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0. Introduction

When Hopf discovered in the early 1940’s a purely algebraic method to construct the second
homology group of a pathwise connected aspherical complex from the fundamental group of the
complex [18], it marked the birth of what is now called homological algebra. Hopf proved that, when
A is the fundamental group of the considered complex, and p : P −→ A is a projective presentation of
A (i.e. a surjective homomorphism onto A with a free domain), then the second (integral) homology
group of the complex is isomorphic to the quotient

[P , P ] ∩ K [p]
[K [p], P ] , (A)

where K [p] denotes the kernel of p and [·,·] the group commutator. In particular, he proved that the
construction is independent of the particular choice of projective presentation of A. Thanks to Hopf’s
result it became meaningful to speak of the homology group of a group rather than of a complex (or,
more generally, a topological space).
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Constructions for the higher homology groups were found soon after: Eilenberg and MacLane,
Hopf, Freudenthal and Eckmann all more or less independently came up with solutions that resulted
in the now classic definition via chain resolutions. (See [26] for a detailed historical account.) Later,
another now classic construction, via simplicial resolutions, was discovered (see, e.g. [2]). It is inter-
esting to note that, contrary to what one might expect, neither of these two coincides with Hopf’s
original construction, in the particular case of the second homology group. In fact, it was not un-
til 1989 that similar constructions were found for the higher homology groups: in their article [8],
Brown and Ellis obtained a “Hopf formula” for the nth integral homology group, for any n � 3 (see
also [11]).

To give an idea, let us have a look at Brown and Ellis’s Hopf formula for the third homology of a
group. Consider a group A. Instead of representing A by a single surjective homomorphism, represent
it by a commutative square of surjective homomorphisms

F2
f2

f ′
2

F1

f1

F0
f0

A

(B)

with the following properties: the unique factorization a : F2 −→ P to the pullback P = F0 ×A F1 is
surjective, and F0, F1 and F2 are free groups. Brown and Ellis discovered that the third (integral)
homology group of A is isomorphic to the following quotient, where the denominator is an internal
product of subgroups of A:

[F2, F2] ∩ K [ f2] ∩ K [ f ′
2]

[K [ f2], K [ f ′
2]] · [K [ f2] ∩ K [ f ′

2], F2] . (C)

Recall that a surjective homomorphism f : A −→ B is also called an extension (of B). Commu-
tative squares of extensions, such as B, in which also the factorization a : F2 −→ P to the pullback
P = F0 ×A F1 is an extension (but without any freeness condition) are called double extensions. They
have been considered by Janelidze in his study of double central extensions [20], as an application
of Categorical Galois Theory [19]. In his talk [21] Janelidze continued his observations from [20] by
considering n-fold extensions and n-fold central extensions for any n � 1. Both are particular kinds of
commutative n-dimensional cubes of extensions. Higher extensions are of interest: indeed, Brown and
Ellis’s construction of the (n + 1)st homology of a group A involved the choice of some n-dimensional
cube of group extensions. In particular, any n-fold extension with “terminal vertex” A and with all
other groups involved free groups, constitutes a valid choice. Note that it makes sense to call such
n-fold extension an n-fold (projective) presentation of A.

Let us, for one moment, return our attention to Hopf’s original formula A and, in particular, to its
denominator [K [p], P ]. This normal subgroup of P is universal in turning the projective presentation
p : P −→ A into a central extension: more precisely, it is the smallest normal subgroup N of P with
the property that the homomorphism p : P/N −→ A induced by p is a central extension. (By central
extension we mean a surjective homomorphism f : A −→ B with the property that the kernel K [ f ]
lies entirely in the center of A.) It was Janelidze who realized [21] that the denominators of the higher
Hopf formulae satisfy a similar property: they turn the higher presentations considered universally
into higher central extensions, by nulling them out of the initial vertex of the higher presentation (see
also [22]). For instance, the double presentation B induces a double central extension
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F2/I
f2

f ′
2

F1

f1

F0
f0

A,

where I denotes the normal subgroup [K [ f2], K [ f ′
2]] · [K [ f2] ∩ K [ f ′

2], F2] of F2 and the homomor-

phisms f2 and f ′
2 are the natural ones induced by f2 and f ′

2, respectively.
This insight inspired Everaert, Gran and Van der Linden to write [12]. In this article, the authors

introduced notions of higher extensions and higher central extensions, again derived from Categorical
Galois Theory, that make sense in a large variety of categories, not just in the category of groups.
Making use of these notions, they obtained Hopf formulae for the cotriple homology of Barr and Beck
[2,14]. Since Barr and Beck’s theory incorporates the classical group homology, this generalized Brown
and Ellis’s result to other categories than the category of groups alone. In fact, the generalization was
much wider since, for instance in the case of groups, Hopf formulae were obtained not only for the
integral homology, but also for the homology with coefficients in the cyclic group Zn , just to mention
one example.

One thing that is particularly interesting about the results from [12] is that they provide one with
a new approach to non-abelian (categorical) homology, based on Categorical Galois Theory or, more
precisely, on the theory of higher extensions and higher central extensions, rather than on that of
cotriples and simplicial objects, like in [2]. It is therefore important that the notions of higher exten-
sion and of higher central extension be well understood. The aim of the present article is to study
their fundamental properties and thus to provide a powerful base for further research in homology
theory via the Brown–Ellis–Hopf formulae.

Instead of defining higher extensions explicitly, as in [12], we shall here take an axiomatic ap-
proach. This will allow us to treat n-fold extensions (for any n � 1) as if they were “simple” (1-fold)
extensions, but also, at the same time, as if they were (n − 1)-fold extensions. This greatly simpli-
fies the study of higher extensions and higher central extensions. Also, it will allow us to obtain a
simple and direct proof of the invariance of the higher Hopf formulae with respect to the considered
higher presentation, without any reference to simplicial objects or any condition on the existence of
a suitable cotriple, like in [12].

