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Abstract

A class of systems of in�nite horizon forward–backward stochastic di�erential equations is
investigated. Under some monotonicity assumptions, the existence and uniqueness results are
established by means of a homotopy method. The global exponential asymptotical stability is
also obtained. A comparison theorem is given. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let (
;F; P) be a probability space equipped with a �ltration {Ft} and let {Bt}t¿0
be a d-dimensional standard Brownian motion in this space. We will assume that
{Ft}t¿0 is the natural �ltration of this Brownian motion such that F0 contains all
P-null elements of F. Then {Ft} is right continuous and satis�es the usual hypotheses.
Let �¿0 be a given Ft-stopping time with value in [0;∞]. We will denote by

M 2(0; �;Rn), the space of all Rn-valued Ft-adapted processes (vt) such that

E
∫ �

0
|vt |2 dt ¡∞:

Obviously M 2(0; �;Rn) is a Hilbert space.
We consider the following classical stochastic di�erential equations of Itô’s type

(SDE):

dx(t) = b(t; x(t)) dt + �(t; x(t)) dBt; t¿0;

x(0) = x0:
(1.1)

It is well-known that under some suitable conditions on b and �, the equation has
a unique solution x(t). Once x(t) is known, we can consider to solve the following
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backward stochastic di�erential equation (BSDE) (see Pardoux and Peng, 1990; Du�e
and Epstein, 1992a,b):

−dy(t) = f(t; x(t); y(t); z(t)) dt − z(t) dBt; t ∈ [0; T ];
y(T ) = �(x(T )):

(1.2)

An interesting observation, �rst revealed in Peng (1991), is that y(t) can be ex-
pressed in the form of y(t) = u(t; x(t)), where u(t; x) is the solution of the following
partial di�erential equation (PDE):

@u
@t
+
1
2
Tr(��TD2u) + 〈b; Du〉+ f(t; x; u; Du�) = 0;

u(T; x) = �(x):
(1.3)

With this observation a probabilistic interpretation of the solution of the above PDE
is introduced in Peng (1991, 1992a,b), Pardoux and Peng (1992), Karoui et al. (1997)
etc. This generalizes the well-known Feynman–Kac formula for the nonlinear case.
Note that Eqs. (1.1) and (1.2) are only partially coupled, i.e. they are a special situ-

ation of the following fully coupled forward–backward stochastic di�erential equation
(FBSDE):

dx(t) = b(t; x(t); y(t); z(t)) dt + �(t; x(t); y(t); z(t)) dBt; x(0) = x0;

−dy(t) = f(t; x(t); y(t); z(t)) dt − z(t) dBt; y(T ) = �(x(T )):
(1.4)

A special form of this FBSDE, called stochastic Hamiltonian equation, is considered
in other works (see Bismut, 1978; Kushner, 1972; Bensoussan, 1983a,b; Haussmann,
1976; Peng, 1990). Recently, the existence and uniqueness of this FBSDE received
many attentions, see Antonelli (1993) for su�ciently small time duration [0; T ]; Ma et
al. (1994), Ma and Yong (1995) and Du�e et al. (1995) for arbitrarily large duration.
In Hu and Peng (1995) and then in Peng and Wu (1999), a new probabilistic method

is applied to solve (1.4) with arbitrarily large time duration [0; T ] (see Yong (1997)
for a more systematical discussion). A monotonicity condition is needed (see (H1)).
In this paper we are interested in FBSDE of form (1.4) with T =+∞. More specif-

ically, we discuss the problem of existence, uniqueness and the limit behavior of the
following FBSDE:

dx(t) = b(t; x(t); y(t); z(t)) dt + �(t; x(t); y(t); z(t)) dBt;

−dy(t) = f(t; x(t); y(t); z(t)) dt − z(t) dBt;

x(0) = x0; (x(·); y(·); z(·)) ∈ M 2(0;∞;Rn × Rm × Rm×d):

(1.5)

A special situation is when � ≡ 0; z ≡ 0; b = Hy(x; y) and f = Hx(x; y), i.e. the
following Hamiltonian equation with in�nite time horizon:

dx(t)
dt

= Hy(t; x(t); y(t)); x(0) = x0;

−dy(t)
dt

= Hx(t; x(t); y(t)); (x(·); y(·)) ∈ L2(0;∞;Rn × Rn):
(1.6)
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This situation arises in problems of singular perturbation of optimal control systems
(see Bensoussan, 1988; Bensoussan and Peng, 1986). In those works the following
estimate plays an important role:

|x(t)|+ |y(t)|6ce−�t :

The method introduced in Bensoussan (1988), Bensoussan and Peng (1986) depends
essentially on the fact that (1.6) derives an optimal control system. It cannot be applied
to a general situation. In this paper we will introduce a very di�erent method to treat
the limit behavior of (1.5).
Our method is based on an observation that the scaler product 〈x(t); y(t)〉 plays a

role of Lyapunov function in this problem. We will see that, with this observation, the
problem of estimation can be signi�cantly simpli�ed. It also allows us to treat more
general situations. For example, we do not have to assume that b; � and f in (1.5) are
deterministic functions.
This paper is organized as follows: in the next section we present the main assump-

tions in this paper; in Section 3 we give some preliminary results in order to prove the
existence and uniqueness theorem in Section 4 and exponential asymptotical stability
of FBSDE in Section 6; in Section 5 we give a comparison theorem; �nally we discuss
a more general situation of FBSDE in Section 7.
For simplicity of notations, in this paper we only consider the case where n = m.

But using the techniques introduced in Peng and Wu (1999), we can also treat the
case n 6= m.

