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In the paper, we investigate an eco-epidemic system with impulsive birth. The conditions
for the stability of infection-free periodic solution are given by applying Floquet theory
of linear periodic impulsive equation. And we give the conditions of persistence by
constructing a consequence of some abstract monotone iterative schemes. By using the
method of coincidence degree, a set of sufficient conditions are derived for the existence
of at least one strictly positive periodic solution. Finally, numerical simulation shows that
there exists a stable positive periodic solution with a maximum value no larger than a
given level. Thus, we can use the stability of the positive periodic solution and its period
to control insect pests at acceptably low levels.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical biology, namely predator–prey systems and models for transmissible diseases are major fields of study.
While a given species spreads a disease, susceptible become infectious by contact with infectious individuals. However, in
the natural world, species do not exist alone. The species also competes with the other species for food and space, or is
preyed on by other species. So diseases in ecological species cannot be ignored. Models that deal with disease in ecological
systems are known as eco-epidemiological systems. This model has been extensively studied by several researchers. For
instance, Hadeler and Freedman [1] were the first who described a predator–prey model where the prey was infected by a
parasite, and the prey in turn infected the predator with the parasite. They dealt with two different, though closely related
problems, persistence of a parasite in a given prey–predator system and parasite mediated coexistence of prey and predator.
Venturino [2] proposed a two-dimensional prey–predator model and studied how the presence of the disease among the
prey affected the behavior of the model. They concluded that under suitable assumptions the disease acts as a control for the
system. Chattopadhyay and Arino [3] proposed and analyzed three species eco-epidemiological system consisting of sound
prey, infected prey and the predator population. They showed under certain parametric conditions, the strictly positive
interior equilibrium entered into Hopf type bifurcation. And they concluded that there was a threshold level of infection
below which all three species studied would persist and above which the disease would be epidemic. Chattopadhyay and
Bairagi [4] proposed and analyzed a three-dimensional eco-epidemiological model consisting of susceptible fish population,
infected fish population and their predator the Pelican population. They assumed that the predator population only preyed
infected fish population. They studied the local stability, global stability and persistence of the system around the positive
interior equilibrium. They observed that if the level of the search rate of predator was low, the system around the positive
interior equilibrium was stable. But the instability seted in with the increase of search rate level of predator. The model of
Chattopadhyay and Arino [5] modifies the eco-epidemiological model proposed by Chattopadhyay and Bairagi in [4]. They

✩ This work is supported by the National Science Foundation of China (10471040) and the Youth Science Foundation of Shanxi Provence (20041004) as
well as Science and Technology Research Developmental item of Shanxi Province Education Department (20061025).

* Corresponding author.
E-mail addresses: kangaihua123@sohu.com (A. Kang), xyk5152@163.com, ykxue@nuc.edu.cn (Y. Xue).
0022-247X/$ – see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2008.04.043

https://core.ac.uk/display/82193399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:kangaihua123@sohu.com
mailto:xyk5152@163.com
mailto:ykxue@nuc.edu.cn
http://dx.doi.org/10.1016/j.jmaa.2008.04.043


784 A. Kang et al. / J. Math. Anal. Appl. 345 (2008) 783–795
assumed that Pelican population feeded on both susceptible and infected fish population. Feeding on infected fish enhanced
the death rate of Pelican and was considered to contribute negative growth where as feeding on susceptible fish enhanced
their growth rate and was considered to contribute positive growth. The main objective of this work is to find out the
conditions for which considered system will become eventually disease free. [6] modified the model of Chattopadhyay and
Arino [5] by considering standard incidence instead of horizontal incidence. The conditions under which the population
reaches the origin either by following the axis or in a spiral pattern were determined.

Keeping the above observations in mind, we consider a prey–predator model with the disease in the prey:

Assumption 1. In the absence of infection, the prey population grows according to a logistic fashion with carrying capacity
1

k1
, with an intrinsic birth rate constant r1 such that

Ṅ(t) = N[r1 − k1N].
And in the absence of the prey population, the predator also grows according to a logistic fashion with carrying capacity
1

k2
, with an intrinsic birth rate constant r2 such that

Ṗ (t) = P [r2 − k2 P ].

Assumption 2. In the presence of infection we assume that the total prey population N is divided into two classes, namely,
susceptible population, denoted by S , and infected population, denoted by I . Therefore, at any time t the total number of
prey population is

N(t) = S(t) + I(t).

Assumption 3. We assume that only susceptible prey population S , is capable of reproducing with logistic law and the
infective population, I , does not reproduce. However, the infective population, I , still contributes with S to population
growth towards the carrying capacity.

Assumption 4. The mode of disease transmission follows the simple law of mass action.

Assumption 5. The disease is only spread among the prey population and the disease is not genetically inherited. The
infected population does not recover or become immune.

Assumption 6. We assume that the predator population only preys on the infective population. Since infected preys are
weakened and become easier to catch.

From the above assumptions, we can write down the eco-epidemiological model as:⎧⎪⎨⎪⎩
Ṡ(t) = S

[
r1 − k1(S + I)

]− λS I,

İ(t) = λS I − cI P − δ I,

Ṗ (t) = P (r2 − k2 P ) + eI P .

