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Abstract

In 1941 D.H. Hyers solved the well-known Ulam stability problem for linear mappings.
In 1951 D.G. Bourgin was the second author to treat the Ulam problem for additive
mappings. In 1982–1998 we established the Hyers–Ulam stability for the Ulam problem
of linear and nonlinear mappings. In 1983 F. Skof was the first author to solve the Ulam
problem for additive mappings on a restricted domain. In 1998 S.M. Jung investigated the
Hyers–Ulam stability of additive and quadratic mappings on restricted domains. In this
paper we improve the bounds and thus the results obtained by S.M. Jung, in 1998. Besides
we establish the Ulam stability of mixed type mappings on restricted domains. Finally,
we apply our recent results to the asymptotic behavior of functional equations of different
types.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

In 1940 and in 1968 Ulam [23] proposed thegeneral Ulam stability problem:
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“When is it true that by slightly changing the hypotheses of a theorem one can
still assert that the thesis of the theorem remains true or approximately true?”

In 1941 Hyers [13] solved this problem for linear mappings. In 1951 Bourgin [3]
was the second author to treat the Ulam problem for additive mappings. In 1978,
according to Gruber [12], this kind of stability problems is of particular interest
in probability theory and in the case of functional equations of different types. In
1978 Rassias [21] employed Hyers’ ideas to new linear mappings. In 1980 and in
1987, Fenyö [7,8] established the stability of the Ulam problem for quadratic and
other mappings. In 1987 Gajda and Ger [10] showed that one can get analogous
stability results for subadditive multifunctions. Other interesting stability results
have been achieved also by the following authors: Aczél [1], Borelli and Forti [2,
9], Cholewa [4], Czerwik [5], Drljevíc [6], and Kannappan [15]. In 1982–1998 we
[16–20] solved the above Ulam problem for different mappings. In 1999 Gavruta
[11] answered a question of ours [18] concerning the stability of the Cauchy
equation. In 1983 Skof [22] was the first author to solve the Ulam problem for
additive mappings on a restricted domain. In 1998 Jung [14] investigated the
Hyers–Ulam stability for additive and quadratic mappings on restricted domains.
In this paper we improve the bounds and thus the stability results obtained by
Jung, in 1998. Besides we establish the Ulam stability for more general equations
of two types on a restricted domain. Finally we apply our recent results to the
asymptotic behavior of functional equations of different types.

Throughout this paper, letX be a real normed space andY be a real Banach
space in the case of functional inequalities, as well as letX andY be real linear
spaces for functional equations.

Definition 1. A mappingf :X → Y is calledadditive(respectively,quadratic) if
f satisfies the equation

f (x1 + x2)= f (x1)+ f (x2) (1)

(respectively,f (x1 + x2)+ f (x1 − x2)= 2f (x1)+ 2f (x2)) for all x1, x2 ∈X.

Theorem 1. Let δ � 0 be fixed. If a mappingf :X → Y satisfies the quadratic
inequality∥∥f (x1 + x2)+ f (x1 − x2)− 2f (x1)− 2f (x2)

∥∥� δ (2)

for all x1, x2 ∈X, then there exists a unique quadratic mappingQ :X → Y such
that‖f (x)−Q(x)‖ � δ/2 for all x ∈X.

Definition 2. A mappingf :X → Y is calledapproximately odd(respectively,
even) if f satisfies∥∥f (x)+ f (−x)

∥∥� θ (3)

(respectively,‖f (x)− f (−x)‖ � θ ) for some fixedθ � 0 and for allx ∈X.
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Definition 3. A mappingM :X → Y is calledadditive(respectively,quadratic)
in X if M satisfies the functional equation of two types

M

(
3∑

i=1

xi

)
+

3∑
i=1

M(xi)=
∑

1�i<j�3

M(xi + xj ) (4)

for all xi ∈ X (i = 1,2,3). We note that all the real mappingsM :R → R of the
two types:M(x) = ax or M(x) = βx2 satisfy (4) for allx ∈ R and all arbitrary
but fixeda,β ∈ R.

