)|/

√
h > δ

)
≤ P′θ

(
‖Q‖

(√
h
)−1
‖X̃τ̃ (h)−1‖ · |ε̃τ̃ (h)| > δ

)
≤ P′θ

(
h−1‖Q‖2‖X̃τ̃ (h)−1‖2C2 > δ2

)
+ C−2σ 2.

It remains to show that

lim
h→∞

P′θ(h
−1
‖X̃τ̃ (h)−1‖2 > δ̃) = 0, (5.54)

where δ̃ = δ2‖Q‖−2C−2. We have

P′θ(h
−1
‖X̃τ̃ (h)−1‖2 > δ̃) ≤ P′θ

(
‖X̃τ(h)−1‖2 ≥

δ̃

σ 2

τ̃ (h)−1∑
k=1

‖X̃k−1‖2
)

≤ P′θ(τ̃ (h) ≤ m)+ P′θ

(
‖X̃n‖2 ≥

δ̃

σ 2

n∑
k=1

‖X̃k−1‖2 for some n ≥ m

)
.

By virtue of the relation (3.3) in [7] and Lemma 5.1, we come to (5.54). �

Further we need the following Lenglart inequality.

Lemma 5.10 (See, [17] Ch. VII, 3, Th. 4). Let (ξn,Fn) be non-negative adapted sequence of random variables and (An,Fn) be
predictable increasing sequence which dominates (ξn) in the sense that, for any stopping time σ with respect to (Fn), one has
Eξσ ≤ EAσ . Then, for any ε > 0 and a > 0,

P( sup
1≤j≤σ

ξj ≥ ε) ≤ ε
−1E(Aσ ∧ a)+ P(Aσ ≥ a).
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Proof of Lemma 5.8. Denote

ξn = h−1/2
(

n∑
k=1

ṽk−1ε̃k

)2
, n ≥ 1, ξ0 = 0;

An = h−1/2
n∑
k=1

ṽ2k−1, n ≥ 1, A0 = 0.

(5.55)

Let us introduce the filtration (Fn)n≥0 with

F0 = σ {ν(W̃1)}, Fn = σ {ν(W̃1), ε̃1, . . . , ε̃n}. (5.56)

Note that for each stopping time σ with respect to this filtration, one has

E′θξσ ≤ E′θAσ .

Therefore the processes (5.55) satisfy the conditions of Lemma 5.10. Applying this lemma with σ = τ̃ (h) yields (5.52):

P′θ(ξτ̃ (h) ≥ C) ≤ C
−1E′θ(Aτ̃ (h) ∧ a)+ P′θ(Aτ̃ (h) ≥ a)

≤ aC−1 + P′θ(Aτ̃ (h) ≥ a). �

Proof of Lemma 5.9. For any∆ > 0, one has

P′θ
(
h−1/2(ṽ, ṽ)τ̃ (h) ≥ a

)
≤ P′θ

(
τ̃ (h)

(1+ b)
√
h/2

(1+ b)
√
2

(σ 2(1− b2)−1 +∆) ≥ a
)

+ P′θ
(
|τ̃ (h)−1(ṽ, ṽ)τ̃ (h) − σ 2/(1− b2)| ≥ ∆

)
.

From here, by Theorem 2.1 and Lemma 5.3, we come to (5.53). �

Now we are ready to show (5.48). Limiting in (5.49) h→∞ and taking into account Lemmas 5.4 and 5.6–5.9 and (5.45)
we obtain

lim sup
h→∞

P′θ(|r1(h)| > δ) ≤ sup
h>0

P′θ

(
1
√
h

∣∣∣∣∣τ̃ (h)−1∑
k=1

ũ2k−1ε̃k

∣∣∣∣∣ > C
)
+ a/C + P′θ(ν1(W̃1) ≥ a

′).

In view of Lemma 5.6, limiting C →∞ and then a→∞, we come to (5.48).
So we have

Ỹh =
1

σ 2
√
h

τ̃ (h)∑
k=1

g̃k−1ε̃k + r1(h), (5.57)

where r1(h) satisfies (5.48) and

g̃k−1 = (λ1
√
2/(1+ b))ũk−1 +

(
λ2
√
1− b

/(
σ

√
ν1(W̃1)

))
(2h)1/4ṽk−1.