(1.1)

where λ is the rate of transmission, δ is the death rate of the infection, the predator rate is cI P and the feeding efficiency
in turning predation into new predator is e

c and c > e.
The model (1.1) is considered the continuous birth. Whereas, many animals give birth only during a fixed period of a

year. For example, fox rabies is a highly virulent disease of the fox, and the fox gives birth once a year only in spring. For
having more accurate describing to the phenomenon, we need consider to use the impulsive birth instead of the continuous
birth. On the other hand, the research on theory and applications of impulsive differential equations have been many nice
works [7,8,11–13].⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = S
[−d1 − k1(S + I)

]− λS I

İ(t) = λS I − cI P − δ I

Ṗ (t) = P (−d2 − k2 P ) + eI P

⎫⎪⎪⎬⎪⎪⎭ t �= tk, k ∈ Z ,

S
(
t+
k

)= (1 + b1k)S
(
t−
k

)
I
(
t+
k

)= I
(
t−
k

)
P
(
t+
k

)= (1 + b2k)P
(
t−
k

)
⎫⎪⎬⎪⎭ t = tk, k ∈ Z .

(1.2)

where b1k , b2k represent growth of birth pulse for the susceptible prey S(t) and the predator P (t) at tk , respectively. And
we also assume that
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(i) there exists a positive integer q, such that tk+q = tk + T , bi(k+q) = bik > 0 (i = 1,2);
(ii) tk �= 0 for k = 1,2, . . . , and [0, T ] ∩ {tk} = {t1, t2, . . . , tq}.

The purpose of this paper is investigating the dynamics behavior of an eco-epidemic system with impulsive birth. The
paper is organized as follows: In Section 2, some notations are introduced and some results needed in later sections are
stated. In Section 3, we give the conditions for the existence of periodic infection-free solution. In Section 4, we also give
the conditions for persistence by constructing a consequence of some abstract monotone iterative schemes introduced.
In Section 5, the conditions for local stability of periodic infection-free solution are given by applying Floquet theory of
linear periodic impulsive equation. In Section 6, using the method of coincidence degree, some sufficient conditions for the
existence of at least one strictly positive periodic solution are derived. In the final discussion section, numerical experiments
were performed to observe the dynamics of the system (1.2).

2. Definitions and preliminary knowledge

Let J ⊂ R . Denote by PC( J , R) the set of function f : J → R which are continuous for t ∈ J , t �= tk , are continuous from
the left for t ∈ J and have discontinuities of the first kind at the points tk ∈ J . Denote by PC′( J , R) the set of functions
f : J → R with a derivative df

dt ∈ PC( J , R). Throughout this work we deal with the Banach spaces of T -periodic functions

PCT = { f ∈ PC
([0, T ], R

) ∣∣ f (0) = f (T )
} (

where ‖ f ‖PCT = sup
{∣∣ f (t)

∣∣: t ∈ [0, T ]}),
PC′

T = { f ∈ PC′([0, T ], R
) ∣∣ f (0) = f (T )

} (
where ‖ f ‖PC′

T
= max

{‖ f ‖PCT ,‖ ḟ ‖PC′
T

})
.

Lemma 1. Let the function ω ∈ PC′([0,∞), R) satisfies the inequalities⎧⎪⎨⎪⎩
ω̇(t) � f (t)ω(t) + g(t), t �= tk, t > 0,

ω
(
t+
k

)
� fkω(tk) + gk, t = tk > 0,

ω
(
0+)� ω0,

(2.1)

where f (t), g(t) ∈ PC([0,∞), R) and fk > 0, gk and ω0 are constants. Then for t > 0

ω(t) � ω(0)
∏

0<tk<t

fk exp

( t∫
0

f (s)ds

)
+

t∫
0

∏
s�tk<t

fk exp

( t∫
0

f (r)dr

)
g(s)ds +

∑
0<tk<t

∏
tk�t j<t

f j exp

( t∫
tk

f (s)ds

)
gk.

Analogously, we have

ω(t) � ω(0)
∏

0<tk<t

fk exp

( t∫
0

f (s)ds

)
+

t∫
0

∏
s�tk<t

fk exp

( t∫
0

f (r)dr

)
g(s)ds +

∑
0<tk<t

∏
tk�t j<t

f j exp

( t∫
tk

f (s)ds

)
gk

for all t > 0 if all the inequalities of (2.1) are inverse.

Definition 1. (See [10].) The set A is said to be quasiequicontinuous in [0, T ] if for any ε > 0, there exists δ > 0, such that if
x ∈ A, k ∈ Z+ , t1, t2 ∈ (tk−1, tk] ∩ [0, T ], and |t1 − t2| < δ, then∣∣x(t1) − x(t2)

∣∣< ε.

Lemma 2. (See [10].) The set A ⊂ PCT is relatively compact if and only if :

(1) A is bounded, that is, ‖ f ‖PCT = sup{| f (t)|: t ∈ J } � M for each x ∈ A and some M > 0;
(2) A is quasiequicontinuous in J .

3. Existence of the periodic infection-free solution

We first demonstrate the existence of an infection-free solution, in which infection individuals are entirely absent from
the population permanently, i.e. I(t) = 0, t � 0. Under this condition, the susceptible prey and the predator must satisfy:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Ṡ(t) = S(−d1 − k1 S)

Ṗ (t) = P (−d2 − k2 P )

}
t �= tk, k ∈ Z ,

S
(
t+
k

)= (1 + b1k)S
(
t−
k

)
P
(
t+
k

)= (1 + b2k)P
(
t−
k

) } t = tk, k ∈ Z .

(3.1)
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Theorem 3.1. Assume that

di <
1

T
ln

q∏
k=1

(1 + bik), i = 1,2.

Then (3.1) exists a positive periodic solution.

Proof. First, we consider the logistic equation with impulsive birth{
Ṡ(t) = S(t)

[−d1 − k1 S(t)
]
, t �= tk, k ∈ Z+,

S
(
t+
k

)= (1 + b1k)S
(
t−
k

)
, t = tk, k ∈ Z+.

(3.2)

For (3.2) we carry out the change of variable x = 1
S and obtain the linear non-homogeneous impulsive equation⎧⎨⎩

ẋ(t) = d1x(t) + k1, t �= tk, k ∈ Z+,

x
(
t+
k

)= 1

1 + b1k
x
(
t−
k

)
, t = tk, k ∈ Z+.