We note that the mappingM :X → Y may be calledmixed typeas it is either
additive or quadratic. The same terminology occurs to the mappingsM satisfying
the following Eq. (25).

2. Stability of the quadratic equation (1) on a restricted domain

Theorem 2. Let d > 0 and δ � 0 be fixed. If a mappingf :X → Y satisfies the
quadratic inequality(2) for all x1, x2 ∈X, with ‖x1‖+‖x2‖ � d , then there exists
a unique quadratic mappingQ :X → Y such that

∥∥f (x)−Q(x)
∥∥� 5

2
δ (5)

for all x ∈X.

Proof. Assume‖x1‖ + ‖x2‖ < d . If x1 = x2 = 0, then we choose at ∈ X with
‖t‖ = d . Otherwise, let

t =
(

1+ d

‖x1‖
)
x1, if ‖x1‖ � ‖x2‖;

t =
(

1+ d

‖x2‖
)
x2, if ‖x1‖ � ‖x2‖.

We note that:‖t‖ = ‖x1‖ + d > d , if ‖x1‖ � ‖x2‖; ‖t‖ = ‖x2‖ + d > d , if
‖x1‖ � ‖x2‖. Clearly, we see

‖x1 − t‖ + ‖x2 + t‖ � 2‖t‖ − (‖x1‖ + ‖x2‖
)
� d,

‖x1 − x2‖ + ‖2t‖ � ‖x1 − x2‖ + 2d � d,

‖x1 + t‖ + ‖−x2 + t‖ � d,

‖x1‖ + ‖t‖ � d, ‖t‖ + ‖x2‖ � d, ‖t‖ + ‖t‖ � d. (6)

These inequalities (6) come from the corresponding substitutions attached
between the right-hand sided parentheses of the following functional identity.
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Besides from (2) withx1 = x2 = 0 we get that‖f (0)‖ � δ/2. Therefore from
(2), (6), and the newfunctional identity

2
[
f (x1 + x2)+ f (x1 − x2)− 2f (x1)− 2f (x2)− f (0)

]
= [

f (x1 + x2)+ f (x1 − x2 − 2t)− 2f (x1 − t)− 2f (x2 + t)
]

(with x1 − t onx1 andx2 + t onx2)

− [
f (x1 − x2 − 2t)+ f (x1 − x2 + 2t)− 2f (x1 − x2)− 2f (2t)

]
(with x1 − x2 onx1 and 2t onx2)

+ [
f (x1 − x2 + 2t)+ f (x1 + x2)− 2f (x1 + t)− 2f (−x2 + t)

]
(with x1 + t onx1 and−x2 + t onx2)

+ 2
[
f (x1 + t)+ f (x1 − t)− 2f (x1)− 2f (t)

]
(with x1 onx1 andt onx2)

+ 2
[
f (t + x2)+ f (t − x2)− 2f (t)− 2f (x2)

]
(with t onx1 andx2 onx2)

− 2
[
f (2t)+ f (0)− 2f (t)− 2f (t)

]
(with t onx1 andt onx2),

we get

2
∥∥f (x1 + x2)+ f (x1 − x2)− 2f (x1)− 2f (x2)− f (0)

∥∥
� δ + δ + δ + 2δ + 2δ+ 2δ = 9δ,

or ∥∥f (x1 + x2)+ f (x1 − x2)− 2f (x1)− 2f (x2)
∥∥� 9

2
δ + ∥∥f (0)∥∥� 5δ.

(7)

Applying now Theorem 1 and the above inequality (7), one gets that there
exists a unique quadratic mappingQ :X → Y that satisfies the quadratic equation
(1) and the inequality (5), such thatQ(x)= limn→∞ 2−2nf (2nx), completing the
proof of Theorem 2. ✷

Obviously our inequalities (5) and (7) are sharper than the corresponding
inequalities of Jung [14], where the right-hand sides were equal to(7/2)δ and
7δ, respectively.

We note that if we defineS2 = {(x1, x2) ∈ X2: ‖xi‖ < d, i = 1,2} for some
d > 0, then{(x1, x2) ∈X2: ‖x1‖ + ‖x2‖ � 2d} ⊂X2\S2.