2. Setting of the problem

Consider the following in�nite horizon FBSDE:

dX (t) = b(t; X (t); Y (t); Z(t)) dt + �(t; X (t); Y (t); Z(t)) dBt;

−dY (t) = f(t; X (t); Y (t); Z(t)) dt − Z(t) dBt;

X (0) = x0; (X (·); Y (·); Z(·)) ∈ M 2(0;∞;Rn × Rn × Rn×d);

(2.1)

where x0 ∈ Rn,

b:
 × [0;∞)× Rn × Rn × Rn×d → Rn;

�:
 × [0;∞)× Rn × Rn × Rn×d → Rn×d;

f:
 × [0;∞)× Rn × Rn × Rn×d → Rn:

Let us introduce some notations

u=




X

Y

Z


 ; A(t; u) =




−f

b

�


 (t; u):

We use the usual inner product 〈· ; ·〉 and Euclidean norm | · | in Rn and Rn×d. All the
equalities and inequalities mentioned in this paper are in the sense of dt × dP almost
surely on [0;∞)× 
.
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De�nition 1. A triple of processes (X; Y; Z) ∈ M 2(0;∞;Rn × Rn × Rn×d) is called an
adapted solution of FBSDE (2.1), if (2.1) is satis�ed.

The following monotonicity condition is our main assumption:
(H1) there exists a constant �¿ 0, such that

〈A(t; u)− A(t; �u); u− �u〉6− �|u− �u|2;

∀u=




X

Y

Z


 ; �u=



�X

�Y

�Z


 ∈ Rn × Rn × Rn×d; ∀t ∈ R+:

We also assume that
(H2) for each u ∈ Rn × Rn × Rn×d; A(·; u) is an Ft-adapted vector process de�ned

on [0;∞) with A(·; 0) ∈ M 2(0;∞;Rn × Rn × Rn×d);
(H3) A(t; u) is Lipschitz with respect to u: there exists a constant l¿ 0, such that

|A(t; u)− A(t; �u)|6l|u− �u|; ∀u; �u ∈ Rn × Rn × Rn×d; ∀t ∈ R+:
In fact, the assumptions (H2) and (H3) guarantee that

A(·; u(·)) ∈ M 2(0;∞;Rn × Rn × Rn×d) for ∀u(·) ∈ M 2(0;∞;Rn × Rn × Rn×d):

3. Preliminaries

In order to prove the existence and uniqueness theorem for FBSDE (2.1), we need
the following lemmas. It involves a priori estimates of solutions of the following family
of in�nite horizon forward–backward stochastic di�erential equations parametrized by
� ∈ [0; 1]:

dX �(t) = [�b(t; u�(t))− �(1− �)Y �(t) + �(t)] dt

+[��(t; u�(t))− �(1− �)Z�(t) +  (t)] dBt;

−dY �(t) = [�f(t; u�(t)) + �(1− �)X �(t) + 
(t)] dt − Z�(t) dBt;

X �(0) = x0; (X �(·); Y �(·); X �(·)) ∈ M 2(0;∞;Rn × Rn × Rn×d);

(3.1)

where �;  and 
 are given processes in M 2(0;∞) with values in Rn;Rn×d and Rn,
respectively.
Observe that when � = 1; � ≡ 0;  ≡ 0 and 
 ≡ 0, (3.1) becomes (2.1); when

�= 0, (3.1) is written in the following simple form:

dX 0(t) = (−�Y 0(t) + �(t)) dt + (−�Z0(t) +  (t)) dBt;

−dY 0(t) = (�X 0(t) + 
(t)) dt − Z0(t) dBt;

X 0(0) = x0; (X 0; Y 0; Z0) ∈ M 2(0;∞;Rn × Rn × Rn×d):

(3.2)
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We have the following lemma:

Lemma 2. For each x0 ∈ Rn; �; 
;  ∈ M 2(0;∞), FBSDE (3:2) has a unique solution
in M 2(0;∞;Rn × Rn × Rn×d).

In order to prove Lemma 2, we need to introduce a kind of backward stochastic
di�erential equations in in�nite horizon case. Consider the following in�nite horizon
backward stochastic di�erential equations

− dYt = (G(t; Yt ; Zt) + ’t) dt − Zt dBt; (Y; Z) ∈ M 2(0;∞;Rn × Rn×d); (3.3)

where

G(t; Y; Z) : 
 × [0;∞)× Rn × Rn×d → Rn:

To obtain the existence and uniqueness result for (3.3), we need to introduce, for some
given constant K ∈ R, the space M 2;K

Ft
(0;∞;Rn) of all Ft-adapted processes de�ned

on [0;∞) with

E
∫ ∞

0
|vt |2eKt dt ¡∞:

It is seen that M 2;K
Ft
(0;∞;Rn) is a Hilbert space. We assume that

(H4)




(i) for ∀(Y; Z) ∈ Rn+n×d; G(·; Y; Z) is a Ft-adapted process de�ned

on [0;∞) with G(t; 0; 0) ≡ 0; ∀t ∈ R+;
(ii) G(t; Y; Z) is Lipschitz with respect to (Y; Z): ∃C0¿ 0 and C ¿ 0 s:t:

|G(t; Y1; Z1)− G(t; Y2; Z2)|6C0|Y1 − Y2|+ C|Z1 − Z2|;
∀Y1; Y2 ∈ Rn; Z1; Z2 ∈ Rn×d; t ∈ R+;

(iii) G satis�es ‘weak monotonicity’ condition: ∃�¿ 0; s:t:

〈G(t; Y1; Z)− G(t; Y2; Z); Y1 − Y2〉6− �|Y1 − Y2|2;
∀Y1; Y2 ∈ Rn; Z ∈ Rn×d; t ∈ R+:

Notice that the above constant K may be positive as well as negative. We also assume

K + 2�− 2C2 − �¿ 0: (3.4)

We are looking for a pair of processes (Yt; Zt) ∈ M 2; K
Ft
(0;∞;Rn×Rn×d) satisfying (3.3)

where (’t) ∈ M 2; K
Ft
(0;∞;Rn) is given. Then we have the following a priori estimate.