(3.3)

Let

W (t, s) =
∏

s�tk<t

1

1 + b1k
exp
[
d1(t − s)

]
(3.4)

be the Cauchy matrix for the respective homogeneous equation. Then

x(t) = W (t,0)x(0) +
t∫

0

k1W (t, s)ds

of a solution of (3.3). This solution is T -periodic if x(0) = x(T ), or if

(
1 − W (0, T )

)
x(0) =

0∫
T

k1W (T , s)ds. (3.5)

Since the multiplier W (T ,0) of the homogeneous equation⎧⎨⎩
ẋ(t) = d1x(t), t �= tk, k ∈ Z+,

x
(
t+
k

)= 1

1 + b1k
x
(
t−
k

)
, t = tk, k ∈ Z+,

is less than 1 because we have d1 < 1
T ln

∏q
k=1(1 + b1k), and

T∫
0

k1W (T , s)ds > 0,

Eq. (3.5) has a unique solution x(0). To the initial value x(0), so we obtained there corresponds the unique T -periodic
solution of (3.3) which in view of (3.4) is positive for each t ∈ R . Denote this solution by x(t). Then the function θ[−d1,k1] =
S(t) = 1

x(t) is the unique T -periodic solution of (3.2) which is also positive.
Similarly, we obtain{

Ṗ (t) = P (t)
[−d2 − k2 P (t)

]
, t �= tk, k ∈ Z+,

P
(
t+
k

)= (1 + b2k)P
(
t−
k

)
, t = tk, k ∈ Z+,

has a unique positive T -periodic solution θ[−d2,k2] = P (t) if and only if d2 < 1
T ln

∏q
k=1(1+b2k). This completes the proof. �

Given S0 ∈ R , we denote by Φ[−d1,k1](t, t+
0 , S0) the unique solution of Cauchy problem⎧⎪⎨⎪⎩

Ṡ(t) = −d1 S(t) − k1 S2(t), t � t0 (�= tk), k ∈ Z+,

S
(
t+
k

)= (1 + b1k)S, t = tk, k ∈ Z+,

S
(
t+)= S ,
0 0
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which is positive and globally defined for t � t0. Similarly, given P0 ∈ R , we denote by Φ[−d2,k2](t, t+
0 , P0) the unique solution

of Cauchy problem⎧⎪⎨⎪⎩
Ṗ (t) = −d2 P (t) − k2 P 2(t), t � t0 (�= tk), k ∈ Z+,

P
(
t+
k

)= (1 + b2k)P , t = tk, k ∈ Z+,

P
(
t+

0

)= P0,

which is positive and globally defined for t � t0.

The following result gives the global attractive character of θ[−di ,ki ] , i = 1,2.

Theorem 3.2. For any S0 > 0, P0 > 0 we have

lim
t→∞

∣∣Φ[−d1,k1]
(
t, t+

0 , S0
)− θ[−d1,k1]

∣∣= 0,

lim
t→∞

∣∣Φ[−d2,k2]
(
t, t+

0 , S0
)− θ[−d2,k2]

∣∣= 0

provided that di < 1
T ln

∏q
k=1(1 + bik), i = 1,2, for any k ∈ Z+ .

This is the direct result of Lemma 3.1 of [7].

Corollary 1. Let any positive real αi , βi (i = 1,2) be such that α1 � α2 and β1 � β2 . Then θ[α1,β1] � θ[α2,β2].

4. The monotone scheme

This section is devoted to describe monotone iterative technique which offers a constructive method yielding monotone
sequences that converge to solutions of system (1.2). Now we analyze the properties of the following monotone scheme:

I0 := 0, Sn := θ[−d1−(k1+λ)In−1,k1], Pn := θ[−d2+eIn−1, k2], In := θ[λSn−c Pn−δ,0], n � 1. (4.1)

Lemma 3. For each n � 1 the following inequalities hold:

S2 � · · · � S2n � S2n−1 � · · · � S1, I2 � · · · � I2n � I2n−1 � · · · � I1, P1 � · · · � P2n−1 � P2n � · · · � P2. (4.2)

Moreover, the limits

S := lim
n→∞ S2n � S := lim

n→∞ S2n−1, I := lim
n→∞ I2n � I := lim

n→∞ I2n−1, P := lim
n→∞ P2n−1 � P := lim

n→∞ P2n (4.3)

are well defined and (S, S, I, I, P , P ) is a component-wise nonnegative T -periodic solution of{
Ṡ(t) = S(t)

[−d1 − (k1 + λ)I
]− k1 S2,

S
(
t+
k

)= (1 + d1k)S
(
t−
k

)
,

{
Ṡ(t) = S(t)

[−d1 − (k1 + λ)I
]− k1 S2,

S
(
t+
k

)= (1 + d1k)S
(
t−
k

)
,{

İ(t) = I(t)[λS − c P − δ],
I
(
t+
k

)= P
(
t−
k

)
,

{
İ(t) = I(t)[λS − cp − δ],
I
(
t+
k

)= I
(
t−
k

)
,{

Ṗ (t) = P (t)[−d2 + eI] − k2 P 2,

P
(
t+
k

)= (1 + d2k)P
(
t−
k

)
,

{
Ṗ (t) = P (t)[−d2 + eI] − k2 P 2,

P
(
t+
k

)= (1 + d2k)P
(
t−
k

)
.