Note that higher extensions do not explicitly appear in [8]. In fact, Brown and Ellis demanded
their “higher presentations” to satisfy some weaker property instead. However, as is explained in an
erratum which is available from Ellis’s homepage, this was an error, and the “higher presentations”
considered in [8] needed to be higher extensions after all. Donadze, Inassaridze and Porter, who gave
in [10] a new proof for Brown and Ellis’s result, did assume a condition on their “n-fold presenta-
tions” (or free exact n-fold presentations in their terminology) which can be shown to be equivalent to
demanding them to be n-fold extensions. The first appearance of both higher extensions and higher
central extensions, however, was in [21] although double extensions and double central extensions had
been studied already in [20]. The concept of double extension has been of importance also in [9] and
in [7] (in the latter article the term regular pushout was used), where it was considered in a more
general context than just the variety of groups, namely in regular Mal’tsev categories. Double central
extensions in Mal’tsev varieties have been studied in [17]. Finally, for n � 3, n-fold extensions and
n-fold central extensions have been considered outside the scope of the variety of groups for the first
time in [12].

The context in which the results of [12] hold true, and in which those of the present article will
be developed, is that of semi-abelian categories. These were introduced in [24] in order to capture,
among other things, the homological properties of the categories of groups, rings, Lie algebra’s, (pre-)
crossed modules and similar non-abelian structures. A category A is called semi-abelian if it is finitely
complete and cocomplete, pointed, Barr-exact and Bourn-protomodular.

A being pointed means that 0 = 1, i.e. the initial and terminal objects coincide. This allows for
a natural definition of kernels and cokernels: the kernel of a morphism f : A −→ B is the arrow
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Ker f : K [ f ] −→ A obtained by pulling back along f the unique morphism 0 −→ B; dually the coker-
nel of f is the arrow Coker f : B −→ Cok[ f ] obtained by pushing out along f the unique morphism
A −→ 0. For the sake of convenience, we shall refer also to the objects K [ f ] and Cok[ f ] as to the
kernel and cokernel of f , respectively.

In order to explain what Barr-exactness means, let us recall that a regular epimorphism is an ar-
row that is the coequalizer of some pair of arrows. Furthermore, an internal equivalence relation
(R,π1,π2) on an object A in a category A (where π1,π2 : R −→ A denote the projections) is called
effective if (π1,π2) is the kernel pair of some arrow. Now, A being Barr-exact [1] means that the
regular epimorphisms are pullback-stable (i.e. A is regular [1]) and that every internal equivalence
relation in A is effective.

Finally, a pointed and regular category is called Bourn-protomodular [4,6] if the “regular” Short Five
Lemma holds: for any commutative diagram

K [ f1]
Ker f1

u

A1
f1

v

B1

w

K [ f0]
Ker f0

A0
f0

B0

with f0 and f1 regular epimorphisms, v is an isomorphism as soon as u and w are isomorphic.
Among the implications of the above axioms let us mention here that any regular epimorphism is

the cokernel of its kernel [6]. Thus, both rows in the diagram above are short exact sequences, which
means that the sequences

0 K [ f i]
Ker f i

Ai
fi

Bi 0

are exact (for i = 0,1) (a sequence . . .
d j

A j

d j−1
. . . is exact if Im d j = Kerd j−1 for any j).

Hence, the regular Short Five Lemma coincides with the “classical” Short Five Lemma.
Let us conclude this introduction by mentioning one final property of semi-abelian categories.

Recall that a monomorphism is called normal if it is the kernel of some arrow. In a semi-abelian
category, normal monomorphisms are preserved under regular images: if k : K −→ A is a normal
monomorphism and f : A −→ B a regular epimorphism, then the image Im( f ◦k) of f ◦k is a normal
monomorphism as well [24].

Unless stated otherwise, throughout this article, A will always denote a semi-abelian category.

1. Higher extensions

Let A be a semi-abelian category, with class of objects Ob A. If E is a class of morphisms in A,
then we shall write E − for the class of objects A ∈ Ob A defined as follows: A ∈ E − if and only if
there exists in E at least one arrow f : A −→ B or one arrow g : C −→ A. The full subcategory of A
determined by E − will be denoted by AE .

Definition 1.1. Let E be a class of regular epimorphisms in A with 0 ∈ E − . We call E a class of
extensions when it satisfies the following list of properties. An arrow f ∈ E will be called an E -
extension, or simply an extension.

1. E contains all split epimorphisms f : A −→ B with A and B in E −;
2. For each composable pair of arrows f : A −→ B and g : B −→ C , one has

• If f and g are in E , then so is g ◦ f ;
• If g ◦ f is in E and B in E − , then g is in E ;
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3. For every f : A −→ B in E and g : C −→ B in A with C ∈ E − , the pullback g∗ f is again in E :

4. If the following diagram is a short exact sequence in A with A ∈ E − ,

0 K A
f

B 0

then K ∈ E − implies f ∈ E ;
5. For every commutative diagram with short exact rows in A, such that the right hand vertical

arrow is an identity,

0 K

k

A
f

a

B 0

0 L C
g

B 0,

one has: if both f and k are in E and C ∈ E − , then also a ∈ E .

Remark 1.2. Since 0 ∈ E − , (3) implies that the kernel K [ f ] of an extension f : A −→ B is always
in E − . Therefore, the implication in 1.1(4) is an equivalence.

