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ABSTRACT A cross-polarization (CP) 31P NMR broadline simulation methodology was developed for studying the effects of
drugs in phospholipids bilayers. Based on seven-parameter fittings, this methodology provided information concerning the
conformational changes and dynamics effects of losartan in the polar region of the dipalmitoylphosphatidylcholine bilayers.
The test molecule for this study was losartan, an antihypertensive drug known to exert its effect on AT1 transmembrane recep-
tors. The results were complemented and compared with those of differential scanning calorimetry, solid-state 13C NMR
spectroscopy, Raman spectroscopy, and electron spin resonance. More specifically, these physical chemical methodologies
indicated that the amphipathic losartan molecule interacts with the hydrophilic-head zone of the lipid bilayers. The CP 31P NMR
broadline simulations showed that the lipid molecules in the bilayers containing losartan displayed greater collective tilt compared
to the tilt displayed by the load-free bilayers, indicating improved packing. The Raman results displayed a decrease in the trans/
gauche ratio and increased intermolecular interactions of the acyl chains in the liquid crystalline phase. Additional evidence, sug-
gesting that losartan possibly anchors in the realm of the headgroup, was derived from upfield shift of the average chemical shift
siso of the 31P signal in the presence of losartan and from shift of the observed peak at 715 cm�1 attributed to C-N stretching in the
Raman spectra.
INTRODUCTION

Hypertension can create extensive medical challenges, and it

can cause an increased risk for dangerous medical conditions

such as heart disease leading to a heart attack. Although the

exact mechanism of the molecular basis of hypertension is

still unknown, it has been postulated that cell membranes

play an important role in its cause and progression. Our labo-

ratory has been involved in the exploration of the conforma-

tional properties of commercially available sartans and

synthetic derivatives in an attempt to elaborate on the role

of the conformation in the favor binding at the AT1 receptor

(1–6).

In the study presented here, a methodology of broadline

cross-polarization (CP) 31P NMR simulations has been

developed. A simplified dynamical model was used with

the studied dipalmitoyl phosphatidyl choline (DPPC) multi-

lamellar bilayers considered to be immobilized in the time-

scale of the NMR experiment, whereas the lipid molecules

were assumed to perform fast overall rotational diffusion

in both the liquid crystalline and in the more organized gel

phase. A detailed theory of the broadline CP 31P NMR simu-

lations of fully hydrated DPPC dispersions in the form of

lipid bilayers was published earlier (7). In this work, an auto-

mated fitting method using seven parameters was used to

enhance the performance of the CP 31P NMR spectral simu-

lations.
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In general, phosphatidyl choline bilayers exist in the gel

phase (Lb) at low temperatures and in the liquid crystalline

phase (La) at higher temperatures. The liquid crystalline

phase and the gel phase are known to exhibit long-range

orientation order, whereas the gel phase possesses, addition-

ally, long-range translational order. These properties are inti-

mately related to the concept of the packing quality of the

lipids in the bilayer. Overall uniaxial rotation, fluctuations,

or wobbling of the axis of rotation (8); internal rotations

(9); and lateral diffusion within the plane of the bilayer

(10,11) are motions of the lipid molecules subjected to

restrictions posed by the anisotropic environment of the

bilayer. The transition from gel to liquid crystalline is accom-

panied by several structural changes in the lipid molecules,

as well as by systematic alteration in the bilayer geometry.

The most prominent feature, however, is the trans/gauche
isomerization taking place in the acyl conformation. The

average number of gauche conformers indicates the effective

fluidity, which depends not only on the temperature, but also

on perturbations due to the presence of a drug molecule

intercalating between the lipids.

In our studies, DPPC bilayers were chosen as the model

membrane, because their mesomorphic changes occur in

a convenient temperature range and their physical and chem-

ical properties have been well studied (11,12). Losartan was

chosen as the test molecule (Fig. 1), because it is a well-

known bioactive molecule that produces beneficial effects

in the treatment of hypertension (13). Losartan is the first

marketed antihypertensive drug, designed to mimic the
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C-terminal segment of angiotensin II and to selectively

hinder its effect at the active site of the AT1 receptor (14).

Our laboratory has proposed a two-step mechanism in which

this antihypertensive AT1 antagonist is first incorporated into

the bilayer through the lipid-water interface and then later-

ally diffuses to reach the active site of the AT1 receptor (15).