Lemma 3. Let (Y 1; Z1) and (Y 2; Z2) ∈ M 2; K
Ft
(0;∞;Rn × Rn×d) be solutions of (3:3)

correspondent to ’= ’1 and ’= ’2; respectively. Then we have

E
∫ ∞

0

[
(K + 2�− 2C2 − �)|Y 1t − Y 2t |2 +

1
2
|Z1t − Z2t |2

]
eKt dt

6
1
�
E
∫ ∞

0
|’1t − ’2t |2eKt dt; (3.5)

where �¿ 0 is de�ned in (3:4).
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Proof. We apply Itô’s formula to |Y 1t − Y 2t |2eKt

|Y 10 − Y 20 |2 + E
∫ ∞

0
eKt[K |Y 1t − Y 2t |2 + |Z1t − Z2t |2] dt

=E
∫ ∞

0
2eKt〈Y 1t − Y 2t ; G(t; Y

1
t ; Z

1
t )− G(t; Y 2t ; Z

2
t ) + ’1t − ’2t 〉 dt

6E
∫ ∞

0
2eKt[− �|Y 1t − Y 2t |2 + |Y 1t − Y 2t |(C|Z1t − Z2t |+ |’1t − ’2t |)] dt

6E
∫ ∞

0
eKt[(−2�+ 2C2 + �)|Y 1t − Y 2t |2 +

1
2
|Z1t − Z2t |2 +

1
�
|’1t − ’2t |2] dt:

From this it follows that (3.5) holds true.

We now consider the existence and uniqueness theorem for (3.3).

Theorem 4. Under hypothesis (H4); for each (’t)∈M 2; K
Ft
(0;∞;Rn); (3:3) has a unique

solution (Yt; Zt) in M 2; K
Ft
(0;∞;Rn × Rn×d).

Proof. The uniqueness is an immediate consequence of the a priori estimate (3.5). We
now prove the existence. For k = 1; 2; 3; : : : ; we set

’k
t ≡ 1[0; k](t)’t; t ∈ [0;∞):

It is seen that the {(’K
t )} converges to (’t) in M 2; K

Ft
(0;∞;Rn).

We now consider, for each k, the solution (Y k
t ; Z

k
t ) ∈ M 2; K

Ft
(0;∞;Rn ×Rn×d) of the

following BSDE:

− dY k
t = [G(t; Y

k
t ; Z

k
t ) + ’k

t ] dt − Zk
t dBt; (Y k ; Zk) ∈ M 2(0;∞;Rn+n×d): (3.6)

Owing to (H4)-(i), (3.6) can be solved as follows: on [0; k], the solution coincides
with the solution of BSDE

−dY k
t = [G(t; Y

k
t ; Z

k
t ) + ’t] dt − Zk

t dBt; t ∈ [0; k];
Y k
k = 0

on (k;∞), it identically equals zero. It follows from a priori estimate (3.5) that
{(Y k

t ; Z
k
t )} is a Cauchy sequence in M 2; K

Ft
(0;∞;Rn × Rn×d). It is easy to check that

the limit (Yt; Zt) in M 2; K
Ft
(0;∞;Rn × Rn×d) solves (3.3). The proof is complete.

Proof of Lemma 2. The proof of uniqueness is similar to the one of Theorem 6
below. We only need to �nd a solution of (3.2). We consider the following linear
in�nite horizon BSDE:

−dp(t) = [− �p(t) + �(t) + 
(t)] dt + [ (t)− (1 + �)q(t)] dBt; t ∈ [0;∞):
In Theorem 4, we take K = C = 0 and � = � = �, it follows that the above equation
has a unique solution (p; q) ∈ M 2(0;∞;Rn+n×d). Once (p; q) is solved, we can solve
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the following SDE:

dx(t) = [− �x(t) + p(t) + �(t)] dt + [ (t)− �q(t)] dBt; x(0) = x0:

It has a unique solution x(·) ∈ M 2(0;∞;Rn).
It is easy to check that (X 0(·); Y 0(·); Z0(·)) = (x(·); x(·) +p(·); q(·)) is a solution of

(3.2). The proof is complete.

The following lemma gives a priori estimate for the “existence interval” of (3.1)
with respect to � ∈ [0; 1].

Lemma 5. Under assumptions (H1)–(H3); there exists a positive constant �0 such
that if; a priori; for some �0 ∈ [0; 1); for each x0 ∈ Rn; �; 
;  ∈ M 2(0;∞); (3:1)
has a unique solution (X �0 (·); Y �0 (·); Z�0 (·)) in M 2(0;∞;Rn+n+n×d); then for each
� ∈ [0; �0]; for each x0 ∈ Rn; �; 
;  ∈ M 2(0;∞); (3:1) also has a unique solution
(X �0+�(·); Y �0+�(·); Z�0+�(·)) in M 2(0;∞;Rn+n+n×d).