Corollary 1. If we assume that a mappingf :X → Y satisfies the quadratic
inequality(2) for some fixedδ � 0 and for all (x1, x2) ∈X2\S2, then there exists
a unique quadratic mappingQ :X → Y satisfying(5) for all x ∈X.
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Corollary 2. A mappingf :X → Y is quadratic if and only if the asymptotic
condition∥∥f (x1 + x2)+ f (x1 − x2)− 2f (x1)− 2f (x2)

∥∥→ 0,

as‖x1‖ + ‖x2‖ → ∞
holds.

Proof. Following the corresponding techniques of the proof of Jung [14], in 1998,
one gets from Theorem 2 and the above asymptotic condition thatf is quadratic.
The reverse assertion is obvious.✷

However, in 1983 Skof [22] proved an asymptotic property of the additive
mappings.

3. Stability of Eq. (4) of two types

In 1998 Jung [14] applied the induction principle and proved the following
Lemma 1.

Lemma 1. Assume that a mappingf :X → Y satisfies the inequality∥∥∥∥∥f
(

3∑
i=1

xi

)
− f (x1 + x2)− f (x1 + x3)− f (x2 + x3)+

3∑
i=1

f (xi)

∥∥∥∥∥� δ

(8)

for some fixedδ � 0 and for allxi ∈X (i = 1,2,3). It then holds that∥∥∥∥f (x)− 2n + 1

22n+1
f (2nx)+ 2n − 1

22n+1
f (−2nx)

∥∥∥∥
� 3δ

n∑
i=1

2−i (= 3δ(1− 2−n)
)
, (9)

for all x ∈X andn ∈N = {1,2, . . .}.

In this paper,without the induction principle, we prove the above-mentioned
Lemma 1.

Proof. Let us denote

ai = 2i + 1

22i+1 , Ai(x)= 3f (2i−1x)+ f (−2i−1x)− f (2ix),

bi = −2i − 1

22i+1 , Bi(x)= 3f (−2i−1x)+ f (2i−1x)− f (−2ix),
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Ti(x)= aif (2ix)+ bif (−2ix), Sn(x)= T0(x)− Tn(x),

such thatT0(x)= f (x), for all x ∈X, i ∈Nn = {1,2, . . . , n}, andn ∈N .
We note that

ai−1 = 3ai + bi, bi−1 = ai + 3bi

hold for anyi ∈Nn = {1,2, . . . , n}, n ∈N .
From these identities we get that

Ti−1(x)− Ti(x)= ai−1f (2i−1x)+ bi−1f (−2i−1x)− Ti(x)

= (3ai + bi)f (2i−1x)+ (ai + 3bi)f (−2i−1x)− aif (2ix)− bif (−2ix)

= ai
[
3f (2i−1x)+ f (−2i−1x)− f (2ix)

]
+ bi

[
3f (−2i−1x)+ f (2i−1x)− f (−2ix)

]
,

or the formula

Ti−1(x)− Ti(x)= aiAi(x)+ biBi(x) (10)

holds for anyi ∈Nn = {1,2, . . . , n}, n ∈N .
We note that

Sn(x)= T0(x)− Tn(x)=
n∑
i=1

[
Ti−1(x)− Ti(x)

]
.

Therefore from this formula and (10) one obtains the new formula

Sn(x)=
n∑
i=1

[
aiAi(x)+ biBi(x)

]
. (11)

Replacingxi = 0 (i = 1,2,3) in (8) one gets∥∥f (0)∥∥� δ. (12)

Settingx1 = x, x2 = x, x3 = −x in (8) we find from (12) that∥∥3f (x)+ f (−x)− f (2x)− 2f (0)
∥∥� δ

or ∥∥3f (x)+ f (−x)− f (2x)
∥∥� 3δ (13)

holds for allx ∈X.
Substituting−x for x in (13), one obtains∥∥3f (−x)+ f (x)− f (−2x)

∥∥� 3δ. (14)