For a given h > 0, we define the random variable

τ0(h) = inf

{
n ≥ 1 :

n∑
k=1

g̃2k−1 ≥ hσ
2

}
, inf{∅} = ∞, (5.58)

which is a stopping time with respect to the filtration (Fn) in (5.56), and rewrite Ỹh from (5.57) as

Ỹh =
1

σ 2
√
h

τ0(h)∑
k=1

g̃k−1ε̃k + r1(h)+ r2(h);

r2(h) =
1

σ 2
√
h

(
τ̃ (h)∑
k=1

g̃k−1ε̃k −
τ0(h)∑
k=1

g̃k−1ε̃k

)
.

(5.59)

Now we observe that the first term in the right-hand side of (5.59) is a martingale with respect to the filtration (Fn) in
(5.56) stopped at the time (5.58). According to the Theorem 2.1 from [14], it is asymptotically normal with mean 0 and unit
variance as h→∞. Therefore to end the proof of Theorem 3.1 for θ ∈ Γ1 it remains to prove that, for any δ > 0,

lim
h→∞

P′θ(|r2(h)| > δ) = 0. (5.60)

First we will establish the following results.
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Lemma 5.11. For each θ ∈ Γ1 and any δ > 0,

lim
h→∞

P′θ

(
g̃2τ0(h)−1

/τ0(h)−1∑
k=1

g̃2k−1 > δ

)
= 0. (5.61)

Lemma 5.12. For each θ ∈ Γ1 and any δ > 0, limh→∞ P′θ(Uh > δ) = 0, where Uh = 1
h

∑τ̃ (h)∨τ0(h)
k=τ̃ (h)∧τ0(h)+1

g̃2k−1.

Proof of Lemma 5.11. One has the inclusions, for any∆ > 0,(
g̃2τ0(h)−1

/τ0(h)−1∑
k=1

g̃2k−1 > δ

)
⊆
(
‖Jτ0(h)−1 − I‖ > ∆

)
∪ A, (5.62)

where I is 2× 2 identity matrix,

A =

(
g̃2τ0(h)−1

/τ0(h)−1∑
k=1

g̃2k−1 > δ, ‖Jτ0(h)−1 − I‖ ≤ ∆

)
.

By the relation below (5.57) one gets

g̃2n = (z1ũn + z2ṽn)
2
≤ 2z21 ũ

2
n + 2z

2
2 ṽ
2
n, (5.63)

z1 = λ1
√
2/(1+ b), z2 = λ2

√
1− b(2h)1/4/

(
σ

√
ν1(W̃1)

)
;

n∑
k=1

g̃2k−1 =
n∑
k=1

(
Z ′(ũk−1, ṽk−1)′

)2
= Z ′R−1n JnR

−1
n Z

= Z ′R−1n (Jn − I)R
−1
n Z + Z

′R−2n Z, Z = (z1, z2)′;

Z ′R−2n Z = z
2
1 (u, u)n + z

2
2 (v, v)n. (5.64)

From here it follows that

A ⊂
(
g̃2τ0−1 > δZ ′R̃−2τ0−1Z(1− ‖J̃τ0−1 − I‖), ‖J̃τ0−1 − I‖ ≤ ∆

)
⊂ (τ0 ≤ m) ∪

(
2z21 ũ

2
n > δ2−1(1−∆)Z ′R̃−2n Z for some n ≥ m

)
∪

(
2z22 ṽ

2
n > δ2−1(1−∆)Z ′R̃−2n Z for some n ≥ m

)
⊂ (τ0 ≤ m) ∪

(
2ũ2n > δ2−1(1−∆) (ũ, ũ)n for some n ≥ m

)
∪
(
2ṽ2n > δ2−1(1−∆) (ṽ, ũ)n for some n ≥ m

)
.

(5.65)

Combining inclusions (5.62) and (5.65) yields(
g̃2τ0(h)−1

/τ0(h)−1∑
k=1

g̃2k−1 > δ

)
⊂

(
‖J̃τ0(h)−1 − I‖ > ∆

)
∪ (τ0(h) ≤ m) ∪

(
ũ2n > δ′(ũ, ũ)n for some n ≥ m

)
∪
(
ṽ2n > δ′(ṽ, ṽ)n for some n ≥ m

)
, δ′ = δ 4−1(1−∆).