Proof. Since for each x0 ∈ Rn; � ∈ M 2(0;∞;Rn); 
 ∈ M 2(0;∞;Rn);  ∈ M 2(0;∞;
Rn×d), there exists a unique solution of (3.1) for �=�0, thus for each triple u=(x; y; z) ∈
M 2(0;∞;Rn+n+n×d), there exists a unique triple U = (X; Y; Z) ∈ M 2(0;∞;Rn+n+n×d)
satisfying the following equations:

dX (t) = [�0b(t; U (t))− �(1− �0)Y (t) + �(b(t; u(t)) + �y(t)) + �(t)] dt

+[�0�(t; U (t))− �(1− �0)Z(t) + �(�(t; u(t)) + �z(t)) +  (t)] dBt;

−dY (t) = [�0f(t; U (t)) + �(1− �0)X (t) + �(f(t; u(t))− �x(t)) + 
(t)] dt

−Z(t) dBt;

X (0) = x0:

We will prove that the mapping de�ned by

U = I�0+�(u):M 2(0;∞;Rn+n+n×d)→ M 2(0;∞;Rn+n+n×d)

is contractive. Let u′=(x′; y′; z′) ∈ M 2(0;∞;Rn+n+n×d) and U ′=(X ′; Y ′; Z ′)=I�0+�(u′),
and

û= (x̂; ŷ; ẑ) = (x − x′; y − y′; z − z′);

Û = (X̂ ; Ŷ ; Ẑ) = (X − X ′; Y − Y ′; Z − Z ′):

Since Û ∈ M 2(0;∞;Rn+n+n×d), there exists a sequence 06T1¡T2¡ · · ·¡Ti ¡ · · · ;
Ti → ∞ (i → ∞), such that limi→∞ E〈X̂ (Ti); Ŷ (Ti)〉 = 0. Applying Itô’s formula to
〈X̂ ; Ŷ 〉 on [0; Ti] and by virtue of (H1) and (H2), we have, since X̂ (0) = 0

E〈X̂ (Ti); Ŷ (Ti)〉 − E〈X̂ (0); Ŷ (0)〉

= �0E
∫ Ti

0
〈(A(s; U )− A(s; U ′)); Û 〉 ds
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− (1− �0)�E
∫ Ti

0
(〈X̂ ; X̂ 〉+ 〈Ŷ ; Ŷ 〉+ 〈Ẑ ; Ẑ〉) ds

+ �E
∫ Ti

0
(�〈X̂ ; x̂〉+ �〈Ŷ ; ŷ〉+ �〈Ẑ ; ẑ〉+ 〈X̂ ;− �f〉+ 〈Ŷ ; �b〉+ 〈Ẑ ; ��〉) ds

6E
∫ Ti

0
[− �|Û |2 + ��(|X̂ ||x̂|+ |Ŷ ||ŷ|+ |Ẑ ||ẑ|) + �l|û|(|X̂ |+ |Ŷ |+ |Ẑ |)] ds;

where

�f = f(s; u)− f(s; u′); �b= b(s; u)− b(s; u′); �� = �(s; u)− �(s; u′):

Let i → ∞, then we can get

�E
∫ ∞

0
|Û |2 ds6�E

∫ ∞

0

� + 3l
2

(|Û |2 + |û|2) ds:

We now choose �0=�=2(�+3l), it is clear that, for each �xed � ∈ [0; �0], the mapping
I�0+� is contractive in the following sense:

E
∫ ∞

0
|Û |2 ds61

3
E
∫ ∞

0
|û|2 ds:

It follows immediately that this mapping has a unique �xed point U�0+�=(X �0+�; Y �0+�;
Z�0+�) which is the solution of (3.1) for �= �0 + �. The proof is complete.

4. Existence and uniqueness

Now we can obtain one of the main results in this paper — the existence and
uniqueness theorem for solutions of FBSDE (2.1).

Theorem 6. Under assumptions (H1)–(H3); for each x0 ∈Rn (2:1) has a unique
solution in M 2(0;∞;Rn × Rn × Rn×d).

Proof. (Uniqueness): Let U =(X; Y; Z) and U ′=(X ′; Y ′; Z ′) be two solutions of (2.1).
We set

Û = U − U ′ = (X − X ′; Y − Y ′; Z − Z ′) = (X̂ ; Ŷ ; Ẑ):

Similar to Lemma 5, there exist Ti → ∞ (i → ∞) such that
lim
i→∞

E〈X̂ (Ti); Ŷ (Ti)〉= 0:

Applying Itô’s formula to 〈X̂ (·); Ŷ (·)〉,

E〈X̂ (Ti); Ŷ (Ti)〉 − E〈X̂ (0); Ŷ (0)〉= E
∫ Ti

0
〈A(t; U )− A(t; U ′); Û 〉 dt:

Let i → ∞, this with the monotonicities of A implies

�E
∫ ∞

0
(|X̂ (t)|2 + |Ŷ (t)|2 + |Ẑ(t)|2) dt60:

Thus X̂ ≡ 0; Ŷ ≡ 0; Ẑ ≡ 0, the uniqueness is proved.
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(Existence): By Lemma 2, for any x0 ∈ Rn; �; 
;  ∈ M 2(0;∞), (3.1) has a unique
solution in M 2(0;∞;Rn+n+n×d) as �= 0.
It follows from Lemma 5 that there exists a positive constant �0 = �0(l; �) such

that for any � ∈ [0; �0] and any �; 
;  ∈ M 2(0;∞), (3.1) has a unique solution in
M 2(0;∞;Rn+n+n×d) for � = 0 + �. Since �0 depends only on (l; �), we can repeat
this process for N times with 16N�0¡ 1 + �0. In particular, for � = 1 with � ≡
0; 
 ≡ 0 and  ≡ 0, (3.1) has a unique solution in M 2(0;∞;Rn+n+n×d). The proof is
complete.