(4.4)

Proof. We shall argue by induction using Corollary 3.2. By definition of the θ ’s we have Sn � 0, In � 0, Pn � 0 for all n � 1.
Thus, it follows from Corollary 3.2 and monotonicity of function that θ[−d1,k1] � θ[−d1−(k1+λ)I1,k1] that is, S1 � S2. Similarly,
we have P1 � P2 and I1 � I2. Now, we suppose that (4.2) is satisfied for n ∈ {1, . . . ,k}, we can prove that

S2k � S2k+2 � S2k+1 � S2k−1, I2k � I2k+2 � I2k+1 � I2k−1, P2k−1 � P2k+1 � P2k+2 � P2k.

Since we are assuming that I2k−2 � I2k , it follow form (4.1) that S2k−1 � S2k+1 and P2k−1 � P2k+1. On the other hand, we
find from I2k+1 � I2k−1 that S2k+1 � S2k and P2k+1 � P2k . So, I2k+1 � I2k . Similarly, we have S2k+2 � S2k+1, P2k+2 � P2k+1.
This completes the proof of (4.2).

The fact that the limits in (4.3) are pointwise well defined follows from the monotonicity of the scheme. On the other
hand, it follows from the definition of the θ ’s that
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{
Ṡ2n(t) = S2n−1

[−d1 − (k1 + λ)I2n−2 − k1 S2n−1
]
,

S2n−1
(
t+
k

)= (1 + b1k)S2n−1
(
t−
k

)
,

{
Ṡ2n(t) = S2n

[−d1 − (k1 + λ)I2n−1 − k1 S2n
]
,

S2n
(
t+
k

)= (1 + b1k)S2n
(
t−
k

)
,{

İ2n−1(t) = I2n−1(t)[λS2n−1 − c P2n−1 − δ],
I2n−1

(
t+
k

)= I2n−1
(
t−
k

)
,

{
İ2n(t) = I2n(t)[λS2n − c P2n − δ],
I2n
(
t+
k

)= I2n
(
t−
k

)
,{

Ṗ2n−1(t) = P2n−1(t)[−d2 + eI2n−2] − k2 P 2
2n−1,

P2n−1
(
t+
k

)= (1 + d2k)P2n−1
(
t−
k

)
,

{
Ṗ2n(t) = P2n(t)[−d2 + eI2n−1] − k2 P 2

2n,

P2n
(
t+
k

)= (1 + d2k)P2n
(
t−
k

)
.

(4.5)

Thus, since the Sk ’s, the Ik ’s, the Pk ’s are uniformly bounded, we find from (4.5) that each of the sequences S2n−1, S2n ,
I2n−1, I2n , P2n−1, P2n is quasiequicontinuous. So, it follows from (4.2) and Lemma 2.2 that the limits in (4.3) are uniform;
that is, the convergence occurs in PCT . Now, passing to the limits as n → ∞ in (4.5), we find that the convergence actually
occurs in PCT and so (4.4) holds.

Now, given (S0, I0, P0) ∈ R3, we denote the unique positive solution of the Cauchy problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = S
[−d1 − k1(S + I)

]− λS I,

İ(t) = λS I − cI P − δ I,

Ṗ (t) = P (−d2 − k2 P ) + eI P ,

S
(
t+
k

)= (1 + b1k)S
(
t−
k

)
,

I
(
t+
k

)= I
(
t−
k

)
,

P
(
t+
k

)= (1 + b2k)P
(
t−
k

)
,

S
(
t+

0

)= S0, I
(
t+

0

)= I0, P
(
t+

0

)= P0

(4.6)

by (S(t; t0, S0, I0, P0), I(t; t0, S0, I0, P0), P (t; t0, S0, I0, P0)). �
Theorem 4.1. For any t0 ∈ R and (S0, I0, P0) ∈ R3+ the following estimates hold true:

lim
t→∞ sup

[
S(t; t0, S0, I0, P0) − S(t)

]
� 0 � lim

t→∞ inf
[

S(t; t0, S0, I0, P0) − S(t)
]
,

lim
t→∞ sup

[
I(t; t0, S0, I0, P0) − I(t)

]
� 0 � lim

t→∞ inf
[
I(t; t0, S0, I0, P0) − I(t)

]
,

lim
t→∞ sup

[
P (t; t0, S0, I0, P0) − P (t)

]
� 0 � lim

t→∞ inf
[

P (t; t0, S0, I0, P0) − P (t)
]
. (4.7)

Proof. To simplicity the notation we set(
S(t), I(t)

)
, P (t) := (S(t; t0, S0, I0, P0), I(t; t0, S0, I0, P0), P (t; t0, S0, I0, P0)

)
.

Consider the iterative scheme

i0 := 0, sn := Φ[−d1−(k1+λ)In−1,k1], pn := Φ[−d2+eIn−1,k2], in := Φ[λSn−c Pn−δ,0], n � 1. (4.8)

Arguing as in the proof Lemma 4.1, but this time applying Lemma 3.2 of [7], it can be easily seen that for any n � 1 we
have

s2 � · · · � s2n � S � s2n−1 � · · · � S1, i2 � · · · � i2n � I � i2n−1 � · · · � i1,

p1 � · · · � p2n−1 � P � p2n � · · · � p2. (4.9)

In particular, (S(t), I(t), P (t)) is well defined for any t � t0. Finally, an induction argument together with Lemma 3.2 and
Theorem 3.1 of [7] show that

lim
t→∞

∣∣sn(t) − Sn(t)
∣∣= lim

t→∞
∣∣in(t) − In(t)

∣∣= lim
t→∞

∣∣pn(t) − Pn(t)
∣∣= 0, n � 1.