Placing 2i−1x onx in (13) and (14) we get∥∥Ai(x)
∥∥� 3δ and

∥∥Bi(x)
∥∥� 3δ (15)

for all i ∈Nn, n ∈N .
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Thus from the formula (11), the inequalities (15), and the triangle inequality
we prove

∥∥Sn(x)∥∥�
n∑
i=1

[|ai|∥∥Ai(x)
∥∥+ |bi|

∥∥Bi(x)
∥∥]

� 3δ
n∑
i=1

[
2i + 1

22i+1 + 2i − 1

22i+1

]
= 3δ

n∑
i=1

2−i = 3δ(1− 2−n), (16)

for all x ∈X andn ∈N , completing the proof of this Lemma 1.✷
In 1998 Jung [14] applied Lemma 1on approximately even mappingsf and

proved the following Theorem 3.

Theorem 3. Assume an approximately even mappingf :X → Y satisfies the
quadratic inequality(8). Then there exists a unique quadratic mappingQ :X →
Y which satisfies the quadratic equation(4) and the inequality∥∥f (x)−Q(x)

∥∥� 3δ (17)

for a fixedδ � 0 and for allx ∈X.

Note that the right-hand side of (17) contains noθ term. In 1998 Jung [14]
applied Lemma 1on approximately odd mappingsf and proved also the follow-
ing Theorem 4.

Theorem 4. Assume an approximately odd mappingf :X → Y satisfies the
additive inequality(8). Then there exists a unique additive mappingA :X → Y

which satisfies the additive equation(4) and the inequality∥∥f (x)−A(x)
∥∥� 3δ (18)

for a fixedδ � 0 and for allx ∈X.

4. Stability of Eq. (4) on a restricted domain

In this section, we establish the Hyers–Ulam stability on a more general
restricted domain.

Theorem 5. Let d > 0 and δ � 0 be fixed. If an approximately even mapping
f :X → Y satisfies the quadratic inequality(8) for all xi ∈ X (i = 1,2,3) with∑3

i=1 ‖xi‖ � d , then there exists a unique quadratic mappingQ :X → Y , such
that ∥∥f (x)−Q(x)

∥∥� 15δ (19)

for all x ∈X.
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Proof. Assume
∑3

i=1 ‖xi‖ < d . If xi = 0 (i = 1,2,3), then we choose at ∈ X

with ‖t‖ � 2d . Otherwise, choose at ∈X with ‖t‖ � d ; clearly

‖x1 − t‖ + ‖x2‖ + ‖x3 + t‖ � 2‖t‖ −
3∑

i=1

‖xi‖ � d,

‖x1‖ + ‖x2‖ + ‖ − t‖ � d, ‖x2‖ + ‖x3‖ + ‖t‖ � d,

‖x2‖ + ‖ − t‖ + ‖t‖ = 2‖t‖ + ‖x2‖ � d. (20)

Besides from (8) withxi = 0 (i = 1,2,3) we get that‖f (0)‖ � δ.
Therefore from (8), (20), and the newfunctional identity

f

(
3∑

i=1

xi

)
− f (x1 + x2)− f (x1 + x3)− f (x2 + x3)+

3∑
i=1

f (xi)+ f (0)

= [
f (x1 + x2 + x3)− f (x1 + x2 − t)− f (x1 + x3)− f (x2 + x3 + t)

+ f (x1 − t)+ f (x2)+ f (x3 + t)
]

(with x1 − t onx1, x2 onx2, andx3 + t onx3)

+ [
f (x1 + x2 − t)− f (x1 + x2)− f (x1 − t)− f (x2 − t)+ f (x1)

+ f (x2)+ f (−t)
]

(with x1 onx1, x2 onx2, and−t onx3)

+ [
f (x2 + x3 + t)− f (x2 + x3)− f (x2 + t)− f (x3 + t)+ f (x2)

+ f (x3)+ f (t)
]

(with x2 onx1, x3 onx2, andt onx3)

− [
f (x2)− f (x2 − t)− f (x2 + t)− f (0)+ f (x2)+ f (−t)+ f (t)