5. Comparison theorem

In this section we give an important property of FBSDE (2.1) — comparison
theorem.
Let (X1(·); Y1(·); Z1(·)) and (X2(·); Y2(·); Z2(·)) be, respectively, the solutions of (2.1)

corresponding to X1(0) = x1 ∈ Rn and X2(0) = x2 ∈ Rn. Set

Û =U1 − U2 = (X1; Y1; Z1)− (X2; Y2; Z2)

= (X1 − X2; Y1 − Y2; Z1 − Z2) = (X̂ ; Ŷ ; Ẑ):

Lemma 7. We make assumptions (H1)–(H3). Then 〈X̂ (t);Ŷ (t)〉¿0; ∀t∈R+.Moreover;
(X̂ (t); Ŷ (t); Ẑ(t))1[�;∞)(t) ≡ 0;

where � is a Ft-stopping time de�ned by

� ·= inf{t¿0; 〈X̂ (t); Ŷ (t)〉= 0}:

Proof. We chose Ti (i=1; 2; : : : ; ), such that E〈X̂ (Ti); Ŷ (Ti)〉 → 0. Clearly, for a given
time t ∈ R+

lim
i→∞

EFt 〈X̂ (Ti); Ŷ (Ti)〉= 0:

We then apply Itô’s formula to 〈X̂ (·); Ŷ (·)〉:

EFt 〈X̂ (Ti); Ŷ (Ti)〉 − 〈X̂ (t); Ŷ (t)〉 = EFt

∫ Ti

t
〈A(s; U1)− A(s; U2); Û 〉 ds

6−�EFt

∫ Ti

t
|Û (s)|2 ds; ∀t¿0:

Let i → ∞, then we have

〈X̂ (t); Ŷ (t)〉¿�EFt

∫ ∞

t
|Û (s)|2 ds¿0; ∀t¿0:

It then follows that, for the above given stopping time �

〈X̂ (T ); Ŷ (T )〉 − 〈X̂ (� ∧ T ); Ŷ (� ∧ T )〉¿0; ∀T¿0:
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Since

E(〈X̂ (T ); Ŷ (T )〉 − 〈X̂ (� ∧ T ); Ŷ (� ∧ T )〉) = E
∫ T

�∧T
〈A(t; U1)− A(t; U2); Û 〉 dt

6−�E
∫ T

�∧T
|Û (t)|2 dt;

we have then

X̂ (t)1[�∧T;T ](t) = Ŷ (t)1[�∧T;T ](t) = 0; ∀T¿0:
Thus

X̂ (t)1[�;∞)(t) ≡ Ŷ (t)1[�;∞)(t) ≡ 0; ∀t¿0:
Following the existence and uniqueness theorem, Ẑ(t)1[�;∞)(t) ≡ 0; ∀t¿0. The proof
is complete.

We now consider a special situation of (2.1), namely n=1. Thus X (·) and Y (·) are
all R-valued processes. We can assert the following comparison theorem.

Theorem 8. We set n= 1. Assuming that (2:1) satis�es assumptions (H1)–(H3); we
have that if X̂ (0)¿ 0 then Ŷ (0)¿ 0; furthermore; X1(t)¿X2(t) and Y1(t)¿Y2(t);
∀t¿0.

Proof. We set

�x
·= inf{t¿0; X̂ (t) = 0};

�y
·= inf{t¿0; Ŷ (t) = 0}:

Clearly,

�6�x; �6�y:

From the above lemma,

X̂ (t) = 0; ∀t¿�x;

Ŷ (t) = 0; ∀t¿�y:

It follows that X̂ (t)¿0 and Ŷ (t)¿0; ∀t¿0. The proof is complete.

6. Exponential asymptotical stability

In this section we will show asymptotic behavior of the adapted solutions of (2.1).
Let �¿0 be a �xed time. We note (X �; x(t); Y �; x(t); Z�; x(t)) stands for the solution of
(2.1) with initial value conditions X (�) = x, i.e., it satis�es the following equations:

dX (t) = b(t; X (t); Y (t); Z(t)) dt + �(t; X (t); Y (t); Z(t)) dBt;

−dY (t) = f(t; X (t); Y (t); Z(t)) dt − Z(t) dBt;

X (�) = x; (X (·); Y (·); Z(·)) ∈ M 2(�;∞;Rn × Rn × Rn×d);

(6.1)

where x ∈ L2(
;F�; P;Rn).



S. Peng, Y. Shi / Stochastic Processes and their Applications 85 (2000) 75–92 85

Similar to Theorem 6, we easily prove the existence and uniqueness theorem for
adapted solutions of (6.1) under the same assumptions.

Theorem 9. Under assumptions (H1)–(H3); for each x ∈ L2(
;F�; P;Rn) (6:1) has
a unique solution in M 2(�;∞;Rn × Rn × Rn×d).

We further assume that

(H5) A(· ; 0) ≡ 0 if and only if u= 0:

Actually by Theorem 9, (X (·) ≡ 0; Y (·) ≡ 0; Z(·) ≡ 0) is the unique trivial solution of
(6.1) for x = 0. We �rst give some properties of the solution (X �; x(t); Y �; x(t); Z�; x(t))
of (6.1).