The interactions of losartan with the DPPC membrane were

studied. The effects of losartan in lipid bilayers have been

studied previously by using differential scanning calorimetry

(DSC) and solid-state high-resolution 13C MAS NMR spec-

troscopy. The published results showed that losartan causes

lowering of the main phase transition temperature in the host-

ing fully hydrated DPPC bilayers in a concentration-depen-

dent manner and that, from molar ratio equal to 5% and

higher, it abolishes pretransition (16). 13C MAS NMR and

electron spin resonance data showed that losartan decreased

the chain mobility of DPPC bilayers in both the gel and the

liquid crystalline phases. Molecular modeling calculations,

in agreement with DSC, 13C MAS NMR, and electron spin

resonance data, suggested that the favorable location of losar-

tan was in the realm of the phosphate group (15,17). To gain

insight into the conformational changes and dynamic effects

that losartan induces on the lipid bilayers, static CP 31P as

well as Raman spectroscopy were applied in the temperature

range covering all mesomorphic states of lipid bilayers, in the

absence or presence of incorporated losartan. To our knowl-

edge, this is the first study of solid-state 31P NMR spectros-

copy with this aim. The results derived are in agreement

with those obtained by DSC, solid-state high-resolution 13C

NMR, and Raman spectroscopy. The comparison of the

results of the developed methodology with the results of

the above established methods in this field indicates that the

FIGURE 1 Molecular structure of losartan .
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new method can provide valuable information on issues

related to drug/cell membrane interactions.

METHODS

La-DPPC (99þ%) was purchased from Avanti Polar Lipids (Alabaster,

AL), and spectroscopic grade CHCl3 was obtained from Sigma Aldrich

(St. Louis, MO). Losartan was kindly donated by Merck (Whitehouse

Station, NJ).

Appropriate amounts of DPPC with or without losartan were dissolved in

spectroscopic grade chloroform. The solvent was then evaporated by passing

a stream of O2-free nitrogen over the solution at 50�C, and the residue was

placed in a vacuum (0.1 mm Hg) for 24 h. To obtain measurements, this dry

residue was dispersed in appropriate amounts of bidistilled water by vortex-

ing. The lipid content for the three samples used in the stationary 31P NMR

experiments was ~40 mg, and water was dispersed within it (50% w/w). The

DPPC/losartan bilayers contained a 20% mol ratio of drug. The DPPC bila-

yer’s 31P resonance was referenced to an H3PO4 85% chemical shift and also

compared with results stated in relevant literature (18).

Static 31P NMR, proton CP spectra were obtained on a Bruker (Karlsruhe,

Germany) MSL 400 NMR spectrometer operating at 161.977 MHz and

capable of high-power 1H-decoupling. Each spectrum was an accumulation

of 1000 scans. The standard pulse sequence of the Bruker software for the

CP experiment was used with the following acquisition parameters: recy-

cling delay 4 s, contact time 5 ms, acquisition time 1 ms, p/2 pulse for proton

7 ms. The contact time was chosen to give optimal spectra after testing at 1,

3, and 5 ms. The temperature range used in the experiments was 25–50�C.

The sample was revolved in a 4-mM rotor at a low frequency of 25 Hz.

Another portion of the prepared sample (~40 mg) was used for the Raman

spectroscopy experiments. The Raman spectra were obtained at 4 cm�1

resolution from 3500–400 cm�1 with interval 2 cm�1 using a Perkin-Elmer

(Shelton, CT) NIR FT-spectrometer (Spectrum GX II) equipped with

a charge-coupled device detector. The measurements were performed at

a temperature range of 27� 50�C. The laser power (a Nd:YAG at

1064 nm) was kept constant at 400 mW during the experiments. Fifteen

hundred scans were accumulated, and back-scattering light was collected.

All the simulations were obtained imposing Lorentzian spin packets, and

the experimental spectra were performed by automated fitting using the

downhill simplex algorithm. This version of the simplex optimization (19)

was implemented in this work after appropriate modifications of the original

Fortran code. In the presented fitting procedure, the residual sum of squares,

RSS¼Si (yi;experim� yi;comput)
2, was minimized by the downhill simplex to

a convergence criterion from 0.05 to 0.01. The indexed yi values represent

the normalized to the maximum intensity of the spectra at the point i.

