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1. The well-known Gronwall-Bellman inequality has been employed 
extensively in a variety of problems in the study of ordinary differential 
equations. This inequality has been generalized and extended in various 

contexts, in particular to vector forms by Opial [5] and others. While 
considering these inequalities, the central problem is always to estimate a 
function satisfying a differential inequality by the maximal and minimal 
solutions of a related differential system. It was proved by Kamke [4] that 
in case of non-uniqueness of solutions, extremal solutions do exist under 
certain monotonicity conditions. Burton and Whyburn [2], and more recently 
Ziebur [7], have proved the existence of these extremal solutions even under 
the more general mixed monotonicity conditions. 

In this paper we show that in all these problems, the existence of extremal 
solutions is a consequence of a lattice fixed-point theorem-a technique 

employed by Hanson and Waltman [3] in the context of another problem. 

The lattice fixed-point theorem proves not only the existence of a solution 
but also the existence of extremal solutions at once, and is thus ideally suited 
for applications to problems of this kind. 

In Section 2, we give Theorem (2.2) which is a generalization of that used 

in [3] and in Sections 3 and 4, we will apply this theorem to the problems 
considered in [2,4, 5, 71. We believe that this gives a unified approach 

to several problems and furthermore has the advantages of brevity and 
elegance. 

2. Let X be any nonempty set and L be a lattice with a partial order a. 
Suppose that G and H are given functions X x L -+ L and .F C Lx. Consider 
the functional equation 

$4 = ff(x, G(x, ~11, (2.1) 
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where x E X, x E %. % is partially ordered by the usual “pointwise” order; 
that is, z1 LY za iff zl(x) 01 aa for all x E X. We can now state the following 
theorem. 

THEOREM 2.2. If 

(i) % is a complete lattice, 

(ii) x1 01 z2 implies H(x, G(x, zl)) 01 H(x, G(x, zz)), then (2.1) has a 
largest solution and a least solution in %. 

Since the operator T : % -+ % defined by (Tz)(x) = H(x, G(x, z)) is 
isotone by virtue of hypothesis (ii), the fixed points of T form a nonempty 
complete lattice by a well-known theorem of Tarski [7, p. 2861. Hence, 
there exist a largest and a smallest fixed point of T, which proves the Theorem. 

3. We shall now take up a problem considered in [2]. Consider 
a system 

Y’ = f (x9 YIP Y@o) = % (3.1) 

where y, f E R” and the function f is defined and continuous on the hyper- 
rectangle 

P:Ix-xx,I <a, I/Y - 71 II G by a > 0, b > 0. 

Let,for(x,y)EP,Ifi(x,y)j <Mi,i=l,2 ,..., nandM=(M,,MS ,..., Mm). 
Define c = min[a, (b/2/1 M II)]. Supp ose that the subscripts p and q range 
over the integers 1 to K and K + 1 to n respectively, where 0 < k < n. 
Assume further that f (x, y) satisfies the following mixed monotonicity 
conditions : 

(i) fD(x, y) is nondecreasing in ys and nonincreasing in yp . 
(ii) fg(x, y) is nonincreasing in ys and nondecreasing in ya . (3.2) 

We note in passing that the conditions (3.2) are slightly more general than 
the conditions (7rL) in [2], in that we are replacing strict increasing (decreasing) 
by nondecreasing (nonincreasing). 

To apply Theorem (2.2) to this problem, let Li denote the lattice of real 
numbers equipped with order CQ , where 

< ai= ” 
1 

1 <i<K 
> I, /z+l <i<n; 

and L = (L, oz) be the product lattice of Li , i = 1 to n. Let 

x = 1% , %I + c> and G(x, 4 = f (x, 4 
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where z : X -L. Observe that f  : X x L --f L and the conditions (3.2) 
can now be stated briefly as: zi 01 za impliesf(x, z,) ~lf(x, za); and Theorem 3 
of [2] can be stated as follows: 

THEOREM 3.3. If  x1 01 z2 implies f(x, zl) ~lf(x, zJ, then the system (3.1) 

has a unique maximal and a unique minimal solutions in [x,, , x0 + c). 