Lemma 10. Assume (H1)–(H3) and (H5). Then we have
(i) Y �;0(�) = 0;
(ii) Y �; x(�) satis�es Lipschitz condition with respect to x: there exists a constant

�¿ 0 independent of �; such that ∀x1; x2 ∈ L2(
;F�; P;Rn);

|Y �; x1 (�)− Y �; x2 (�)|6�|x1 − x2|;
(iii) Y �; x(�) satis�es monotonicity condition on x: there exists a constant �¿ 0 inde-

pendent of �; such that ∀x1; x2 ∈ L2(
;F�; P;Rn);

〈Y �; x1 (�)− Y �; x2 (�); x1 − x2〉¿�|x1 − x2|2:

Proof. Let (X1(t); Y1(t); Z1(t)) and (X2(t); Y2(t); Z2(t)) be, respectively, the solutions of
(6.1) correspondent to X1(�)=x1 ∈ L2(
;F�; P;Rn) and X2(�)=x2 ∈ L2(
;F�; P;Rn).
We set

X̂ (t) = X1(t)− X2(t); Ŷ (t) = Y1(t)− Y2(t); Ẑ(t) = Z1(t)− Z2(t);

b̂= b(t; X1(t); Y1(t); Z1(t))− b(t; X2(t); Y2(t); Z2(t));

f̂ = f(t; X1(t); Y1(t); Z1(t))− f(t; X2(t); Y2(t); Z2(t));

�̂ = �(t; X1(t); Y1(t); Z1(t))− �(t; X2(t); Y2(t); Z2(t)):

(i) It is an immediate consequence of the existence and uniqueness for solutions of
(6.1).

(ii) Applying Itô’s formula to |Y1(t)− Y2(t)|2, we get
|Y1(�)− Y2(�)|2

= EF�

∫ ∞

�
[2〈Ŷ (s); f̂〉 − |Ẑ(s)|2] ds

6EF�

∫ ∞

�
[2l|Ŷ (s)|(|X̂ (s)|+ |Ŷ (s)|+ |Ẑ(s)|) + |Ẑ(s)|2] ds

6EF�

∫ ∞

�
(4l+ 1)(|X̂ (s)|2 + |Ŷ (s)|2 + |Ẑ(s)|2) ds: (6.2)
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Applying Itô’s formula to 〈X1(t) − X2(t); Y1(t) − Y2(t)〉 and by virtue of assumption
(H1), we have

−〈X1(�)− X2(�); Y1(�)− Y2(�)〉6− �EF�

∫ ∞

�
(|X̂ (s)|2 + |Ŷ (s)|2 + |Ẑ(s)|2) ds:

(6.3)

Therefore

�EF�

∫ ∞

�
(|X̂ (s)|2 + |Ŷ (s)|2 + |Ẑ(s)|2) ds

6〈X1(�)− X2(�); Y1(�)− Y2(�)〉

6|X1(�)− X2(�)| · |Y1(�)− Y2(�)|

6
4l+ 1
2�

|X1(�)− X2(�)|2 + �
2(4l+ 1)

|Y1(�)− Y2(�)|2: (6.4)

From (6.2) and (6.4), we deduce

|Y1(�)− Y2(�)|26 (4l+ 1)
2

�2
|X1(�)− X2(�)|2;

thus

|Y �; x1 (�)− Y �; x2 (�)|6�|x1 − x2|; ∀x1; x2 ∈ L2(
;F�; P;Rn);

where � = (4l+ 1)=�¿ 0.
(iii) Applying Itô’s formula to |X1(t)− X2(t)|2, we get

−|X1(�)− X2(�)|2

=EF�

∫ ∞

�
[2〈X̂ (s); b̂〉+ |�̂|2] ds

¿− EF�

∫ ∞

�
[2l|X̂ (s)|(|X̂ (s)|+ |Ŷ (s)|+ |Ẑ(s)|)

+ l2(|X̂ (s)|+ |Ŷ (s)|+ |Ẑ(s)|)2] ds:
By virtue of (6.3), for a su�ciently small �¿ 0,

〈X1(�)− X2(�); Y1(�)− Y2(�)〉 − �|X1(�)− X2(�)|2

¿�EF�

∫ ∞

�
(|X̂ (s)|2 + |Ŷ (s)|2 + |Ẑ(s)|2) ds

− �EF�

∫ ∞

�
[2l|X̂ (s)|(|X̂ (s)|+ |Ŷ (s)|+ |Ẑ(s)|)

+l2(|X̂ (s)|+ |Ŷ (s)|+ |Ẑ(s)|)2] ds

¿0:

Thus (iii) holds true. The proof is complete.
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Now we de�ne a random function:

v(�; x) ·= Y �; x(�):R+ × Rn → L2(
;F�; P;Rn):

Then from the previous lemma we have

Lemma 11. Assume (H1)–(H3) and (H5). Then we have
(i) v(�; 0) = 0;
(ii) v(�; x) satis�es Lipschitz condition with respect to x; i.e.;

|v(�; x1)− v(�; x2)|6�|x1 − x2|; ∀x1; x2 ∈ Rn;

(iii) v(�; x) satis�es monotonicity condition on x; i.e.;

〈v(�; x1)− v(�; x2); x1 − x2〉¿�|x1 − x2|2; ∀x1; x2 ∈ Rn:

To proceed with our discussion, the following notion is in order.