RESULTS AND DISCUSSION

Spectral simulations of 31P NMR broadlines

The spectra simulated in this study were referred to fully

hydrated phospholipid bilayers of DPPC in the absence or

presence of incorporated losartan (7,20). The combination

of three effects—the uniaxial rotation of the lipid molecules

around the long axis, the restoring potential of the lamellar

structures of the bilayers by the field, and the differential

cross-polarization of the differently oriented spin packets—

gives simulated lines that are very similar to the experimental

broadlines, as the convergence criterion implies. The varia-

tion of spectra simulation parameters versus temperature is

shown in Tables 1 and 2 Temperature profiles of the drug-

free and losartan-loaded bilayers versus selective parameters

were plotted in the same diagram and compared with each
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TABLE 1 Spectral simulations parameters for CP 31P NMR spectra of the DPPC bilayers in the temperature range 25–50�C

T�C brd/ppm CS-tensor/ppm (a, b)o siso Ds/ppm eCPE wDR V0/K

25 6.61 (�94.21~, �33.22, 95.78) (22.66, 38.23) �10.55 55.70 0.642 24.64 1.24E-02

27 6.83 (�93.69, �33.69, 95.30) (26.44, 38.69) �10.69 55.17 0.702 29.20 2.74E-02

30 5.34 (�94.61, �34.62, 94.38) (24.48, 40.21) �11.61 47.26 0.867 19.09 2.67E-02

32 3.74 (�94.71, �34.71, 94.29) (25.67, 41.46) �11.71 42.12 0.864 20.53 1.12E-02

33 3.32 (�95.28, �35.28, 93.72) (25.64, 41.57) �12.28 41.60 0.912 16.31 1.13E-02

35 2.66 (�95.27, �35.27, 93.73) (22.71, 41.30) �12.27 41.34 1.034 9.32 2.39E-02

36 2.50 (�95.08, �35.08, 93.92) (24.59, 41.32) �12.08 42.21 1.047 15.82 2.12E-02

38 2.24 (�95.14, �35.14, 93.84) (28.64, 40.87) �12.15 41.55 1.104 3.82 3.62E-02

40 1.99 (�94.89, �34.89, 94.09) (24.11, 41.45) �11.90 41.36 1.062 2.17 3.59E-02

42 2.39 (�95.03, �35.03, 93.95) (14.80, 40.66) �12.03 41.12 1.077 2.78 4.39E-02

43 2.30 (�95.03, �35.03, 93.95) (12.85, 40.54) �12.03 41.10 1.070 4.39 4.75E-02

45 2.65 (�94.58, �34.58, 94.40) (15.89, 40.61) �11.59 41.75 1.112 10.11 4.40E-02

46 2.28 (�94.62, �34.62, 94.36) (13.93, 40.49) �11.62 41.65 1.061 10.24 4.60E-02

47 2.09 (�94.55, �34.55, 94.43) (9.537, 40.16) �11.56 42.11 1.061 11.22 4.74E-02

49 2.29 (�94.87, �34.87, 94.11) (8.152, 40.08) �11.88 42.24 1.129 12.16 2.95E-02

50 2.06 (�94.76, �34.76, 94.22) (4.338, 40.27) �11.76 40.74 1.070 11.51 4.39E-02
other. In these profiles, information regarding the dynamical

and indirectly conformational characteristics of the bilayers

alone or with incorporated losartan was extracted.

Chemical shielding tensor s

The effectively axial chemical shielding (CS) tensor compo-

nent szz
aniso is first computed by the relation,

saniso
zz ða; bÞ ¼

1

2

� �
szz � siso

� �
3cos2b� 1

�

þ
�

sxx � syy

�
cos2a sin2b

�
;

(1)

where the polar angles (a, b) determine the orientation of the

rotation axis in the CS tensor principal frame (7). This rela-

tion was obtained by keeping only the secular part of the

Zeeman interaction and considering only overall molecular

rotation (7). A more elaborate theory also involving internal

rotations was given by Kohler and Klein (9). The average

shift and the inhomogeneous broadening residual anisotropy

(21) of the 31P broadlines is determined by the components
sxx, syy, szz. The computation of these measurables can be

performed using Eq. 1.

Experimental results obtained at very low temperatures

(250 K and lower) have indicated that the rotational motion

of the lipid molecules around their long axis and/or internal

rotations cease (12) and that the configuration of the phos-

phate in phospholipids leads in general to a rhombic CS

tensor. At higher temperatures, the fast uniaxial rotation of

the lipid molecules around their long axis results in the

partial averaging of the CS tensor. This motion transforms

the rhombic CS tensor of the P-31 to an effectively axial

tensor with axis of highest symmetry, the axis of the rotation

(Fig. 2). By the same motion, this axis of symmetry is shared

also by an effectively axial dipolar interaction of the 31P

nucleus with the nearest protons. The direction of the rota-

tion axis inside the bilayer is considered to be arbitrary,

depending on the temperature and the presence of the drug.