]
(with x2 onx1, −t onx2, andt onx3),

we get∥∥∥∥∥f
(

3∑
i=1

xi

)
− f (x1 + x2)− f (x1 + x3)− f (x2 + x3)

+
3∑

i=1

f (xi)+ f (0)

∥∥∥∥∥� δ + δ + δ + δ = 4δ,

or ∥∥∥∥∥f
(

3∑
i=1

xi

)
− f (x1 + x2)− f (x1 + x3)− f (x2 + x3)+

3∑
i=1

f (xi)

∥∥∥∥∥
� 4δ + ∥∥f (0)∥∥� 5δ. (21)
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Applying the Theorem 3 and the inequality (21), we prove that there exists a
unique quadratic mappingQ :X → Y that satisfies the quadratic equation (4) and
the inequality (19), completing the proof of the Theorem 5.✷

Obviously, our inequalities (19) and (21) are also sharper than the correspond-
ing inequalities of Jung [14], where the right-hand sides were equal to 21δ and
7δ, respectively.

We note that if we defineS3 = {(x1, x2, x3) ∈ X3: ‖xi‖ < d, i = 1,2,3} for
some fixedd > 0, then{(x1, x2, x3) ∈X3:

∑3
i=1 ‖xi‖ � 3d} ⊂X3\S3.

Corollary 3. If we assume that an approximately even mappingf :X → Y

satisfies the inequality(8) for some fixedδ � 0 and for all (x1, x2, x3) ∈ X3\S3,
then there exists a unique quadratic mappingQ :X → Y satisfying(19) for all
x ∈X.

Corollary 4. An approximately even mappingf :X → Y is quadratic if and only
if the following asymptotic condition∥∥∥∥∥f

(
3∑

i=1

xi

)
− f (x1 + x2)− f (x1 + x3)− f (x2 + x3)+

3∑
i=1

f (xi)

∥∥∥∥∥→ 0,

as
3∑

i=1

‖xi‖ → ∞,

holds.

Similarly, we prove the following Theorem 6.

Theorem 6. Let d > 0 and δ � 0 be fixed. If an approximately odd mapping
f :X → Y satisfies the additive inequality(8) for all xi ∈ X (i = 1,2,3) with∑3

i=1 ‖xi‖ � d , then there exists a unique additive mappingA :X → Y , such that∥∥f (x)−A(x)
∥∥� 15δ (22)

for all x ∈X.

Obviously, our inequalities (21) and (22) are also sharper than the correspond-
ing inequalities of Jung [14], where the right-hand sides were equal to 7δ and 21δ,
respectively.

Corollary 5. If we assume that an approximately odd mappingf :X → Y satisfies
the inequality(8) for some fixedδ � 0 and for all (x1, x2, x3) ∈X3\S3, then there
exists a unique additive mappingA :X → Y satisfying(22) for all x ∈X.
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Corollary 6. An approximately odd mappingf :X → Y is additive if and only if
the following asymptotic condition∥∥∥∥∥f

(
3∑

i=1

xi

)
− f (x1 + x2)− f (x1 + x3)− f (x2 + x3)+

3∑
i=1

f (xi)

∥∥∥∥∥→ 0,

as
3∑

i=1

‖xi‖ → ∞,

holds.

Remark 1. From (3) for approximately even mappings, the quadratic inequality
(8) (with x1 = x, x2 = x, x3 = −x), and the triangle inequality, one obtains that

4
∥∥f (x)− 2−2f (2x)

∥∥�
∥∥3f (x)+ f (−x)− f (2x)− 2f (0)

∥∥
+ ∥∥−[f (−x)− f (x)

]∥∥+ ∥∥2f (0)
∥∥

� δ + θ + 2δ = 3δ+ θ,

or ∥∥f (x)− 2−2f (2x)
∥∥�

(
δ + θ

3

)
(1− 2−2).

According to our works [19,20] on quadratic mappings, one proves that

∥∥f (x)− 2−2nf (2nx)
∥∥�

(
δ + θ

3

)
(1− 2−2n),

holds for all n ∈ N , and all x ∈ X, which yields there is a unique quadratic
mappingQ :X → Y , such thatQ(x)= limn→∞ 2−2nf (2nx) and

∥∥f (x)−Q(x)
∥∥� δ + θ

3
. (23)

But this inequality is also sharper than the corresponding inequality of Jung [14],
where the right-hand side was equal toδ + θ/2.