This implies

P′θ

(
g̃2τ0(h)−1

/τ0(h)−1∑
k=1

g̃2k−1 > δ

)
≤ P′θ(‖J̃τ0(h)−1 − I‖ > ∆)+ P′θ(τ0(h) ≤ m)+ P′θ

(
ũ2n > δ′(ũ, ũ)n for some n ≥ m

)
+ P′θ

(
ṽ2n > δ′(ṽ, ṽ)n for some n ≥ m

)
. (5.66)

By the same argument as in the proofs of Lemma 5.1 and Proposition 2.2, one can show that for every θ ∈ Γ1 ∪ Γ2 and for
eachm = 1, 2, . . . and any∆ > 0, respectively,

lim
h→∞

P′θ(τ0(h) ≤ m) = 0, lim
h→∞

P′θ(‖J̃τ0(h)−1 − I‖ > ∆) = 0.

The last two terms in (5.66) also converge to zero by the well-known property of AR(1)-processes with parameter in the
interval [−1, 1] (see, [14]). This completes the proof of Lemma 5.11. �
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Proof of Lemma 5.12. Note that Uh = h−1|(g̃, g̃)τ̃ (h) − (g̃, g̃)τ0(h)|.
In view of (5.63) this quantity can be estimated as

Uh = h−1
∣∣∣Z ′R̃−1τ̃ (h)(J̃n − I)R̃−1τ̃ (h)Z + Z ′R̃−2τ̃ (h)Z − (g̃, g̃)τ0(h)∣∣∣

≤ h−1‖J̃n − I‖Z ′R̃−2τ̃ (h)Z + |h
−1Z ′R̃−2

τ̃ (h)Z − 1| + g̃
2
τ0(h)−1 /(g̃, g̃)τ0(h)−1. (5.67)

Now we show that, for any δ > 0,

lim
h→∞

Pθ(|h−1Z ′R̃−2τ̃ (h)Z − 1| > δ) = 0. (5.68)

Using (5.64) and taking into account that for θ ∈ Γ1, z1 = λ1
√
2/(1+ b), z2 = λ2(2h)1/4

√
1− b/(σ

√
ν1(W̃1))we obtain

h−1Z ′R̃−2
τ̃ (h)Z − 1 = z

2
1 h
−1(ũ, ũ)τ̃ (h) + z22 h

−1(ṽ, ṽ)τ̃ (h) − 1

= λ21

(
2

(1+ b)2h
(ũ, ũ)τ̃ (h) − 1

)
+ λ22

(
(1− b)(2h)1/2

σ 2ν1(W̃1)
(ṽ, ṽ)τ̃ (h) − 1

)
.

This, in view of (5.36) gives (5.68). Now by applying Proposition 2.2 and Lemma 5.11 to (5.67) we come to the desired result.
Hence Lemma 5.12. �

The case θ = (0, 1). Then a = −1, b = 1 and Eqs. (3.2) yield

uk = (−1)k
k∑
j=1

(−1)jεj, vk =

k∑
j=1

εj.

By Corollary 5.15 one has

σ−2
(
n−2 (u, u)n, n−2 (v, v)n

) L
→ (J1(W1; 1), J1(W ; 1)) . (5.69)

Introduce a sequence of functionals

fn(η) =
(
(σn)−2 (u, u)n, (σn)−2 (v, v)n, τ (h)/

√
2h
)
, n = [h].

From the definition of τ(h), Theorem 2.1 and (5.69) it follows that

fn(η)
L
→ (J1(W1; 1),J1(W ; 1), ν3(W ,W1)) = f (η).

By Theorem 5.5 there exists η̃ such that η̃ L
= η and

fn(η̃)
a.s.
→ f (η̃) =

(
J1(W̃1; 1),J1(W̃ ; 1), ν3(W̃ , W̃1)

)
.

On the basis of this η̃we define as before (x̃k), (ũk), (ṽk) and Ỹh. It should be noted that the ratio tn = (ũ, ũ)n/(ṽ, ṽ)n satisfies
the limiting relation

lim
h→∞

tτ̃ (h) = κ, κ = J1(W̃1; 1)/J1(W̃ ; 1). (5.70)

Further by making use of the equality
τ̃ (h)∑
k=1

‖X̃k−1‖2 = tr
τ̃ (h)∑
k=1

X̃k−1X̃ ′k−1 = trQ
−1
(
(ũ, ũ)τ̃ (h) (ũ, ṽ)τ̃ (h)
(ũ, ṽ)τ̃ (h) (ṽ, ṽ)τ̃ (h)

)
(Q−1)′

one gets
τ̃ (h)∑
k=1
‖X̃k−1‖2

(ũ, ũ)τ̃ (h)
= trQ−1

(
1 t−1/2

τ̃ (h) ξτ̃ (h)

t−1/2
τ̃ (h) ξτ̃ (h) t−1

τ̃ (h)