The variable szz
aniso is further used for the construction of

the powder lineshape as if the chemical shielding tensor was

axial. Axial tensors give powder lineshapes characterized by
TABLE 2 Spectral simulations parameters for CP 31P NMR spectra of the DPPC/losartan bilayers in the temperature range 25–50�C

T�C brd/ppm CS-tensor/ppm (a, b)o siso Ds/ppm eCPE wDR V0/K

25 8.10 (�102.6, �43.55, 86.45) (41.37, 41.27) �19.91 52.99 0.68 34.10 2.95E-02

27 7.34 (�102.3, �43.22, 86.78) (44.45, 41.39) �19.57 54.56 0.64 35.87 3.03E-02

30 6.85 (�102.1, �43.04, 86.96) (42.20, 40.72) �19.40 55.85 0.57 38.00 3.03E-02

32 5.98 (�102.6, �43.53, 86.47) (39.83, 40.21) �19.89 56.47 0.43 31.96 2.88E-02

33 6.06 (�103.1, �44.02, 85.98) (37.35, 40.08) �20.37 55.46 0.38 30.05 2.35E-02

35 5.58 (�104.0, �44.94, 85.06) (17.42, 38.13) �21.27 54.44 0.26 17.61 1.20E-02

36 5.32 (�104.5, �45.52, 84.48) (17.38, 38.55) �21.85 52.09 0.28 14.06 1.30E-02

38 4.91 (�104.2, �45.21, 84.79) (17.55, 38.64) �21.55 52.09 0.31 13.53 1.22E-02

40 4.40 (�104.6, �45.54, 84.46) (19.55, 38.81) �21.88 52.01 0.27 12.76 1.03E-02

42 4.11 (�104.4, �45.36, 84.64) (17.68, 38.82) �21.69 51.28 0.41 11.02 1.25E-02

43 4.21 (�104.1, �45.07, 84.93) (16.79, 39.03) �21.42 49.99 0.50 17.48 1.25E-02

45 3.85 (�104.3, �45.34, 84.66) (17.64, 39.64) �21.67 47.41 0.60 18.55 2.27E-02

46 3.46 (�104.2, �45.20, 84.80) (16.04, 39.90) �21.55 45.62 0.61 16.81 2.08E-02

47 3.31 (�104.1, �45.08, 84.92) (16.14, 40.24) �21.43 44.03 0.62 14.11 2.01E-02

49 2.72 (�104.4, �45.35, 84.65) (16.52, 40.57) �21.69 42.62 0.66 14.50 2.43E-02

50 2.54 (�104.4, �45.36, 84.64) (9.950, 40.26) �21.70 42.18 0.52 15.17 2.64E-02
Biophysical Journal 96(6) 2227–2236
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two distinctively unequal discontinuities shown as uneven

peaks at the edges of the broadline, as was also demonstrated

by the experimental broadlines obtained in this work (Figs. 3

and 4).

In our study, an increase in the azimuthal angle a corre-

sponds to an increase of the inhomogeneous broadening

Ds ¼ 3 sz
anis/2. The opposite trend was observed for the

variation of the polar angle b, i.e., b and Ds are inversely

proportional. The above trends depend on the particular

values of the principal CS tensor components and their orien-

tation with respect to the long axis of the DPPC molecule

(Fig. 5).
The values, found in the literature, of s¼ (�81,�21, 108)

ppm for the components of the 31P CS tensor of general

rhombic symmetry were adopted as initial values in the

fitting procedure of the lineshape simulations in this study.

This tensor has been obtained experimentally at 163 K in

water dispersions of 50% DPPC: water by weight, with

85% orthophosphoric acid used as reference (12).

The average chemical shift of the broadline, expressed as

the trace siso¼ (s11þ s22þ s33)/3 of the CS tensor, was first

estimated. The value of the average chemical shift siso re-

mained practically constant around the value �11.9 ppm

for all the measurement temperatures of DPPC bilayers, dis-

playing only rather weak temperature dependence (Table 1).