Remark 2. From (3) for approximately odd mappings, the additive inequality (8)
(with x1 = x, x2 = x, x3 = −x), and the triangle inequality, one gets that

2
∥∥f (x)− 2−1f (2x)

∥∥�
∥∥3f (x)+ f (−x)− f (2x)− 2f (0)

∥∥
+ ∥∥−[f (−x)+ f (x)

]∥∥+ ∥∥2f (0)
∥∥

� δ + θ + 2δ = 3δ+ θ,

or ∥∥f (x)− 2−1f (2x)
∥∥� (3δ+ θ)(1− 2−1).
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According to our works [16–18] on additive mappings, one proves that∥∥f (x)− 2−nf (2nx)
∥∥� (3δ+ θ)(1− 2−n),

holds for alln ∈ N , and allx ∈ X, which yields that there is a unique additive
mappingA :X → Y , such thatA(x)= limn→∞ 2−nf (2nx) and∥∥f (x)−A(x)

∥∥� 3δ + θ. (24)

In the following definition wegeneralizethe above functional equation (4).

Definition 4. A mappingM :X → Y is calledadditive(respectivelyquadratic) in
R4 if M satisfies the functional equation of two types

M

(
4∑

i=1

xi

)
+

∑
1�i<j�4

M(xi + xj )

=
4∑

i=1

M(xi)+
∑

1�i<j<k�4

M(xi + xj + xk) (25)

for all xi ∈X (i = 1,2,3,4).

5. Stability of Eq. (25)

In this section, we establish the Hyers–Ulam stability for new equations.

Theorem 7. Assume an approximately even mappingf :X → Y satisfies the
following quadratic inequality∥∥∥∥∥f

(
4∑

i=1

xi

)
+

∑
1�i<j�4

f (xi + xj )−
4∑

i=1

f (xi)

−
∑

1�i<j<k�4

f (xi + xj + xk)

∥∥∥∥∥� δ, (26)

for some fixedδ � 0 andθ � 0 and for allxi ∈X (i = 1,2,3,4). Then there exists
a unique quadratic mappingQ :X → Y which satisfies the quadratic equation
(25)and the inequality

∥∥f (x)−Q(x)
∥∥� δ + 5

6
θ (27)

for all x ∈X.
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Proof. Replacingxi = 0 (i = 1,2,3,4) in (26), we find‖f (0)‖ � δ. Thus, sub-
stitutingxi = x (i = 1,2) andxj = −x (j = 3,4) in (26), one gets∥∥4f (x)+ 4f (−x)− f (2x)− f (−2x)

∥∥� 6δ (28)

for all x ∈ X. Therefore from (28), (3) for approximately even mappings, the
quadratic inequality (26), and the triangle inequality, we obtain that

2
∥∥4f (x)− f (2x)

∥∥�
∥∥4f (x)+ 4f (−x)− f (2x

)− f (−2x)
∥∥

+ ∥∥−4
[
f (−x)− f (x)

]∥∥+ ∥∥f (−2x)− f (2x)
∥∥

� 6δ + 4θ + θ = 6δ + 5θ,

or ∥∥f (x)− 2−2f (2x)
∥∥� 3

4
δ + 5

8
θ

(
=
(
δ + 5

6
θ

)
(1− 2−2)

)
.