)
(Q−1)′,

where ξn is defined in (2.15). Since for any δ > 0

lim
h→∞

P′θ
(
|ξτ̃ (h)|t

−1/2
τ̃ (h) > δ

)
= 0,

from here it follows that

P′θ − limh→∞

τ̃ (h)∑
k=1
‖X̃k−1‖2

(ũ, ũ)τ̃ (h)
= trQ−1

(
1 0
0 1/κ

)
(Q−1)′ =

1
2

(
1+

1
κ

)
.
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On the other hand, by the definition of stopping time τ(h) in (1.7) and Proposition 2.2 onehasP′θ−limh→∞ h
−1∑τ̃ (h)

k=1 ‖X̃k−1‖
2

= 1. As result,

P′θ − limh→∞
h
(
(ũ, ũ)τ̃ (h)

)−1
= 2−1

(
1+ κ−1

)
. (5.71)

This and (5.70) give

P′θ − limh→∞
h
(
(ṽ, ṽ)τ̃ (h)

)−1
= 2−1(1+ κ). (5.72)

Now we rewrite (5.47) as

Ỹh =
1

σ 2
√
h

τ̃ (h)∑
k=1

g̃k−1ε̃k + r1(h); (5.73)

g̃k−1 = λ1
√
(1+ κ−1)/2 ũk−1 + λ2

√
(1+ κ)/2 ṽk−1,

r1(h) =
λ1

σ 2

(
(ũ, ũ)−1/2

τ̃ (h) −
√
(1+ κ−1)/2

) τ̃ (h)∑
k=1

ũk−1ε̃k +
λ2

σ 2

(
(ṽ, ṽ)

−1/2
τ̃ (h) −

√
(1+ κ)/2

) τ̃ (h)∑
k=1

ṽk−1ε̃k.

Taking into account (5.71) and (5.72), one can show along the lines of the proof of Proposition 3.2 that, for any δ > 0,
limh→∞ P′θ(|r1(h)| > δ) = 0.
Further analysis of (5.73) repeats the case of θ ∈ Γ1 and is omitted.
This completes the proofs of Proposition 3.2 and Theorem 3.1 for θ ∈ Γ1 ∪ Γ2 ∪ {(0, 1)}. �

5.5. Proof of Theorem 3.1 for the case of multiple roots

Assume that θ = (2,−1) (the proof for the case θ = (−2,−1) is similar). This corresponds to the multiple root of the
polynomial (1.2): a = b = 1. Since matrix Q in (2.7) is degenerate, we use the matrix Q1 from (2.8) to transform the original
process (xk)k≥0 into two components (uk)k≥0 and (vk)k≥0. This leads to the equations: uk = xk, vk = xk − xk−1 with the
solutions given by the formulas (2.18). Now we introduce a sequence of functionals

fn(η) =

(
ξn, (σn)−2

n∑
k=1

v2k−1, τ (h)/(h/2)
4

)
, n = [h],

where ξn is defined in (2.15). By Lemma 2.3 and Theorem 2.1 we have

fn(η)
L
→ (ϕ(W ),J1(W ; 1), ν4(W )) = f (η).

By Theorem 5.5 there exists η̃ such that η̃ L
= η and

fn(η̃)
a.s.
→ f (η̃) =

(
ϕ(W̃ ),J1(W̃ ; 1), ν4(W̃ )

)
. (5.74)

On the basis of η̃ we define (x̃k), (ũk), (ṽk) and Ỹh. In view of (5.74) we have

lim
h→∞

Jτ̃ (h) = T1 a.s., ;

Jn =
(
1 ξ̃n
ξ̃n 1

)
, T1 =

(
1 ϕ(W̃ )

ϕ(W̃ ) 1

)
ξ̃n = (ũ, ũ)−1/2n (ṽ, ṽ)−1/2(ũ, ṽ)n.