FIGURE 2 Overall view of the entire model system revealing the basic

geometrical parameters such as the angle wDR between the director and

the rotation axis. (Lower panels) Impact of the dimensions of the headgroup

on the collective tilt and on the bilayer order: lower left, voluminous head-

group (e.g., phosphatidylcholine); lower right, small headgroup (e.g., phos-

phatidylethanolamine).
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When Losartan was added in the DPPC bilayers, the average

chemical shift siso of the 31P signal shifted upfield to an

average of �21.7 ppm (Tables 1 and 2). A plausible expla-

nation for this significant change is that the tetrazole moiety

of the drug is attached close to the choline group of the lipid

in the hydrophilic zone of the bilayer, in the direct area of the

lipid-water interface. Such an explanation is in agreement

with the reported molecular modeling data (15).

The orientation of the rotation axis, i.e., the molecular long

axis of the lipids specified by the azimuthal and the polar

angles (a, b) in the principal CS-tensor frame (Fig. 6), is

correlated with the orientation and the internal structure of

the headgroup. The initial values (a, b)¼ (20, 35) were

adopted from our earlier publication concerning the DPPC

FIGURE 3 Experimental and simulated spectra of DPPC bilayers in the

temperature range of 25–50�C.

FIGURE 4 Experimental and simulated spectra of losartan-loaded DPPC

bilayers in the temperature range of 25–50�C.
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bilayers with or without small peptides (7), and were further

fitted during the spectral simulations of the presented

systems. The main characteristic of the presented tempera-

ture profiles of DPPC bilayers is the significant change of

the azimuthal angle a ¼ 23� in the gel Lb phase to a ¼ 4�

in the liquid crystalline La phase (Fig. 6). This is an indica-

tion of the change of the conformation/orientation of the

headgroup accompanying the main phase transition. The

FIGURE 5 Structure of the phosphate fragment around the 31P atom

and the relative orientation of the rotation axis with respect to the principal

s-tensor frame of the phosphate fragment.

FIGURE 6 Temperature profile of the azimuthal angle a .
presence of losartan in DPPC bilayers causes a significant

disturbance of the headgroup orientation, which is seen in

the temperature profiles of Fig. 6 as a doubling of the

azimuthal angle a in the gel phase.

Importantly, the whole series of the temperature profiles of

siso were simulated with insignificant change to the three

elements of the CS tensor (Table 1). This reinforces the val-

idity of the presented theoretical model of the 31P-NMR

simulations, according to which the values of the compo-

nents of the CS tensor do not change significantly with the

temperature.

Intrinsic or homogeneous broadening
of spin packets

This is the broadening imposed on each one of the superim-

posed spin packets, to give the 31P broadline. The main cause

of the intrinsic broadening here is the dipolar 1H-31P interac-

tion of the phosphorous with the neighboring methylene

protons and also to a minor extend, the CS-tensor anisotropy.

The parameter that monitors the mobility of the individual

lipid molecules will be referred to as brd; greater broadening

indicates decreased mobility but is only weakly correlated

with the phase changes of the bilayers (7,20).

The brd (Fig. 7) decreases monotonically in a smooth

fashion with increased temperature, as the mobility of the

individual molecules increases. Thus, the modulation of the

dipole-dipole and the CS anisotropy, which are responsible

for the broadening of the spin-packet transitions, are almost

independent of the phase transition of the bilayers, at least

for the studied temperature range of 25–50�C (7,20).

Furthermore, it was concluded that the lipid molecules in

the losartan-loaded bilayers are less mobile than are those in

FIGURE 7 Temperature profiles of the homogeneous broadening param-

eter brd of the DPPC bilayers without and with losartan.
Biophysical Journal 96(6) 2227–2236



2232 Fotakis et al.
the losartan-free DPPC sample, because brd is greater in the

losartan-loaded bilayers over the entire temperature range.

Collective tilt angle wDR

The average orientation of the lipid molecules with respect to

the bilayer/membrane surface is specified by the angle wDR

between the director (D, the unit normal to the lamellae)

and the long axis of the phospholipid molecules (Fig. 2).

The angle wDR refers to the collective tilt of the lipids and

is related to the long-range orientational order of the bilayer.

In particular, greatest collective tilt wDR of the alkyl chain of

the phospholipids is connected with increased order of the

bilayer (22); thus, wDR is an appropriate parameter for the

determination of phase transitions.

In the temperature profiles of the angle wDR (Fig. 8), it is

shown that larger values of this angle occur in the gel phase,

whereas the smaller values of this angle occur at higher

temperatures. This is in agreement with the theoretical model

proposed in this work and indicates the improved long-range

orientational order of the lipids expected at lower tempera-

tures. In addition, the collective tilt increases with the inclu-

sion of losartan in the bilayers (10), and, therefore, it was

concluded that the drug improves the organization of the bila-

yers compared to their organization free of drug. This is attrib-

uted to the fact that insertion of the losartan molecules in the

hydrophilic headgroup zone increases the local volume of this

zone, leading to a greater tilt of the lipid molecules.