This identity together with the uniformly in the convergence of (4.3) complete the proof. �
5. Local stability of the periodic infection-free solution

In the section, we characterize whether the periodic infection-free solution is local stable. To prove the result we shall use
the following characterization of the linear stability of the semi-trivial state by using Floquet theory of linear homogeneous
periodic impulsive equation (see [10]).
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Theorem 5.1. If

di <
1

T
ln

q∏
k=1

(1 + bik), i = 1,2,

and

λk2

c

[
−d1 + 1

T
ln

q∏
k=1

(1 + b1k)

]
< k1

[
−d2 + 1

T
ln

q∏
k=1

(1 + b2k)

]
+ k1k2δ

c
,

then the periodic infection-free solution of system (1.2) is local stable, otherwise it is unstable.

Proof. The stability of a T -periodic solution (̃S,0, P̃ ) of (1.2) may be determined by considering the behavior of small-
amplitude perturbations of the solution.

Define (S(t), I(t), P (t)) = (̃S + x(t), y(t), P̃ + z(t)), there may be written in matrix form as:( x(t)
y(t)
z(t)

)
= Φ(t)

( x(0)

y(0)

z(0)

)
,

where Φ(t) satisfies

dΦ(t)

dt
=
(−d1 − 2k1 S̃ −(k1 + λ)̃S 0

0 λ S̃ − c P̃ − δ 0
0 c P̃ −d2 − 2k2 P̃

)
Φ(t),

with Φ(0) = I , the identity matrix. The resetting impulsive condition of (1.2) becomes⎛⎜⎝ x(t+
k )

y(t+
k )

z(t+
k )

⎞⎟⎠(1 + b1k 0 0
0 1 0
0 0 1 + b2k

)⎛⎜⎝ x(t−
k )

y(t−
k )

z(t−
k )r

⎞⎟⎠ .

Hence, the stability of the solution is determined by the eigenvalues of

M =
(1 + b1k 0 0

0 1 0
0 0 1 + b2k

)
Φ(T )

if all eigenvalues have absolute value less than 1, the solution is stable, which

μ1 =
q∏

k=1

exp

T∫
0

(−d1 − 2k1 S̃)ds =
q∏

k=1

exp

[ T∫
0

(−d1 − k1 S̃)ds −
T∫

0

k1 S̃ ds

]
= exp

[
d1T − ln

q∏
k=1

(1 + b1k)

]
,

μ2 = exp

{
λ

k1

[ q∏
k=1

(1 + b1k) − d1T

]
− c

k2

[ q∏
k=1

(1 + b2k) − d2T

]
− δT

}
,

μ3 = exp

[
d2T − ln

q∏
k=1

(1 + b2k)

]
.

μ1 < 1 if d1 < 1
T ln

∏q
k=1(1 + b1k) and μ3 < 1 if d2 < 1

T ln
∏q

k=1(1 + b2k), and μ2 < 1 if λk2
c [−d1 + 1

T ln
∏q

k=1(1 + b1k)] <

k1[−d2 + 1
T ln

∏q
k=1(1 + b2k)] + k1k2δ

c . So, (̃S,0, P̃ ) is locally stable. The proof is completed. �
Definition 2. It is said that (1.2) is persistence if there exist positive numbers 0 < ρ < � such that any component-wise
positive solution of (1.2) satisfies

ρ � lim inf
t→∞ S(t) � lim sup

t→∞
S(t) � �, ρ � lim inf

t→∞ I(t) � lim sup
t→∞

I(t) � �, ρ � lim inf
t→∞ P (t) � lim sup

t→∞
P (t) � �.

The next result gives some sufficient conditions for persistence.
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Theorem 5.2. If

di <
1

T
ln

q∏
k=1

(1 + bik), i = 1,2,

1

T
ln

q∏
k=1

(1 + b1k) − d1 >
1

T

T∫
0

(k1 + λ)θ[λθ[−d1,k1]−cθ[−d2,k2]−δ,0], (5.1)

then (1.2) is persistence.

Proof. Let Sn , In , Pn , n � 1, denote the sequences given by the scheme (4.1). Since di < 1
T ln

∏q
k=1(1 + bik), i = 1,2, we have

S1 > 0, P1 > 0, and the sequence In is positive if I(0) > 0. Moreover, condition (5.1) implies that S2 > 0. Now, Theorem 4.1
completes the proof. �
6. Existence of the positive T -periodic solution

In this section, we study the existence of strictly positive periodic solution of (1.2). For the reader’s convenience, we shall
first summarize below a few concepts and results from Mawhin [9] that will be used in this section.

Let X , Z be real Banach spaces, L : Dom L ⊂ X → Z be a linear mapping, N : X → Z be a continuous mapping. The
mapping L will be called a Fredholm mapping of index zero if dim Ker L = codim Im L < +∞ and Im L is closed in Z . If L
is a Fredholm mapping of index zero there exist continuous projectors P : X → X and Q : Z → Z such that Im P = Ker L,
Im L = Ker Q = Im(I − Q ). It follows that L|Dom L∩Ker P : (I − P )X → Im L is invertible. We denote the inverse of that map
by K P . If Ω is an open bounded subset of X , the mapping N will be called L-compact on Ω̄ if Q N(Ω̄) is bounded and
K P (I − Q )N : Ω̄ → X is compact. Since Im Q is isomorphic to Ker L, there exist isomorphisms J : Im Q → Ker L.

Lemma 4. (See [9].) Let L be a Fredholm mapping of index zero and let N be L-compact on Ω̄ . Suppose

(i) Lx �= λNx, for each λ ∈ (0,1), x ∈ ∂Ω ∩ dom L.
(ii) For each x ∈ Ker L ∩ ∂Ω , Q Nx �= 0, and deg{ J Q N,Ω ∩ Ker L,0} �= 0.

Then the equation Lx = Nx has at least one solution lying in Dom L ∩ Ω̄ .