Example 1.3. The class Reg A of all regular epimorphisms in A is a class of extensions: (2) and (3) are
satisfied because A is regular, (5) because A is semi-abelian: the image Im(a) of a is an isomorphism
by the Short Five Lemma. Note that (Reg A)− = Ob A. In fact, if we demand that E − = Ob A then,
by 1.1(4), Reg A is the only class of extensions E in A: in a semi-abelian category every regular
epimorphism is the cokernel of its kernel.

We now consider the category Arr A of all arrows in A which has as morphisms between arrows
a and b commutative squares

A1
f1

a

B1

b

A0
f0

B0

in A. Such a morphism will be denoted by ( f1, f0) : a −→ b.
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Definition 1.4. Let E a be class of extensions in A. We call double E -extension in A any arrow
( f1, f0) : a −→ b in Arr A such that all arrows in the following commutative diagram are E -extensions,
where r is defined as the unique factorization to the pullback P = A0 ×B0 B1:

We denote the class of double E -extensions by E 1.

Usually, we will speak of double extension, forgetting the reference to E .

Remark 1.5. Of course, an arrow ( f1, f0) : a −→ b in Arr A is a double extension if and only if
(a,b) : f1 −→ f0 is one. For higher extensions, a similar property will be shown to hold (see Theo-
rem 3.2).

Remark 1.6. Note that, because an extension is a regular epimorphism, a double extension f in A
induces a square in A which is a regular pushout in the sense of Bourn [7,9]: every arrow in the
square is a regular epimorphism and so is the factorization to the pullback. In particular, f is a
regular epimorphism in Arr A.

E 1 is always a class of extensions in Arr A, as we shall now prove.

Lemma 1.7. Consider in A a commutative diagram with short exact rows, such that f1 , f0 , a and b are exten-
sions:

0 K1

k

A1
f1

a

B1

b

0

0 K0 A0
f0

B0 0.

The right hand square is a double extension if and only if k is an extension.

Proof. We can decompose the diagram as follows:

.

If the factorization r to the pullback P = A0 ×B0 B1 is an extension, then so is k, by 1.1(3) and
Remark 1.2. If k is an extension, then r is one as well, by 1.1(5) and (3). �
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Proposition 1.8. E 1 is a class of extensions in Arr A.

Proof. Note that (E 1)− = E . Of course, 10 ∈ E . We must prove that E 1 satisfies the properties listed
in Definition 1.1. Let us refer to them as (1)1, . . . , (5)1, and to (1), . . . , (5) for the corresponding
properties of E . Keeping in mind Remark 1.5, it is easily verified that (1)1 follows from (1) and
Lemma 1.7; (2)1 from (2) and Lemma 1.7; (3)1 follows from (3) and (2); (5)1 from (3) and (5); (4)1

from (2), (4) and Lemma 1.7. �
Proposition 1.8 allows us now to define, inductively, n-fold extensions, for every n � 1. For this, it is

necessary that we make precise what we shall mean by n-fold arrow, and that we fix some notations.
Let us consider the natural numbers by their standard (von Neumann) construction and put 0 = ∅

and n = {0, . . . ,n − 1} for n � 1. We write P (n) for the powerset of n. Recall that P (n) is a category
which has as an arrow S −→ T the inclusion S ⊆ T for subsets S, T ⊆ n.

Definition 1.9. Let n � 0. We shall call n-fold arrow in A any contravariant functor

A : P (n)op −→ A.

A morphism between n-fold arrows A and B in A is a natural transformation f : A −→ B . We will
write Arrn A for the corresponding category.

Remark 1.10. Let n � 0. Just as any category of presheaves in A, Arrn A is a semi-abelian category.
Moreover, limits (colimits) in Arrn A are pointwise limits (colimits) in A.

If A is an n-fold arrow and S and T are subsets of n such that S ⊆ T , then we will write A S

for the image A(S) of S by the functor A and aT
S : AT −→ A S for the image A(S ⊆ T ) of S ⊆ T . If

f : A −→ B is a morphism between n-fold arrows, we will write f S : A S −→ B S for the S-component
of the natural transformation f . Furthermore, it will often be convenient to write (A S )S⊆n instead of
A and ( f S)S⊆n instead of f , or simply (A S )S and ( f S )S . Moreover, in order to simplify our notations,
we will write ai instead of an

n\{i} , for 0 � i � n − 1.

Of course, Arr0 A ∼= A. Suppose now that n � 1. An n-fold arrow A in A naturally induces an arrow

(
aS∪{n−1}

S

)
S⊆n−1 : (A S∪{n−1})S⊆n−1 −→ (A S)S⊆n−1

in Arrn−1 A. This yields a functor δn−1 : Arrn A −→ Arr(Arrn−1 A). Obviously, we have

Lemma 1.11. Arrn A ∼= Arr(Arrn−1 A). An isomorphism is given by the functor δn−1 .

We are now in a position to define higher extensions.

Definition 1.12. Let E be a class of extensions in A. We put E 0 = E and let, inductively for any n � 1,
E n be the class of arrows f : A −→ B in Arrn A such that the induced square in Arrn−1 A

(A S∪{n−1})S

(aS∪{n−1}
S )S

( f S∪{n−1})S
(B S∪{n−1})S

(bS∪{n−1}
S )S

(A S)S
( f S )S

(B S )S
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is a double E n−1-extension: all arrows in the above square are E n−1-extensions and so is the universal
arrow to the induced pullback. Suppose n � 1. We call n-fold E -extension or simply n-fold extension,
any n-fold arrow A for which δn−1(A) is in E n−1.

For the sake of convenience, we shall sometimes call 0-fold E -extension or simply 0-fold extension
any object A ∈ E − .