The phase-transition temperatures are identified in the

temperature profiles of the angle wDR at temperatures around

35�C and 43�C, where sudden changes of the slope of the

temperature profiles occur. The existence of three lamellar

phases for pure DPPC bilayers and for DPPC/losartan bila-

yers could be concluded (Fig. 8). In particular, the larger

FIGURE 8 Temperature profiles of the collective tilt angle wDR of the

DPPC bilayers without and with losartan.
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values of wDR are observed in the range of 25–35�C,

although the angle wDR never exceeded 45�. This tempera-

ture interval coincides with the gel phase of the bilayer.

From 35–43�C, the lowest values of wDR are observed and

the profile exhibits slight changes with increases tempera-

ture. This intermediate region appears to consist of lipids

perpendicular in average to the lamellar surface. From

43–50�C an increase of wDR is observed. This is opposite

to the expected decreasing order of the bilayers with

increasing temperature. A plausible explanation for this obser-

vation is that losartan as an amphiphilic drug is found to be

localized at the interface that covers polar region and upper

segment of the lipophilic region to maximize its amphipathic

interactions. Such a localization of the drug induces a local

curvature and opens the space between the adjacent alkyl

chains. This could allow the tails of the alkyl chains of the

next layer to entangle, introducing tail interdigitation. X ray

diffraction results in progress are compatible with such an

explanation. Such a tail interdigitation is expected to tighten

the packing of the alkyl chain by maximizing van der Waals

interactions (15,23–25).

Restoring potential: curvature V0/K

In this work, it is assumed that the external magnetic field

exerts a weak torque, represented by a parabolic potential

well with strength proportional to the curvature parameter

V0, measured in Kelvin. This torque tends to align the bilayer

surface along with it. This particular orientative tendency is

called negative ordering of the anisotropic magnetic suscep-

tibility of the DPPC molecules (26). The parabolic potential

possesses a single minimum at the angle of equilibrium wLD

between the direction of the magnetic field (laboratory, L)

and the local director (the normal to the lamellar surface)

(Fig. 2). The appropriate value of the angle wLD correspond-

ing to negative ordering in the present case is 90� (5) and has

been used by other investigators for producing aligned

lamellar samples of lipids (27).

Inhomogeneous broadening or residual
anisotropy Ds/ppm

The corresponding variable Ds ¼ 3 sz
anis/2 obtained by the

anisotropic part of the CS tensor, according to Eq. 1, deter-

mines the inhomogeneous broadening (residual anisotropy).

The total width of the experimental 31P NMR spectra is a result

of the anisotropic Zeeman interaction of the phosphorous

magnetic moment and the random orientation of the bilayers

in the sample. This variable is related to the internal structure

and the orientation of the hydrophilic headgroup and is

strongly phase dependent. In particular, Ds is related to the

collective properties of the membranes and depends on the

orientation of the rotation axis with respect to the principal

frame of the CS tensor (Fig. 5). Furthermore, because of the

large (algebraic) difference of the parallel s zz and the average

perpendicular component st ¼ (sxxþ syy)/2 of the CS
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tensor, the inhomogeneous broadening is much more sensi-

tive to the variation of the angle b.

In the temperature profile of Ds (Fig. 9), the existence of

sudden changes in the slopes around 33�C and 43�C suggest

that three phases occur. This is in agreement with the profile of

the azimuthal angle a in Fig. 5 and of the collective tilt in

Fig. 8. The presence of the drug makes the transitions less

steep in accordance with published DSC results (15). At

a temperature range of 25–30�C and 48–50�C, DPPC bilayers

with and without losartan show similar Ds values. Between

the temperature range of 35–45�C, significant deviations to

the Ds values between the two samples are observed. This

indicates a change in the internal structure and the orientation

of the hydrophilic headgroup in the DPPC bilayers.