(5.75)

Besides, we will need the relations

lim
h→∞

1
h

τ̃ (h)∑
k=1

‖X̃k−1‖2 = lim
h→∞

1
h

(
2(ũ, ũ)τ̃ (h)−1 − ũ2τ̃ (h)−1

)
= σ 2,

lim
h→∞

1
σ 2h1/2

(ṽ, ṽ)τ̃ (h) = 2−1/2J1(W̃ ; 1)ν24 (W̃ ) := µ,

(5.76)

which directly follow from (5.74).
Consider now the standardized deviation of the sequential estimate (1.6):

M1/2τ(h) (θ(τ (h))− θ) = M
−1/2
τ(h)

τ (h)∑
k=1

Xk−1εk.
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Its distribution coincides with that of the vector M̃−1/2
τ̃ (h)

∑τ̃ (h)
k=1 X̃k−1ε̃k constructed from (x̃k), (ε̃k). Representing the matrix

M̃n =
n∑
k=1

X̃k−1X̃ ′k−1

in the form (2.13) yields

M̃−1/2
τ̃ (h)

τ̃ (h)∑
k=1

X̃k−1ε̃k = J̃
−1/2
τ̃ (h) R̃τ̃ (h)

τ̃ (h)∑
k=1

Q X̃k−1ε̃k = J̃
−1/2
τ̃ (h) T

1/2
1 T

−1/2
1 Z̃τ̃ (h),

where Z̃n =
(
(ũ, ũ)−1/2n

∑n
k=1 ũk−1ε̃k, (ṽ, ṽ)

−1/2
n

∑n
k=1 ṽk−1ε̃k

)′
. Taking into account (5.75), it suffices to establish the

following result.

Lemma 5.13. For each constant vector λ = (λ1, λ2)′ with ‖λ‖ = 1, the random variable Ỹh = λ′T
−1/2
1 Z̃τ̃ (h)/σ is asymptotically

normal with mean 0 and unit variance as h→∞.

Proof of Lemma 5.13. Represent Ỹh as

Ỹh =
1

σ
√
h

τ̃ (h)∑
k=1

g̃k−1ε̃k + r1(h);

g̃k−1 = λ′T
−1/2
1

(√
2ũk−1, (h1/4

√
µ)−1ṽk−1

)′
,

r1(h) =
λ′T−1/21

σ


(
(ũ, ũ)−1/2

τ̃ (h) −
√
2/h

) τ̃ (h)∑
k=1

ũk−1ε̃k(
(ṽ, ṽ)

−1/2
τ̃ (h) − (h

1/4√µ)−1
) τ̃ (h)∑
k=1

ṽk−1ε̃k

 .
(5.77)

By an argument similar to that in the proof of Proposition 3.2, one can verify that r1(h) satisfies (5.48). Further analysis of
Ỹh holds true.
Let us check only that limh→∞(σ 2h)−1(g̃, g̃)τ̃ (h) = 1. Using the definition of g̃ from (5.77) yields

(g̃, g̃)τ̃ (h)
σ 2h

=
λ′T

−1
2
1

σ 2

(
(2/h)(ũ, ũ)τ̃ (h) h−3/4

√
2/µ (ũ, ṽ)τ̃ (h)

h−3/4
√
2/µ (ũ, ṽ)τ̃ (h) (µ

√
h)−1(ṽ, ṽ)τ̃ (h)

)
T
−1
2
1 λ.

Now using (5.76) we rewrite the cross term as

h−3/4
√
2/µ (ũ, ṽ)τ̃ (h) =

(
(h/2)−1(ũ, ũ)τ̃ (h)

)1/2 (
(µ
√
h)−1(ṽ, ṽ)τ̃ (h)

)1/2
ξ̃τ̃ (h).

From here, (5.75) and (5.76) it follows that

lim
h→∞

h−3/4
√
2/h(ũ, ṽ)τ̃ (h) = ϕ(W̃ ).

Hence limh→∞(σ 2h)−1(g̃, g̃)τ̃ (h) = σ−2λ′T−1/21 T1T
−1/2
1 λ = λ′λ = 1. This completes the proof of Theorem 3.1 for

θ ∈ {(−2,−1), (2,−1)}. �

Theorem 5.14. Let W (n)
= (W (n)(t))0≤t≤1 and W

(n)
1 = (W

(n)
1 (t))0≤t≤1 be defined by (2.2). Then for the random functions

Xn =
(
Xn(s, t) = (W (n)(s),W (n)

1 (t)) : 0 ≤ s ≤ 1, 0 ≤ t ≤ 1
)

with values in the product of the Skorohod spacesD[0, 1] ×D[0, 1], one has

Xn
L
→ (W ,W1),

where W and W1 are independent standard Brownian motions.

This result is a straightforward consequence of Theorem 3.3 in Helland [10]. This functional central limit theorem implies
the following result.

Corollary 5.15. Let uk = (−1)k
∑k
j=1 (−1)

jεj, vk =
∑k
j=1 εj. Then(

(σn)−2(u, u)n, (σn)−2(v, v)n
) L
→ (J1(W1; 1), J1(W ; 1)) . (5.78)
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