By Proposition 1.8 we have

Corollary 1.13. If E is a class of extensions in A, E n is a class of extensions in Arrn A for each n � 0.

For n � 0, denote by Extn A the full subcategory of Arrn A of all n-fold extensions. In particular,
Ext0 A = AE . More generally, we have that Extn A = (Arrn A)E n , for any n � 0.

2. Higher central extensions

The categorical theory of central extensions has been developed in [23] in the context of exact
Mal’tsev categories [9]: these are the Barr-exact categories in which every internal reflexive relation
is an effective equivalence relation. In particular, the theory applies to semi-abelian categories [3,5].
It is, on the one hand, an application of Categorical Galois Theory [19], and on the other hand a
generalization of the Fröhlich school’s work on central extensions in varieties of Ω-groups [15,16,25].
Where the Fröhlich school’s notion of central extension depended upon the choice of a subvariety of
the variety of Ω-groups considered, Janelidze and Kelly’s notion depends on the choice of a Birkhoff
subcategory of the considered exact Mal’tsev category. In order to be able to consider higher central
extensions, we shall now generalize the notion of central extension, making it dependent on a class
of extensions E . For this, we must generalize in a similar fashion the notion of Birkhoff subcate-
gory.

Recall from [23] that a Birkhoff subcategory of an exact Mal’tsev category A is a full and replete
reflective subcategory B of A that is closed in A under subobjects and regular quotients.

Example 2.1. In the case where A is a variety of (finitary, one-sorted) universal algebras, the notion
of Birkhoff subcategory coincides with that of a subvariety.

Remark 2.2. As explained in [23], the closedness of B under subobjects and regular quotients in A
may equivalently be stated as follows. Let us assume that B is a full and replete reflective subcategory
of a regular category A. We denote by I the reflector A −→ B and by η the unit of the adjunction

A
I

⊥ B.

Then B is closed in A under subobjects and regular quotients if and only if for every regular epimor-
phism f : A −→ B in A the square D below is a pushout of regular epimorphisms which, in an exact
Mal’tsev category, is equivalent to it being a regular pushout (see [9]).

The following definition is now natural. As before, we assume that A is a semi-abelian category.

Definition 2.3. Let E be a class of extensions in A, and B a full and replete reflective subcategory
of AE . Denote by η the unit of the corresponding adjunction and by I : A E −→ B the reflector. We
call B a strongly E -Birkhoff subcategory of A if for every (E -) extension f : A −→ B the induced
square
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A
ηA

f

I A

I f

B
ηB

I B

(D)

is a double (E -) extension.

Remark 2.4. Definition 2.3 first appeared in [12], in the cases where A is Arrn X , for X a semi-abelian
category, n � 0 and E the class of (n + 1)-fold Reg X -extensions (see Example 1.3).

Example 2.5. In the situation where E = Reg A, the notions of Birkhoff subcategory and of strongly
E -Birkhoff subcategory of A coincide.

Let us consider the particular example where A = Gp is the variety of groups and E = Reg Gp.
The subvariety Ab of abelian groups is a (strongly Reg Gp-) Birkhoff subcategory of Gp, as is any
subvariety. For any group A, the A-component of the unit of the adjunction

Gp
ab

⊥ Ab

is given by the canonical quotient ηA : A −→ ab(A) = A/[A, A].

From now on, B will always denote an E -Birkhoff subcategory of A, where A is semi-abelian and E
a class of extensions in A.

For an object B of A, let us denote Ext(B) the full subcategory of the comma category A ↓ B
determined by the arrows A −→ B in E . If g : C −→ B is an arrow with C ∈ E − , we will write
g∗ : Ext(B) −→ Ext(C) for the functor that sends an extension f : A −→ B to its pullback g∗ f : C ×B

A −→ C along g . By 1.1(3), g∗ is well defined. Denote the kernel pair of f by (π1,π2) : R[ f ] −→ A.
The following are natural generalizations of Janelidze and Kelly’s definitions [23], which represent the
case E = Reg A.

Definition 2.6. Let E be a class of extensions in A, and B a strongly E -Birkhoff subcategory of A.
Consider an extension f : A −→ B . f is

1. a trivial extension (with respect to B), when the square D is a pullback;
2. a normal extension, when the first projection π1 : R[ f ] −→ B (or, equivalently, the second projec-

tion π2) is a trivial extension;
3. a central extension, when there exists a g : C −→ B in Ext(B) such that g∗ f : C ×B A −→ C is

trivial.

Remark 2.7. It is clear that every normal extension is central. Moreover, since the pullback in A of a
trivial extension f : A −→ B along an arrow in A E is again trivial, every trivial extension is normal.

In our semi-abelian context, we moreover have the following. The proof from [12] of the case
E = Reg A remains valid.

Proposition 2.8. Every central extension is normal.

Example 2.9. Consider again the situation of Example 2.5. One easily sees that the trivial extensions
are exactly the surjective homomorphisms of groups f : A −→ B with the property that the restriction
f : [A, A] −→ [B, B] of f to the derived subgroups is an isomorphism. It was shown in [19] that an



1780 T. Everaert / Journal of Algebra 324 (2010) 1771–1789
extension f : A −→ B that is central with respect to Ab is the same thing as a central extension in
the classical sense: its kernel K [ f ] is contained in the center Z(A) of A.

The full subcategory of Ext A of all extensions that are central with respect to B will be denoted by
C ExtB A. We have the following important property. Again, the proof from [12] of the case E = Reg A
remains valid.

Proposition 2.10. C ExtB A is a strongly E 1-Birkhoff subcategory of Arr A.

We denote the reflector Ext A −→ C ExtB A by I1. In order to recall its construction, we introduce
some notations.