The CP enhancement parameter eCPE

In the presented NMR broadline simulations, the effective

enhancement of the 31P signal was represented by a single

empirical parameter eCPE. The spin dynamics leading to

CP were not examined thoroughly, with the focus mostly

on the motional dynamics and the effects of the anisotropy

of the bilayer on the lineshape. The dipolar interaction of

the 31P nucleus coupled to the neighboring alkyl protons

results in CP enhancing of the phosphorous signal. The accu-

mulated effect of the four closest ethylene protons on the

phosphorous nucleus can be represented by an equivalent

overall axial dipolar tensor that enhances the phosphorous

signal. In fact, the highest symmetry axes of the dipolar

and the CS tensor must coincide, because they are both

axially averaged by the overall rotation of the lipids about

their long axes. The empirical parameter eCPE employed

in the presented simulation model thus determines the over-

all efficiency of the cross-polarization.

FIGURE 9 Temperature profiles of the inhomogeneous broadening

(residual anisotropy Ds) of the DPPC bilayers without and with losartan.
As is shown in Figs. 3 and 4, an increased value of eCPE

was observed with increasing temperature, rendering a more

pronounced dip of the broadline with center at the spin

packet corresponding to an angle of the lipid equal to the

magic angle of 54.74�.

Restrictions of the simulation parameters

The first restriction imposed by the theoretical model was

setting wLD, the angle between the static field and the

director, to 90�, which is valid for the particular samples of

the phospholipids. This was due to the negative ordering

of the lipid bilayers restricting the fluctuations of the lamellar

surface to occur around the direction of the field.

It is inferred that some of the fitted parameters in the simu-

lation model are mutually correlated. The most obvious

example is the ‘‘freedom’’ of using different components

(sxx, syy, szz) and orientation (a, b) of the rotation axis

with respect to the CS tensor, to fit the same isotropic chem-

ical shift siso and inhomogeneous broadening Ds. The latter

two independent experimental measurables, i.e., the average

position and the total width of the broadline, respectively,

become overdetermined. We resolved this problem by

applying external restrictions on the parameters from inde-

pendent methods other than 31P broadline NMR simulations

to determine unique values of the CS-tensor and (a, b).

The values of the CS tensor components’ (�81,�21, 108)

ppm taken from experiments on bilayers (12) were adopted

and varied simultaneously by ‘‘translation’’ of all the compo-

nent values by adding or subtracting the same overall chemi-

cal shift to each component while the anisotropy of the

original CS tensor was retained. An even more difficult

problem, however, was the choice of the initial orientation

(a, b) of the CS tensor, for which there were no reliable

data in the literature. The closest experimental reference

was a single-crystal study involving phosphoryl-ethanol-

amine by Kohler and Klein (28). Among the most important

results in that work is the determination of the orientation of

the CS-tensor in the frame of the tetrahedral PO4
3� moiety

(Fig. 5), revealing the dominant role of the diamagnetic

contribution to the P-nucleus chemical shift. The estimation

of the rotation axis (a, b) by Milburn and Jeffrey (29) using

the interpretation of T1 measurements was the same as our

estimation in our earlier work (20).

Comparative studies

Our results concerning drug/membrane interactions using

solid-state 31P NMR spectroscopy were compared with those

from other physical chemical techniques, such as DSC,
13C NMR, and Raman spectroscopy.

Differential scanning calorimetry

The phase-transition temperature of the DPPC bilayers with

and without incorporation of losartan using variable concen-

trations has been studied (15,17). From these studies, it was
Biophysical Journal 96(6) 2227–2236
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evident that the topography and the orientation of the drug

molecule in the bilayer is strongly related to changes in the

fluidity it causes.

In particular, DSC registered two endothermic phase tran-

sitions, the pretransition Lb0/Pb0 and the main transition

Pb0/La in the DPPC bilayers. Incorporation of losartan in

the bilayers for molar ratio equal to 5% or higher resulted

in the abolishment of the pretransition because of severe

perturbation at the hydrophilic-headgroup zone of the

DPPC bilayers. Moreover, the incorporation of losartan

resulted in lowering of the transition temperature Tm and an

increase in the enthalpy change DH (11), as well as in an

increase in the half-height width of the main transition peak.

The DSC results are in agreement with those of the pre-

sented 31P NMR study, which detected strong hydrophilic

interactions between losartan and the polar headgroup,

leading to a significant upfield average shift and increased

collective tilt by the incorporation of losartan.

13C NMR spectroscopy

The losartan-loaded DPPC bilayers with molar ratio equal to

20% have been studied using 13C CP MAS (15). Increasing

temperature resulted in increased mobility of the lipids

leading to narrowing of the strong structureless peak at

~30 ppm, which is attributed to the methylene (-CH2--)10

carbons. The presence of losartan caused decrease in the

mobility of the (�CH2�)10 carbons and especially the

terminal methyl group. Broadline 31P NMR simulations

results also agree with the above findings. The interpretation

of the brd profiles has led us to the conclusion that the

mobility of the lipid molecules is partially hindered by the

presence of losartan in the bilayers.