Theorem 6.1. If

di <
1

T
ln

q∏
k=1

(1 + bik), i = 1,2,

and

λk2

c

[
−d1 + 1

T
ln

q∏
k=1

(1 + b1k)

]
> k1

[
−d2 + 1

T
ln

q∏
k=1

(1 + b2k)

]
+ k1k2δ

c
,

then the system (1.2) has at least one T -periodic positive solution.

Proof. Making the changes of variable

S(t) = exp
(
x1(t)

)
, I(t) = exp

(
x2(t)

)
, P (t) = exp

(
y(t)

)
,

then system (1.2) is reformulated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −d1 − k1
(
ex1(t) + ex2(t)

)− λex2(t) � F (t)

ẋ2(t) = λex2(t) − ce y(t) − δ � G(t)

ẏ(t) = −d2 − k2e y(t) + eex2(t) � H(t)

⎫⎪⎬⎪⎭ t �= tk, k ∈ Z ,

x1
(
t+
k

)− x1
(
t−
k

)= ln(1 + b1k)

x2
(
t+
k

)− x2
(
t−
k

)= 0

y
(
t+
k

)− y
(
t−
k

)= ln(1 + b2k)

⎫⎪⎬⎪⎭ t = tk, k ∈ Z .

(6.1)

Let Dom L = PC′
T × PC′

T × PC′
T and

L : Dom L → Z , with

( x1
x2
y

)
→
⎛⎝( ẋ1

ẋ2
ẏ

)
,

{(
Δx1(tk)

Δx2(tk)

Δy(t )

)}q
⎞⎠ ,
k k=1
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and let N : PC′
T × PC′

T × PC′
T → Z with

N

⎛⎝ x1
x2
y

⎞⎠=
⎛⎝⎛⎝ F (t)

G(t)
H(t)

⎞⎠ ,

⎧⎨⎩
⎛⎝ ln(1 + b1k)

0
ln(1 + b2k)

⎞⎠⎫⎬⎭
q

k=1

⎞⎠ .

Obviously,

Ker L =
⎧⎨⎩
⎛⎝ x1

x2
y

⎞⎠ :

⎛⎝ x1
x2
y

⎞⎠=
⎛⎝ c1

c2
c3

⎞⎠ ∈ R3, t ∈ [0, T ],
⎫⎬⎭

and

Im L =

⎧⎪⎪⎨⎪⎪⎩Z =
⎛⎝⎛⎝ f

g
h

⎞⎠ ,

⎧⎨⎩
⎛⎝ ak

bk
ck

⎞⎠⎫⎬⎭
q

k=1

⎞⎠ ∈ Z :

⎛⎜⎜⎝
∫ T

0 f (t)dt +∑q
k=1 ak = 0∫ T

0 g(t)dt +∑q
k=1 bk = 0∫ T

0 h(t)dt +∑q
k=1 ck = 0

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ ,

and dim Ker L = 3 = codim Im L.
So, Im L is closed in Z , L is a Fredholm mapping of index zero. Define

P

⎛⎝ x1
x2
y

⎞⎠= 1

T

⎛⎜⎜⎝
∫ T

0 x1 +∑q
k=1 ak∫ T

0 x2 +∑q
k=1 bk∫ T

0 y +∑q
k=1 ck

⎞⎟⎟⎠ ,

Q Z = Q

⎛⎝⎛⎝ f
g
h

⎞⎠ ,

⎧⎨⎩
⎛⎝ ak

bk
ck

⎞⎠⎫⎬⎭
q

k=1

⎞⎠=

⎛⎜⎜⎝ 1

T

⎛⎜⎜⎝
∫ T

0 x1(t)dt +∑q
k=1 ak∫ T

0 x2(t)dt +∑q
k=1 bk∫ T

0 y(t)dt +∑q
k=1 ck

⎞⎟⎟⎠ ,

⎧⎨⎩
⎛⎝ 0

0
0

⎞⎠⎫⎬⎭
q

k=1

⎞⎟⎟⎠ .

It is easy to show that P and Q are continuous projectors satisfying

Im P = Ker Q , Ker Q = Im L = Im(I − Q ).

Furthermore, through an easy computation, we can find that the inverse (L) K P : Im L → Ker P ∩ Dom L of L P has the form

K P Z =
⎛⎜⎝
∫ T

0 f +∑k>tk
ak − 1

T

∫ T
0

∫ t
0 f (s)ds dt −∑q

k=1 ak + 1
T

∑q
k=1 aktk∫ T

0 g +∑k>tk
bk − 1

T

∫ T
0

∫ t
0 g(s)ds dt −∑q

k=1 bk + 1
T

∑q
k=1 bktk∫ T

0 h +∑k>tk
ck − 1

T

∫ T
0

∫ t
0 h(s)ds dt −∑q

k=1 ck + 1
T

∑q
k=1 cktk

⎞⎟⎠ .

Thus

Q N

( x1
x2
y

)
=
⎛⎜⎝
⎛⎜⎝

1
T

∫ T
0 F (t)dt + 1

T

∑q
k=1 ln(1 + b1k)

1
T

∫ T
0 G(t)dt

1
T

∫ T
0 H(t)dt + 1

T

∑q
k=1 ln(1 + b2k)

⎞⎟⎠ ,

{(0
0
0

)}q

k=1

⎞⎟⎠ ,

K P (I − Q )N

( x1
x2
y

)
=
⎛⎜⎝
∫ t

0 F (s)ds +∑t>tk
ln(1 + b1k)∫ t

0 G(s)ds∫ t
0 H(s)ds +∑t>tk

ln(1 + b2k)

⎞⎟⎠−
⎛⎜⎝

1
T

∫ T
0

∫ t
0 F (s)ds dt +∑q

k=1 ln(1 + b1k)

1
T

∫ T
0

∫ t
0 G(s)ds dt

1
T

∫ T
0

∫ t
0 H(s)ds dt +∑q

k=1 ln(1 + b2k)

⎞⎟⎠

−
⎛⎜⎝ ( t

T − 1
2 ){∫ T

0 F (s)ds +∑q
k=1 ln(1 + b1k)}

( t
T − 1

2 )
∫ T

0 G(s)ds

( t
T − 1

2 )
∫ T

0 H(s)ds +∑q
k=1 ln(1 + b2k)

⎞⎟⎠ .