If I : AE −→ B is the reflector associated with a strongly E -Birkhoff subcategory B of A with
unit η, we shall write [A]B or simply [A] for the kernel K [ηA] of the A-component of the unit η.
Moreover, we denote the arrow KerηA : [A] −→ A by μA . This defines a functor [·] = [·]B : AE −→ AE
together with a natural transformation μ : [·] −→ 1A E .

Now, the “centralization” I1 f of an extension f : A −→ B is given by the extension
I1 f : A/[ f ]1,B −→ B induced by f , where the normal monomorphism [ f ]1,B −→ A is obtained as
the composite μ1

f = μA ◦ [π2] ◦ Ker [π1] ((π1,π2) denotes the kernel pair of f ):

[ f ]1,B = K [[π1]]
Ker [π1] [R[ f ]]

μR[ f ]

[π1]

[π2]
[A]

μA

K [π1]
Kerπ1

R[ f ]
π1

π2

A.

Remark 2.11. μ1
f is a monomorphism in A because so are both μA and [π2] ◦ Ker ([π1]): μA by as-

sumption, and [π2] ◦ Ker ([π1]) because it is the normalization of the effective equivalence relation
([R[ f ]], [π1], [π2]) (note that, since R[ f ] is clearly a reflexive relation, it is indeed an effective equiv-
alence relation because A is an exact Mal’tsev category). Furthermore, since μA is a monomorphism,
the left hand square is a pullback, hence μR[ f ] ◦ Ker [π1] is a normal monomorphism as an intersec-
tion of normal monomorphisms. It follows that μ1

f = π2 ◦μR[ f ] ◦ Ker [π1], its regular image along π2,
is normal in A.

Example 2.12. Consider again the situation of Examples 2.5 and 2.9. In this case I1 = ab1 is the
reflector Ext Gp −→ C ExtAb Gp sending an extension f : A −→ B of groups to its centralization
ab1 f : A/[K [ f ], A] −→ B , where [K [ f ], A] denotes the commutator of subgroups K [ f ] and A of A.

The fact that C ExtB A is a strongly E 1-Birkhoff subcategory of Arr A allows us to define 2-fold
central extensions as those double extensions that are central with respect to C ExtB A and then, in-
ductively, to define n-fold central extensions, for all n � 1.

More precisely:

Definition 2.13. Put B0 = B. Inductively, for n � 1, we call an n-fold extension A an n-fold central
extension if δn−1(A) is central with respect to Bn−1. We write C ExtnB A for the full subcategory of
Extn A of all n-fold central extensions and put Bn = C ExtnB A.

We shall usually say double central extension instead of 2-fold central extension. Also, we shall
sometimes call 0-fold central extension any object A of the strongly E -Birkhoff subcategory B of A
and put C Ext0B A = B. I0 is understood to be the reflector I : A E −→ B.
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Remark 2.14. For any n � 1, the reflector Extn A −→ C ExtnB A, which we denote by In , is uniquely
determined by the commutativity of the square

Extn A
In

δn−1

Extn A

δn−1

Ext(Extn−1 A)
(In−1)1

Ext(Extn−1 A).

For any n � 0, let us denote by ιn the functor A −→ Arrn A that sends an object A of A to the
n-fold arrow ιn A defined by putting (ιn A)n = A and (ιn A)S = 0, for any strict subset S � n. We write
ηn for the unit of the adjunction

Extn A
In

⊥ C ExtnB A.

From the construction of the (Ii−1)1 for 1 � i � n, and the above remark, it follows that the kernel
[·]Bn of the unit ηn factors over ιn . More precisely, [A]Bn = ιn[A]n,B for every n-fold extensions A,
for some functor [·]n,B : Extn A −→ A. It is these functors [·]n,B that provide the denominators of the
higher Hopf formulae (see Section 5). Note that we shall usually drop the reference to B and denote
this functor by [·]n .

Example 2.15. Consider, once again, the situation of Examples 1.3–2.12. It was shown by Janelidze [20]
that the double central extensions (A S)S⊆2 with respect to Ab are precisely those double extensions
with the property that [K [a0], K [a1]] = 0 and [K [a0] ∩ K [a1], A2] = 0. It is easily verified by using
the properties of the commutator of groups that sending a double extension (A S )S to the double
extension (A′

S)S determined by putting

• A′
2 = A2/([K [a0], K [a1]][K [a0] ∩ K [a1], A2])

and

• A′
S = A S for all S � 2,

defines a reflector Ext2 A −→ C Ext2B A. Consequently, this reflector is ab2 and

[A]2 = [
K [a0], K [a1]

][
K [a0] ∩ K [a1], A2

]
.

One can find explicit formulae for all [·]n in this case, as well as in a few others, in [12]. For instance,
one obtains formally the same formulae for Lie algebra’s over a fixed commutative ring, where the Lie
bracket plays the role of commutator, or for precrossed modules, where the Peiffer commutator plays
this role.

3. Symmetry

In the previous sections, we defined notions of n-fold extension and n-fold central extension (for
n � 1), making use of the functor δn−1. This seems arbitrary, since there are clearly other ways of
considering an n-fold arrow as an arrow in Arrn−1 A. However, these alternative ways do not induce
any new notions, as we shall now see.

We continue to make the same assumptions on A, E and B and use the same notations as before.
For i � 0, let us denote by si the map N −→ N defined as follows:
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• si(k) = k if k < i,
• si(k) = k + 1 if k � i.

We have the following simple lemma.

Lemma 3.1. If i < j, then s j ◦ si = si ◦ s j−1 .

For a subset S ⊆ N, we shall write Si for the image si(S) of S by the map si . Then, for n � 1 and
0 � i < n, any n-fold arrow A induces an arrow of (n − 1)-fold arrows

δi A : (A Si∪{i})S⊆n−1 −→ (A Si )S⊆n−1.