Raman spectroscopy

Valuable information concerning the intramolecular interac-

tions in the lipid molecules due to trans/gauche isomerism,

as well as the intermolecular acyl-chain interactions of the

lipids in the bilayers, can be retrieved through Raman spec-

troscopy. In particular, the relative intensity of certain peaks

(2880 cm�1, 2935 cm�1) depicts perturbations of the vibra-

tional modes of the C-H bond as evidence of changes in

the acyl chain, whereas the relative intensity of other peaks

(1090 cm�1, 1130 cm�1) is sensitive to intramolecular

changes along the acyl chain, leading to a trans/gauche
isomerization (30,31).

The Raman data acquired in this study were used to search

for phase transitions on the basis of the inter- and intramolec-

ular interactions. The temperature profile of the intensity ratio

1090:1130 cm�1 (Fig. 10 a) shows that the inclusion of losar-

tan in the bilayers hinders the lipid molecules from adopting

gauche conformation in the liquid crystalline La phase, indi-

cating greater order with respect to unloaded bilayers. The

profile of the intensity ratio 2935:2880 cm�1 (Fig. 10 b),

based on the effects of the intermolecular interactions on the
Biophysical Journal 96(6) 2227–2236
Raman spectra, depicts decreased mobility of the hydro-

phobic alkyl chain of the lipids with the inclusion of losartan,

compared to the mobility of the unloaded bilayers. The profile

of 2850:2880 cm�1 (Fig. 10 c) shows increased intermolec-

ular interactions in the liquid crystalline phase between the

acyl chains, interpreted as possible tail interdigitation

(32,33). In addition, it was shown that the peak resonated at

715 cm�1, attributed to C-N stretching, in unloaded DPPC

bilayers shifted from 2 to 8 cm�1 when losartan was incorpo-

rated in the experimental range of temperatures. This is

evidence of the strong electrostatic interactions between the

FIGURE 10 Experimental temperature profiles of Raman intensity ratios

(a) 1090:1130 cm�1, (b) 2935:880 cm�1, and (c) 2850:2880 cm�1 for

DPPC bilayers of the DPPC bilayers without and with losartan at a temper-

ature range of 27–50�C.
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negatively charged pharmcophore segment of tetrazole and

the positively charged choline group.

The above results are in agreement with the 31P NMR

data. In particular, a close correspondence was observed in

the abrupt change of the slope in the temperature profile of

the intensity ratio 1090:1130 cm�1 in the phase transition

region with the wDR and Ds profiles of the 31P NMR simu-

lation method.

CONCLUSIONS

The presented, newly developed, quantitative broadline

NMR spectral simulation methodology was applied on CP
31P NMR spectra of static samples of DPPC/H2O bilayers

with and without the antihypertensive drug losartan. The

simulations required fitting of several magnetic, dynamical,

and structural parameters.

Evaluation of the temperature profiles of three out of a total

of seven fitted parameters of the CP 31P NMR spectral simu-

lations, the homogeneous broadening brd, the collective tilt

wDR, and the residual anisotropy Ds gave significant infor-

mation concerning conformation and dynamics of the bila-

yers. The temperature profiles of the fitted parameters for

the two bilayer samples (drug-free DPPC or DPPC/losartan

bilayers) were directly compared with each other, and the

differences in the values of the parameters were related to

the physicochemical disturbances of the bilayers by the

losartan molecule. Two phase-transition temperatures were

observed to be the result of sudden changes in the slope of the

temperature profiles of mainly two parameters, the residual

anisotropy Ds and the collective tilt wDR.. The homogenous

broadening parameter brd reflecting the mobility of the indi-

vidual lipid molecules was far less sensitive to the phase of

the bilayer.

The application of the CP 31P NMR broadline simulations

suggested that losartan was localized in the zone of the

hydrophilic headgroup (34,35). Furthermore, losartan

decreased the mobility of the lipid molecules, particularly

the mobility of the alkyl chains, and increased the order of

the bilayer. The information derived from the presented

study is in agreement with the combined results obtained

with DSC, Raman, 13C-MAS, 31P CP/MAS NMR, and EPR,

all concluding that losartan anchors in the realm of the

headgroup region (34,35).
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