Clearly, Q N and K P (I − Q )N are continuous. Using Lemma 2.2 and Arela–Ascoli theorem, it is not difficult to show
that K P (I − Q )N(Ω̄) is relatively compact for any open bounded set Ω ⊂ X . Therefore, N is L-compact on Ω̄ for any open
bounded set Ω ⊂ X .

Now we reach the position to search for an appropriate open, bounded subset Ω for the application of Lemma 6.1.
Corresponding to the operator equation LU = βNU , β ∈ (0,1), U = (u1, u2, v)�, we have
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′
1(t) = β

[−d1 − k1
(
eu1(t) + eu2(t))− λeu2(t)]

u′
2(t) = β

[
λeu1(t) − cev(t) − δ

]
v ′(t) = β

[−d2 − k2ev(t) + eeu2(t)]
⎫⎪⎬⎪⎭ t �= tk, k ∈ Z ,

Δu1(t) = β ln(1 + b1k)

Δu2(t) = 0
Δv(t) = β ln(1 + b2k)

⎫⎬⎭ t = tk, k ∈ Z .

(6.2)

Suppose that U = (u1, u2, v)� is a T -periodic solution of system (6.2) for some β ∈ (0,1). In what follows Mi denotes a
fixed constant independent of β .

Integrating (6.2) over the interval [0, T ], we obtain

T∫
0

[
d1 + k1

(
eu1(t) + eu2(t))+ λeu2(t)]dt =

q∑
k=1

ln(1 + b1k), (6.3)

T∫
0

[
λeu1(t) − cev(t) − δ

]
dt = 0, (6.4)

T∫
0

[
d2 + k2ev(t) − eeu2(t)]dt =

q∑
k=1

ln(1 + b2k). (6.5)

It follows from (6.3), (6.4) and (6.6) that ‖eu1‖PCT + ‖eu2‖PCT � M1 and ‖ev‖PCT � M2. Combing the bound with (6.2) one
obtains the bound ‖u̇1‖PC′

T
+ ‖u̇2‖PC′

T
+ ‖v̇‖PC′

T
� M3.

Since U = (u1, u2, v) ∈ PC′
T × PC′

T × PC′
T , there exist ξ1, η1, ζ1 in [0, T ] such that

u1(ξ1) = min
t∈[0,T ] u1(t), u2(η1) = min

t∈[0,T ] u2(t), v(ζ1) = min
t∈[0,T ] v(t). (6.6)

From (6.3) and (6.6), we see that u1(ξ1) � M4, u2(η1) � M5, v(ζ1) � M6.
So, we have u1(t) � u1(ξ1)+‖u̇1‖PC′

T
� M3 +M4 � H1, u2(t) � u2(η1)+‖u̇2‖PC′

T
� M5 +M3 � H2, v(t) � v(ζ1)+‖v̇‖PC′

T
�

M3 + M6 � H3.
On the other hand, there exist ξ2, η2, ζ2 in [0, T ], such that

u1(ξ2) = max
t∈[0,T ] u1(t), u2(η2) = max

t∈[0,T ] u2(t), v(ζ2) = max
t∈[0,T ] v(t).

In the above formula, if ξ2, η2, ζ2 are not impulsive points, we have u1(ξ
+
2 ) = u1(ξ2), u2(η

+
2 ) = u2(η2), v(ζ+

2 ) = v(ζ2); if
some of ξ2, η2, ζ2 are impulsive points, with loss of generality, let ξ2 = tk , we have u1(ξ

+
2 ) = u1(t

+
k ).

From (6.4) that

1

T

T∫
0

ev(t) = λ

c

1

T

T∫
0

eu1(t) − δ

c
. (6.7)

Substitute (6.7) into (6.5) that

λk2

c

1

T

T∫
0

eu1(t) − 1

T

T∫
0

eeu2(t) − k2δ

c
dt = −d2 + 1

T

q∑
k=1

ln(1 + b2k). (6.8)

Combing (6.3) and (6.8), we have

e

[
−d1 + 1

T
ln

q∏
k=1

(1 + b1k)

]
+ (k1 + λ)

[
−d2 + 1

T
ln

q∏
k=1

(1 + b2k)

]
+ k2δ

c
(k1 + λ) =

[
ek1 + (k1 + λ)

λk2

c

]
1

T

T∫
0

eu1(t) dt.

According to the conditions of Theorem 6.1, the first term in the inequality is positive. Therefore, we can find a positive
constant M7 such that u1(ξ2) � M7.

Similarly, we can obtain that

λk2

c

[
−d1 + 1

T
ln

q∏
k=1

(1 + b1k)

]
− k2

[
−d2 + 1

T
ln

q∏
k=1

(1 + b2k)

]
− k1k2δ

c
=
(

λk2

c
+ ek1

)
1

T

T∫
0

eu2(t),

that is u2(η2) � M8.
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(a) (b)

(c)

Fig. 1. (a)–(c) show the time series and the orbits of the system (1.2) with the parameters satisfying the conditions of Theorem 5.1.

From (6.7), we have v(ζ2) � M9.
Finally, u1(t) � u1(ξ2) + ‖u̇1‖PC′

T
� M7 − M3 � W1, u2(t) � u2(η1) + ‖u̇2‖PC′

T
� M8 − M3 � W2, v(t) � v(ζ2) + ‖v̇‖PC′

T
�

M9 − M3 � W3.