By definition, A is an n-fold extension (resp. n-fold central extension) if δi A is in E n (resp. in
C ExtBn−1 Arrn−1 A), for i = n − 1. When n � 2, the former in its turn means that δ jδn−1 is a dou-
ble E n−2-extension for j = n − 2. The following theorems state that the same is true for any i and j.

Theorem 3.2. Suppose n � 2. For any 0 � i � n − 1 and 0 � j � n − 2 and any n-fold arrow A in A, the
following properties are equivalent:

1. A is an n-fold extension;
2. δi A ∈ E n−1;
3. δ jδi A is a double E n−2-extension.

Proof. To prove the equivalence of (1) and (2), we will show that δi A ∈ E n−1 if and only of δ j A ∈
E n−1 for any n � 1 and 0 � i < j � n −1 and any n-fold arrow A. We prove this property by induction
on n. If n = 1, there is nothing to prove. Suppose then that n � 2 and that the property holds for n−1.

Let 0 � i < j � n − 1 and let A be an n-fold arrow in A such that

δi A : (A Si∪{i})S −→ (A Si )S

is in E n−1. Then, in particular, both (A Si∪{i})S and (A Si )S are (n − 1)-extensions and by the induc-
tion hypothesis the middle and right hand vertical arrows in the following commutative diagram in
Arrn−2 A are elements of E n−2:

(K [δi A]S j−1∪{ j−1})S (A(S j−1∪{ j−1})i∪{i})S

(i)

(A(S j−1∪{ j−1})i )S

(K [δi A]S j−1)S (A(S j−1)i∪{i})S (A(S j−1)i )S .

Furthermore, since δi A is a regular epimorphism in Arrn−1 A, the upper and lower right hand hori-
zontal arrows are regular epimorphisms in Arrn−2 A, hence both rows are short exact sequences. Since
δi A is an element of E n−1, its kernel K [δi A] is an (n − 1)-extension. By the induction hypothesis, this
implies that the left hand vertical arrow is in E n−2, hence, by 1.1(4), the right hand square (i) is a
double E n−2-extension.

Let us have a look at another commutative diagram in Arrn−2 A:

(K [δ j A]Si∪{i})S (A(Si∪{i}) j∪{ j})S

(ii)

(A(Si∪{i}) j )S

(K [δ j A]Si )S (A(Si) j∪{ j})S (A(Si) j )S .
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By Lemma 3.1, the square (ii) is identical to the square (i) of the previous diagram, except that
the horizontal arrows now point downwards. In particular, (ii) is a double E n−2-extension. Since
both rows are short exact sequences, this implies that the left hand vertical arrow δi K [δ j(A)] is
in E n−2. By the induction hypothesis, this implies that K [δ j A] is an (n − 1)-extension, as well as the
middle arrow δi(A S j∪{ j})S . Applying 1.1(4) to the short exact sequence

K [δ j A] (A S j∪{ j})S (A S j )S ,

we find that δ j A ∈ E n−1.
Similarly, one proves that δ j A ∈ E n−1 implies δi A ∈ E n−1.
The equivalence of (2) and (3) for a certain n follows from the equivalence of (1) and (2) for n−1,

as one sees by applying properties 1.1(3) and 1.1(4) of the classes of extensions (E n−2)1 and E n−1 in a
similar fashion as above. Note that this latter equivalence holds also for n = 1, in which case it holds
trivially. �
Theorem 3.3. Suppose n � 1. For any 0 � i � n − 1 and any n-fold extension A in A, we have that

ιn−1[A]n,B = [δi A]1,Bn−1

and, consequently, that the following properties are equivalent:

1. A is an n-fold central extension (w.r.t. B);
2. δi A is a central extension (w.r.t. Bn−1 = C Extn−1

B A).

Proof. It suffices to prove the first claim. For this, we show that the following property holds: for
every n � 1 and 0 � i < j � n − 1, [δi A]1,Bn−1 = [δ j A]1,Bn−1 . Note that this is meaningful thanks to
Theorem 3.2. The proof is by induction on n. If n = 1, there is nothing to prove. Let us then suppose
that n � 2 and that the property holds for n−1. Let 0 � i < j � n−1. Consider, again, the squares (i)
and (ii) from Proposition 3.2. Recall that, by Lemma 3.1, (i) = (ii), except that the horizontal
arrows from (i) point downwards in (ii). By taking kernel pairs both horizontally and vertically,
we thus get the arrows δi R[δ j(A)] and δ j−1 R[δi A] which have the same kernel pair, by commutativity
of taking limits; we denote it by R ′ = (R ′

S )S :

(R ′
S )S (R[δi A]S j−1∪{ j−1})S

δ j−1 R[δi(A)]
(R[δA]S j−1)S

(R[δ j A]Si∪{i})S

δi R[δ j(A)]

(A(Si∪{i}) j∪{ j})S

(ii)

(A(Si∪{i}) j )S

(R[δ j A]Si )S (A(Si) j∪{ j})S (A(Si) j )S .

Consider the left hand upper square in the diagram above. By forgetting the second projections of the
kernel pairs and applying [·]n−2, we obtain the right hand lower square in the next diagram. Taking
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kernels horizontally and then vertically, we get an object K and a commutative diagram with short
exact rows and columns:

K [R[δ j A]]n−1 [(A S j∪{ j})S ]n−1

[R[δi A]]n−1 [(R ′
S )S ]n−2 [(R[δi A]S j−1∪{ j−1})S ]n−2

[(A Si∪{i})S ]n−1 [(R[δ j A]Si∪{i})S ]n−2 [(A(Si∪{i}) j∪{ j})S ]n−2.