De�nition 12. For a �xed � ∈ R+ a family of subsets {Ai}Ni=1⊂F� is said to be a
partition of (
;F�) if

Ai ∈ F�; i = 1; : : : ; N ; Ai ∩ Aj = ∅; for i 6= j;
N⋃
i=1

Ai = 
:

We now claim

Theorem 13. For each � ∈ L2(
;F�; P;Rn) we have

v(�; �) = Y �; �(�): (6.5)

Proof. We �rst consider the case when � is a step function:

�=
N∑
i=1

1Ai xi;

where {Ai}Ni=1 is a partition of (
;F�); xi ∈ Rn; i = 1; 2; : : : ; N . For each i; let

(X i
t ; Y

i
t ; Z

i
t ) ≡ (X �; xi(t); Y �; xi(t); Z�; xi(t));

then (X i
t ; Y

i
t ; Z

i
t ) is the solution of the following FBSDE:

X i
t = xi +

∫ t

�
b(s; X i

s ; Y
i
s ; Z

i
s) ds+

∫ t

�
�(s; X i

s ; Y
i
s ; Z

i
s) dBs;

Y i
t =
∫ ∞

t
f(s; X i

s ; Y
i
s ; Z

i
s) ds−

∫ ∞

t
Z i
s dBs; t ∈ [�;∞):

We multiple 1Ai on both sides of the above equations and then take the summation for
all i. From the simple fact

∑
i ’(xi)1Ai = ’(

∑
i xi1Ai) it follows that

N∑
i=1

1AiX
i
t =

N∑
i=1

1Ai xi +
∫ t

�
b

(
s;

N∑
i=1

1AiX
i
s ;

N∑
i=1

1AiY
i
s ;

N∑
i=1

1AiZ
i
s

)
ds
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+
∫ t

�
�

(
s;

N∑
i=1

1AiX
i
s ;

N∑
i=1

1AiY
i
s ;

N∑
i=1

1AiZ
i
s

)
dBs

and
N∑
i=1

1AiY
i
t =

∫ ∞

t
f

(
s;

N∑
i=1

1AiX
i
s ;

N∑
i=1

1AiY
i
s ;

N∑
i=1

1AiZ
i
s

)
ds−

∫ ∞

t

N∑
i=1

1AiZ
i
s dBs:

It follows from the uniqueness of (6.1) that

(X �;�(t); Y �;�(t); Z�;�(t)) =

(
N∑
i=1

1AiX
i
t ;

N∑
i=1

1AiY
i
t ;

N∑
i=1

1AiZ
i
t

)
:

It then follows from the de�nition v(�; xi) = Y i
� that

Y �;�(�) =
N∑
i=1

1AiY
i
� =

N∑
i=1

1Ai v(�; xi) = v

(
�;

N∑
i=1

1Ai xi

)
= v(�; �):

Thus (6.5) holds true for the case where � is a step function.
If � ∈ L2(
;F�; P;Rn) we can choose a sequence of step functions {�i} that

converges to � in L2(
;F�; P;Rn). From Lemmas 10 and 11 it follows that

E|Y �; �i(�)− Y �; �(�)|26�2E|�i − �|2 → 0

and

E|v(�; �i)− v(�; �)|26�2E|�i − �|2 → 0;

respectively. These with v(�; �i) = Y �;�i(�) yield (6.5). The proof is complete.

According to the existence and uniqueness theorem,

Y �; x(t) = v(t; X �; x(t)); ∀x ∈ L2(
;F�; P;Rn); ∀t¿�¿0:

Now we set

V (t; x) = 〈x; v(t; x)〉= 〈x; Y t; x(t)〉:
Therefore, we observe that

V (t; X �; x(t)) = 〈X �; x(t); v(t; X �; x(t))〉= 〈X �; x(t); Y �; x(t)〉:

Remark 1. In fact V (t; X �; x(t)) is a Lyapunov function for (2.1).

Then from Lemma 11 we easily get

Lemma 14. Under assumptions (H1)–(H3) and (H5); we have

�|x|26V (t; x)6�|x|2; ∀x ∈ Rn; ∀t¿�¿0:

By a similar procedure, it is not di�cult to obtain the following result.

Lemma 15. Under assumptions (H1)–(H3) and (H5); we have

�|X �; x(t)|26V (t; X �; x(t))6�|X �; x(t)|2; ∀x ∈ L2(
;F�; P;Rn); ∀t¿�¿0:
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Now we can assert the exponential decay properties theorem which is the other main
object of this paper.

Theorem 16. Under assumptions (H1)–(H3) and (H5); we have that the adapted
solutions of FBSDE (2:1) are exponential decaying in the following sense: there
exist two constants r ¿ 0 and R¿ 0; such that ∀t¿�¿0

EF�(|X �; x(t)|2)6R|x|2e−r(t−�); EF�(|Y �; x(t)|2)6R|x|2e−r(t−�):

Proof. Applying Itô’s formula to V (t; X �; x(t)), we have

EF�V (t; X �; x(t))− V (�; X �; x(�))

=EF�

∫ t

�
〈Y �; x(s); b(s; X �; x(s); Y �; x(s); Z�; x(s))〉 ds

−EF�

∫ t

�
〈X �; x(s); f(s; X �; x(s); Y �; x(s); Z�; x(s))〉 ds

+EF�

∫ t

�
〈Z�; x(s); �(s; X �; x(s); Y �; x(s); Z�; x(s))〉 ds

=− �
�
EF�

∫ t

�
V (s; X �; x(s)) ds+ EF�

∫ t

�
�(s) ds;

where by virtue of (H1) and Lemma 15,

�(s) = 〈Y �; x(s); b(s; X �; x(s); Y �; x(s); Z�; x(s))〉

−〈X �; x(s); f(s; X �; x(s); Y �; x(s); Z�; x(s))〉

+ 〈Z�; x(s); �(s; X �; x(s); Y �; x(s); Z�; x(s))〉+ �
�
V (s; X �; x(s))

6 0:

Therefore, we deduce

EF�V (t; X �; x(t)) = V (�; X �; x(�))e−(�=�)(t−�) +
∫ t

�
e−(�=�)(t−s)EF��(s) ds

6 V (�; X �; x(�))e−(�=�)(t−�)

6 �|x|2e−(�=�)(t−�); ∀t¿�¿0:

Again from Lemma 15 we obtain

EF�(|X �; x(t)|2)6�
�
|x|2e−r(t−�); ∀t¿�¿0;

where r = �=�¿ 0. From Lemma 10(ii), we can get the estimate for Y �; x(t)

EF�(|Y �; x(t)|2)6�3

�
|x|2e−r(t−�); ∀t¿�¿0:

Thus the desired result is obtained.
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In fact we may borrow a de�nition on global exponential asymptotical stability
similar to ordinary di�erential equations.