Proof. Let us take 

fftx, G(x, 4) = rl + jz .k 44) ds. Gl (3.4) 

Using the triangle inequalities on (3.4) and the boundedness off, we can find 
an Q EL such that -Q 01 H (Y 52. We now take 9 to be the class of all functions 
g : X ---f L which are bounded by -a and Q and such that each component 
of g is Lebesgue-integrable on X. 

It is now easy to show that the hypotheses of Theorem (2.2) are satisfied. 
The function H is clearly isotone. To show that S is a complete lattice, let 
Pi(x) be the class of Lebesgue-integrable functions X + L, . This is a 

Dedekind-complete lattice [l, p. 3611 and hence so is the Cartesian product 
ny=, Pi(x). F, being the lattice interval [-Q, Q] in the product, is a complete 
lattice. Theorem (2.2) now guarantees a solution for (3.1) and in fact, a 
largest solution and a smallest solution. These are precisely the solutions 
referred to as K max(n - k) min and Iz min(n - k) max solutions respectively 

in [2]. 
I f  in conditions (3.2), we interchange the words “nonincreasing” and 

“nondecreasing,” we can still prove the existence of the extremal solutions 
under these new conditions. All we do in the foregoing proof is to replace L 
by its dual lattice. The altered conditions correspond to (v~*) in [2]. 

Finally, we observe that, for k = n and k = 0, conditions (3.2) 
reduce to: f(~, y) is nondecreasing in y. Further, the K max(n - k) min and 

K min(n - k) max solutions reduce respectively to the maximal and minimal 
solutions. Thus the problem considered in [4] becomes a special case. 

4. We shall now write a variation of Theorem (3.3) and point out 
some special cases. 

THEOREM 4.1. Assume the hypotheses of Theorem (3.3) hold. 

(i) I f  there exists a 4 E F such that 

+cx> a ? + j* fb +@I) ds, Z” 
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then there exists a unique largest solution U(x) of (3.1) such that 

d(x) flz 44, x E [x0 , x0 + C)’ 

(ii) If there exists a $ E F such that 

rl + j:"fh W) ds a! K-4, 

then there exists a unique smallest solution u(x) of (3.1) such that 

44 a 4(x), x~[xo,xo+~). 

Proof. The proof of Theorem (3.3) still goes thru if, instead of the lattice 
interval [-Q, Q], we consider the intervals [$, Q] and [--fin, I/J]. 

For k = n and k = 0, the Theorem (4.1) clearly reduces to that of 
Opial [5]. 

We shall also show that, as a special case of Theorem (4.1), we can easily 

obtain the following result of Ziebur [7]. I f  

W(t) = 7 + jt f (s, +W) ds 
0 

then the operator equation 

x(t) = PZx(t) (4.2) 

has extremal solutions, where the vector-valued function f (t, u) is continuous 
and either nondecreasing or nonincreasing in u. The equation (4.2) is 
equivalent to a 2n-vector system 

x’(t) = f (t, YW 
r’(t) = f (t, 4th W),YPN = h 71, (4.3) 

where y(t) = Px(t). 
Hence, (4.3) can be considered as system (3.1) with 2n replacing n and n 

replacing k. Now, if f (t, U) is increasing in u then clearly (3.1) reduces to 
Kamke’s case. If, on the other hand, f (x, u) is decreasing in u, then we may 
consider f in the first equation of (4.3) as nondecreasing in components 
of x and nonincreasing in components of y; and similarly in the second 
equation, f may be considered nonincreasing in x and nondecreasing in y. 
It is clear that, the conditions (3.2) are satisfied and Theorem 2 of [7] is a 
special case of Theorem (4.1). 

An alternative, and a simpler, viewpoint is to observe that if an operator T 
is isotone or antiisotone, T2 is isotone. Hence Theorem (3.3) now applies 
directly with P2 replacing T. 
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