Indeed, by the induction hypothesis, we have that

ιn−2[R[δ j A]]n−1,B = [
δi R[δ j A]]1,Bn−2

and

ιn−2[R[δi A]]n−1,B = [
δ j−1 R[δi A]]1,Bn−2

as well as

ιn−2[(A Si∪{i})S
]

n−1,B = [
δ j−1(A Si∪{i})S

]
1,Bn−2

and

ιn−2[(A S j∪{ j})S
]

n−1,B = [
δi(A S j∪{ j})S

]
1,Bn−2

.

It follows that

[δi A]1,Bn−1 = K = [δ j A]1,Bn−1 . �
4. Higher central extensions of extensions

We defined n-fold extensions and n-fold central extensions inductively, by considering n-fold ar-
rows A as arrows δi A between (n − 1)-fold extensions. Another useful technique is to consider n-fold
arrows as (n − 1)-fold arrows in Arr A, which allows one to compare n-fold extensions with (n − 1)-
fold extensions of extensions and n-fold central extensions with (n − 1)-fold central extensions of
extensions. These notions coincide, as we are now to show.

Suppose that n � 1. An n-fold arrow A in A induces, for every 0 � i � n − 1, the following (n − 1)-
fold arrow ρi A in Arr A:

(
aSi∪{i}

Si : A Si∪{i} −→ A Si

)
S⊆n−1.

This yields, for every i, a functor ρi : Arrn A −→ Arrn−1(Arr A), which has the following obvious prop-
erty.

Lemma 4.1. Arrn A ∼= Arrn−1(Arr A). An isomorphism is given by any of the functors ρi (0 � i � n − 1).
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Furthermore, by Lemma 3.1, we have the following commutativity of ρi ’s with δ j ’s. We denote by
(ρi,ρi) the functor Arr Arrn−1 A −→ Arr Arrn−2Arr A that sends an arrow A −→ B in Arrn−1 A to the
induced arrow ρi A −→ ρi B .

Lemma 4.2. Suppose n � 2 and 0 � i, j � n − 1. If i < j, then δ j−1 ◦ρi = (ρi,ρi) ◦ δ j . If i > j, then δ j ◦ρi =
(ρi−1,ρi−1) ◦ ρ j .

Using the above lemma’s and Theorem 3.2, we find:

Lemma 4.3. Suppose n � 1. For any 0 � i � n − 1, we have that ρi(E n) = (E 1)n−1 .

Finally, using the three lemma’s above and, once more, Theorem 3.2, we get the following charac-
terizations of higher extensions and higher central extensions.

Theorem 4.4. Suppose n � 1. For any 0 � i � n − 1 and any n-fold arrow A in A, the following properties are
equivalent:

1. A is an n-fold E -extension;
2. ρi A is an (n − 1)-fold E 1-extension.

Theorem 4.5. For any n � 1 and 0 � i � n − 1, and any n-fold arrow A, ι1[A]n = [ρi A]n−1 and the square

Extn A
In

ρi

Extn A

ρi

Extn−1(Arr A)
(I1)n−1

Extn−1(Arr A)

commutes. Consequently, the following properties are equivalent:

1. A is an n-fold central extension (w.r.t. B);
2. ρi A is an (n − 1)-fold central extension (w.r.t. B1).

5. The higher Hopf formulae

We chose in this article to take an axiomatic approach to defining higher extensions rather than
the explicit one from [12], in which was considered solely the leading example of higher E -extensions
where E consists of all regular epimorphisms of a particular semi-abelian category. A big advantage
of this approach is that it allows one to treat n-fold extensions as “simple” extensions (albeit in a
different semi-abelian category), which often makes life easier. Also, as we have shown in the previous
section, it gives one the possibility to consider n-fold extensions as (n − 1)-fold extensions (again in
a different category), which allows one to use simple inductive arguments in various situations. We
shall give in this section an important example of such a situation, and give a simple and direct proof
of the independency of the construction of the higher Hopf formulae from the particular choice of
“higher presentation.”
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Definition 5.1. Let E be a class of extensions in A. We say that an object P of A is E -projective if
for every arrow p : P −→ B in A and every extension f : A −→ B there exists at least one arrow
p′ : P −→ A such that f ◦ p′ = p:

P
p′

p

A
f

B.

If P is an E -projective object, then any extension p : P −→ A is called an E -projective presentation
of A. Furthermore, we say that A E has enough E -projective objects if there exists for every object
A ∈ E − at least one E -projective presentation p : P −→ A.

Usually, we shall say presentation rather than E -projective presentation, assuming that E is under-
stood. Similarly, we say projective object, rather than E -projective object.

In this section, we shall always assume that A is a semi-abelian category, E a class of extensions in
A, B a strongly E -Birkhoff subcategory of A and, furthermore, A E has enough E -projective objects.

Let p : P −→ A be a presentation of an object A of A E . We write Δp for the Hopf formula

[P ] ∩ K [p]
[p]1

.

We shall not prove here its invariance w.r.t. the presentation p of A, since the proof from [13] of
the case E = Reg A remains valid and does not take advantage of the axiomatic approach to exten-
sions taken in the present article. Rather we shall focus on the higher Hopf formulae, and show how
their invariance follows from that of the “classical” Hopf formula above. The invariance of the latter
explicitly means the following:

Proposition 5.2. Suppose A ∈ E − . Then Δp ∼= Δq for any two presentations p and q of A.

Example 5.3. In the situation of Examples 1.3–2.15, Δ is the classical Hopf formula for the second
homology of a group: for a presentation p : P −→ A of a group A, Δp = ([P , P ] ∩ K [p])/[K [p], P ].