Let

sup
t∈[0,T ]

∣∣u1(t)
∣∣� max

{|H1|, |W1|
}= B1,

sup
t∈[0,T ]

∣∣u2(t)
∣∣� max

{|H2|, |W2|
}= B2,

sup
t∈[0,T ]

∣∣v(t)
∣∣� max

{|H3|, |W3|
}= B3.

Clearly⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1
(
eu1(t) + eu2(t))+ λeu2(t) = −d1 + 1

T
ln

q∏
k=1

(1 + b1k),

λeu2(t) − cev(t) − δ = 0,

k2ev(t) − eeu2(t) = −d2 + 1

T
ln

q∏
(1 + b2k).

(6.9)
k=1
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(a) (b)

(c)

Fig. 2. (a)–(c) show the time series and the orbits of the system (1.2) with the parameters satisfying the conditions of Theorem 6.1.

By the assumption in Theorem 6.1, it is not difficult to show that the system (6.9) has a unique positive periodic solution
(u∗

1, u∗
2, v∗)� .

Set Ω = {U = (u1, u2, v) ∈ PC′
T × PC′

T × PC′
T : ‖U‖ � B} where B = B1 + B2 + B3 + C and C is taken sufficiently large such

that the unique solution of (6.2) satisfies ‖(u∗
1, u∗

2, v∗)�‖ < C .
It is clear that Ω verifies the requirement (i) in Lemma 6.1. When U ∈ ∂Ω ∩ Ker L = ∂Ω ∩ R3, U is a constant vector in

R3 with ‖U‖ = B .
Then

Q NU =
⎛⎝⎛⎝−k1(eu1(t) − eu2(t)) − λeu2(t) − d1 + 1

T ln
∏q

k=1(1 + b1k)

λeu2(t) − cev(t) − δ

−k2ev(t) + eeu2(t) − d2 + 1
T ln

∏q
k=1(1 + b2k)

⎞⎠ ,

{(0
0
0

)}q

k=1

⎞⎠ .

Let J : Im Q → Ker L, (r,0) → r,

J Q NU =
⎛⎝−k1(eu1(t) − eu2(t)) − λeu2(t) − d1 + 1

T ln
∏q

k=1(1 + b1k)

λeu2(t) − cev(t) − δ

−k2ev(t) + eeu2(t) − d2 + 1
T ln

∏q
k=1(1 + b2k)

⎞⎠ .

And by the assumption in Theorem 6.1, we have

deg
(

J Q NU ,Ω ∩ Ker L, (0,0,0)
)= sign

[
(−1)k1k2λ

]
eu∗

1(t)+u∗
2(t)+v∗(t) = −1 �= 0.

By now we have proved that Ω verifies all the requirements in Lemma 6.1. Hence, the system (1.2) has at least one
T -periodic solution in Ω̄ . �
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7. Discussion

In the paper, an eco-epidemiological system with the disease in the prey and impulsive birth are investigated. Applying
the Floquet theory and small perturbation skills, we proved that the infection-free periodic solution is locally asymptotically
stable when the impulsive period is less than the critical value. And using monotone iterative method, the conditions for
persistence are given in Section 5. We use the method of coincidence degree to show the existence of at least one T -periodic
positive solution.

By considering some hypothetical set of parametric values and the initial values (20,15,25), the following interesting
dynamic behavior of the system (1.2) was observed.

Let λ = 0.5, d1 = 0.03, d2 = 0.2, k1 = 0.8, k2 = 0.4, δ = 0.15, c = 0.6, e = 0.4 and choose b1k , b2k as impulsive birth
variables. If we choose b11 = 0.9, b21 = 0.8, T = 0.5, then 1

T ln(1 + b11) ≈ 1.284 > 0.03, 1
T ln(1 + b21) ≈ 1.756 > 0.2, so

the conditions of Theorem 5.1 are satisfied. From Fig. 1, we may observe the system (1.2) has an asymptotically stable
infection-free periodic solution which the infective population becomes extinct.

Let λ = 0.5, d1 = 0.03, d2 = 0.2, k1 = 0.1, k2 = 0.5, δ = 0.15, c = 0.4, e = 0.2 and choose b1k , b2k as impulsive birth
variables. If we choose b11 = 0.9, b21 = 0.8, T = 0.5, then 1

T ln(1 + b11) ≈ 1.284 > 0.03, 1
T ln(1 + b21) ≈ 1.756 > 0.2, and

λk2
c [−d1 + 1

T ln(1 + b11)] ≈ 0.784 > k1[−d2 + 1
T ln(1 + b21)] + k1k2δ

c ≈ 0.116, so the conditions of Theorem 6.1 are satisfied.
From Fig. 2, we may observe the dynamic behavior of the system (1.2).

Comparing system (1.1) and system (1.2), we can conclude that these systems have the same result. The system (2.1)
possesses two equilibria, E4 = (S4,0, P4) and E∗ = (S∗, I∗, P∗). If λr1k2 < ck1r2 + k1k2δ, E4 is globally stable; if λr1k2 >

ck1r2 +k1k2δ, E∗ is globally stable. The system (1.2) exists a local stable periodic infection-free solution when the conditions
of Theorem 5.1 is right. When the stability of the periodic infection-free solution is lost, we can show that the system (1.2)
is permanent and there exists at least one T -periodic positive solution if the conditions of Theorem 6.1 is right. Therefore,
in order to drive the infected prey to extinction, we can make the impulsive period of birth smaller.

But the uniqueness and global stability of positive T -periodic solution of system (1.2) would be great interest. We leave
the problem for the future work.
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