De�nition 17. The trivial solution of FBSDE (2.1) is called global exponential asymp-
totically stable, if ∃
¿ 0; ∀�¿ 0; ∃� (�)¿ 0, such that as |x|¡�; ∀t¿�¿0

EF�(|X �; x(t)|2)6�(�)|x|2e−
(t−�); EF�(|Y �; x(t)|2)6�(�)|x|2e−
(t−�):

Then Theorem 16 shows that the trivial solution of (2.1) is global exponential asymp-
totically stable.

Remark 2. If we replace the monotonicity assumption (H1) with (H1)′

(H1)′ 〈A(t; u)− A(t; �u); u− �u〉¿�|u− �u|2; �¿ 0,

∀u=

 X

Y
Z


 ; �u=


 �X
�Y
�Z


 ∈ Rn × Rn × Rn×d; ∀t ∈ R+:

Then we have similar results.

Remark 3. The case in Remark 2 is equivalent to the following formulation:

dX (t) = b(t; X (t); Y (t); Z(t)) dt + �(t; X (t); Y (t); Z(t)) dBt;

−dY (t) = f(t; X (t); Y (t); Z(t)) dt − Z(t) dBt;

Y (0) = y0; (X (·); Y (·); Z(·)) ∈ M 2(0;∞;Rn × Rn × Rn×d)

(6.6)

under the assumptions (H1)–(H3) and (H5).

Remark 4. It is not di�cult to check that the above results are true in the case that
�¿0 is a given Ft-stopping time.

7. Generalization of in�nite horizon FBSDE

In this section we consider the following generalized form of FBSDE, i.e., a class
of fully coupled system of in�nite horizon forward–backward stochastic di�erential
equations

dX (t) = b(t; X (t); Y (t); Z(t)) dt + �(t; X (t); Y (t); Z(t)) dBt;

−dY (t) = f(t; X (t); Y (t); Z(t)) dt − Z(t) dBt;

X (0) = h(Y (0)); (X; Y; Z) ∈ M 2(0;∞;Rn × Rn × Rn×d);

(7.1)

where h(Y ):Rn → Rn. We impose the assumptions as follows:
(H6) h(Y ) satis�es monotonicity condition, i.e.

〈h(Y )− h( �Y ); Y − �Y 〉60; ∀Y; �Y ∈ Rn;

(H7) h(Y ) satis�es Lipschitz condition with respect to Y .
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Analogous to the preceding treatment, we can obtain the same results for (7.1). We
need consider the following system:

dX �(t) = [�b(t; u�(t))− �(1− �)Y �(t) + �(t)] dt

+[��(t; u�(t))− �(1− �)Z�(t) +  (t)] dBt;

−dY �(t) = [�f(t; u�(t)) + �(1− �)X �(t) + 
(t)] dt − Z�(t) dBt;

X �(0) = �h(Y �(0)) + x0;

(7.2)

where x0 ∈ Rn; �;  and 
 are given processes in M 2(0;∞) with values in Rn; Rn×d

and Rn, respectively. It is obvious that in the case � = 1, the fact that (7.2) has a
unique solution in M 2(0;∞;Rn+n+n×d) for each x0 ∈ Rn; �;  ; 
 ∈ M 2(0;∞) implies
that the existence and uniqueness for solutions of (7.1) hold. When �=0, (7.2) is the
following linear system:

dX 0(t) = (−�Y 0(t) + �(t)) dt + (−�Z0(t) +  (t)) dBt;

−dY 0(t) = (�X 0(t) + 
(t)) dt − Z0(t) dBt;

X 0(0) = x0; (X 0; Y 0; Z0) ∈ M 2(0;∞;Rn × Rn × Rn×d):

(7.3)

We have following lemma corresponding to Lemma 2:

Lemma 18. For each x0 ∈ Rn; �; 
;  ∈ M 2(0;∞); (7:3) has a unique solution in
M 2(0;∞;Rn+n+n×d).

Corresponding to Lemma 5, we have

Lemma 19. Under assumptions (H1)–(H3); (H6) and (H7); there exists a positive
constant �0 such that if; a priori; for some �0 ∈ [0; 1); for each x0 ∈ Rn; �; 
;  ∈
M 2(0;∞); (7:2) has a unique solution (X �0 (·); Y �0 (·); Z�0 (·)) in M 2(0;∞;Rn+n+n×d);
then for each � ∈ [0; �0]; for each x0 ∈ Rn; �; 
;  ∈ M 2(0;∞); (7:2) also has a
unique solution (X �0+�(·); Y �0+�(·); Z�0+�(·)) in M 2(0;∞;Rn+n+n×d).

Corresponding to Theorem 6, we have

Theorem 20. Under assumptions (H1)–(H3); (H6) and (H7); (7:1) has a unique
solution (X; Y; Z) ∈ M 2(0;∞;Rn × Rn × Rn×d).

Remark 5. Via the same procedure we can obtain the corresponding comparison
theorem and the global exponential asymptotical stability of solutions for (7.1).

Remark 6. Under the monotonicity assumptions (H1)′ and

〈h(Y )− h( �Y ); Y − �Y 〉¿0; ∀Y; �Y ∈ Rn;

the similar results hold true.
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