The higher Hopf formulae are constructed via higher presentations, which we will now introduce.

Definition 5.4. Suppose A ∈ E − . Let n � 1. We call an n-fold extension P in A an E -projective n-fold
presentation or simply an n-fold presentation of the object A if P0 = A and, for every 0 = S ⊆ n, P S is
E -projective.

We shall also be considering E n-projective presentations P −→ A of an n-fold extension A. There-
fore, the following characterization of E n-projective objects will be useful. One easily proves this by
induction.

Lemma 5.5. The objects of Arrn A that are projective with respect to the class of extensions E n are precisely
those n-fold arrows P such that P S is E -projective for every S ⊆ n.

It is then easily shown, also by induction, that the following properties hold.

Lemma 5.6. Since AE has enough E -projective objects, Extn A has enough E n-projective objects.

Lemma 5.7. For every object A ∈ E − , there exists at least one n-fold presentation P of A.
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Let us now show that Proposition 5.2 induces the invariance also of the higher Hopf formulae. We use
the notation Δn P for the nth Hopf formula

[Pn] ∩ ⋂n−1
i=0 K [pi]

[P ]n

of an n-fold presentation P of an object A of A E .

Example 5.8. In the situation of Examples 1.3–5.3, Δn is Brown and Ellis’s Hopf formula for the
(n + 1)st homology of a group: for an n-fold presentation P of a group A,

Δn P = [Pn, Pn] ∩ ⋂n−1
i=0 K [pi]∏

S⊆n[⋂i∈S K [pi],⋂i /∈S K [pi]] .

Lemma 5.9. ι1Δn P = Δn−1(ρi P ) for any n � 2, 0 � i � n − 1, and any n-fold presentation of an object
A ∈ E − .

Proof. On the one hand, ι1[P ]n = [ρi P ]n−1, by Theorem 4.5. On the other hand, [Pn] ∩ K [pi] = [pi]1:
indeed, since both pn : Pn −→ Pn\i and the identity 1Pn\i : Pn\i −→ Pn\i are presentations of Pn\i (since
Pn\i is projective), we have, by Theorem 4.5, that

[Pn] ∩ K [pi]
[p1]1

= Δpi ∼= Δ1Pn\i = [Pn\i] ∩ K [1Pn\i ]
[1Pn\i ]

= 0. �

Theorem 5.10. Let A, E and B be as above, and A ∈ E − . Then Δn P ∼= Δn Q for any two n-fold presentations
P and Q of A.

Proof. The proof is by induction on n. Proposition 5.2 provides the case n = 1. The induction step
will follow from Lemma 5.9: indeed, let us suppose that n � 2 and that the theorem is valid for all
k < n, and for any A, E and B. Let A be an object of A E and P and Q be n-fold presentations
of A. Consider the induced (n − 1)-fold presentations ρ0 P and ρ1 Q and in particular the “presented
extensions” (ρ0 P )0 = p1

0 and (ρ1 Q )0 = q{1}
0 . Since AE has enough projectives, we can find a double

presentation of A of the form

R1
r

r′

P1

p1
0

Q {1}
q{1}

0

A.

Moreover, since Ext2 A has enough projectives as well, and by taking into account Theorem 4.4, we
can extend this double presentation to an n-fold presentation R of A, in such a way that r2

1 = r,

r2{1} = r′ , r1
0 = p1

0 and r{1}
0 = q{1}

0 . We have that (ρ0 P )0 = (ρ0 R)0 and (ρ1 Q )0 = (ρ1 R)0 hence, by the
induction hypothesis,

Δn−1(ρ0 P ) ∼= Δn−1(ρ0 R)

and

Δn−1(ρ1 Q ) ∼= Δn−1(ρ1 R).

Using Lemma 5.9, we find that Δn P ∼= Δn R ∼= Δn Q . �
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Remark 5.11. In [12] the invariance of the higher Hopf formulae was obtained indirectly, as a con-
sequence of the equivalence with Barr and Beck’s cotriple homology. In order for this equivalence to
hold, the existence of a “suitable” cotriple on the considered category A had to be assumed. This as-
sumption has disappeared here, but not entirely. It has been replaced by the weaker assumption that
A has enough projectives. Of course, if one wants to develop a homology theory based on the theory
of higher central extensions, using the higher Hopf formulae as definition, it does not make sense to
make any assumption on the existence of some cotriple. Therefore, a direct prove of the invariance
was necessary.

Remark 5.12. There is the following beautiful description of the Hopf formula which we learned from
Tim Van der Linden: Δp is the “difference” between the centralization and the trivialization of the
projective presentation p.

Indeed, the full subcategory T ExtB A of Ext A of trivial extensions (w.r.t. B) is reflective, the triv-
ialization T f = T B f of an extension f : A −→ B being the pullback η∗

B(I f ) of I f : I A −→ I B along
ηB : B −→ I B . Moreover, it is easily verified that ιΔp is the kernel of the factorization I1 p −→ T p,
which is a regular epimorphism by the strongly E -Birkhoff property of B.

Similarly, for 1 � i � n − 1, we have that ιnΔn P is the kernel of the factorization I1,Bn−1∂i P −→
T Bn−1∂i P . It follows that Tn P = T Bn−1∂i P is independent of the choice of i, so that the trivialization
Tn of n-fold presentations is well defined. Hence we may write that

ιn−1Δn P = K [In P −→ Tn P ],

for any n � 1 and any n-fold presentation P .
Let us also remark that, in general, T Bn−1∂i A does depend on the choice of i, when A is an arbitrary

n-fold extension. Therefore trivialization is not well defined for arbitrary n-fold extensions.
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