According to our works [19,20] on quadratic mappings, one proves that∥∥f (x)− 2−2nf (2nx)
∥∥�

(
δ + 5

6
θ

)
(1− 2−2n), (29)

holds for anyn ∈N , and allx ∈X. Similarly from (25) we get, by induction onn,
that

Q(x)= 2−2nQ(2nx), (30)

holds for anyn ∈N , and allx ∈X.
By (29), forn�m> 0, andh= 2mx, we have∥∥2−2nf (2nx)− 2−2mf (2mx)

∥∥
= 2−2m

∥∥2−2(n−m)f (2n−m · 2mx)− f (2mx)
∥∥

= 2−2m
∥∥2−2(n−m)f (2n−mh)− f (h)

∥∥
� 2−2m

(
δ + 5

6
θ

)(
1− 2−2(n−m))=

(
δ + 5

6
θ

)
(2−2m − 2−2n)

<

(
δ + 5

6
θ

)
2−2m → 0, asm→ ∞. (31)

From (31) and the completeness ofY we get that the Cauchy sequence
{2−2nf (2nx)} converges. Therefore we [19,20] may apply a direct method to the
definition ofQ such thatQ(x)= limn→∞ 2−2nf (2nx) holds for allx ∈X. From
the quadratic inequality (26), it follows that∥∥∥∥∥Q

(
4∑

i=1

xi

)
+

∑
1�i<j�4

Q(xi + xj )−
4∑

i=1

Q(xi)

−
∑

1�i<j<k�4

Q(xi + xj + xk)

∥∥∥∥∥� 2−2nδ → 0, asn→ ∞,
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for all xi ∈ X (i = 1,2,3,4). Thus it is obvious thatQ satisfies the quadratic
equation (25). Analogously, by (3), we can show thatQ(0) = 0 (with xi = 0
(i = 1,2,3,4) in (25)) and thatQ is even from (3) with 2nx on place ofx,
‖Q(x)−Q(−x)‖ � 2−2nθ → 0, asn→ ∞, orQ(−x)=Q(x).

According to (29), one gets that the inequality (27) holds. Assume now that
there is another quadratic mappingQ′ :X → Y which satisfies the quadratic
equation (25), the formula (30) and the inequality (27). Therefore∥∥Q(x)−Q′(x)

∥∥= 2−2n
∥∥Q(2nx)−Q′(2nx)

∥∥
� 2−2n[∥∥Q(2nx)− f (2nx)

∥∥+ ∥∥f (2nx)−Q′(2nx)
∥∥]

� 2

(
δ + 5

6
θ

)
2−2n → 0, asn→ ∞,

or

Q′(x)=Q(x),

for all xi ∈X, completing the proof of our Theorem 7.✷

6. Stability of Eq. (25) on a restricted domain

In this section, we establish the Hyers–Ulam stability for even more general
equations of two types on a restricted domain.

Theorem 8. Let d > 0, δ � 0 and θ � 0 be fixed. If an approximately even
mappingf :X → Y satisfies the quadratic inequality(26) for all xi ∈ X (i =
1,2,3) with

∑4
i=1 ‖xi‖ � d , then there exists a unique quadratic mappingQ :

X → Y , such that

∥∥f (x)−Q(x)
∥∥� 5

(
δ + θ

6

)
(32)

for all x ∈X.

Proof. Assume
∑4

i=1 ‖xi‖ < d . We choose at ∈ X with ‖t‖ � 2d . Clearly, we
see

‖x1 − t‖ + ‖x2‖ + ‖x3 + t‖ + ‖x4‖ � 2‖t‖ −
4∑

i=1

‖xi‖ � d,

‖x1‖ + ‖x2‖ + ‖x4‖ + ‖ − t‖ = ‖t‖ + (‖x1‖ + ‖x2‖ + ‖x4‖
)
� d,

‖x2‖ + ‖x3‖ + ‖x4‖ + ‖t‖ � d,

‖x2‖ + ‖x4‖ + ‖t‖ + ‖ − t‖ � d. (33)
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Besides from (26) withxi = 0 (i = 1,2,3,4) we get that‖f (0)‖ � δ. Therefore
from (26), (33), and the following newfunctional identity

f

(
4∑

i=1

xi

)
− f (x1 + x2 + x3)− f (x1 + x2 + x4)− f (x1 + x3 + x4)

− f (x2 + x3 + x4)+ f (x1 + x2)+ f (x1 + x3)+ f (x1 + x4)

+ f (x2 + x3)+ f (x2 + x4)+ f (x3 + x4)−
4∑

i=1

f (xi)− f (0)

= f

(
4∑

i=1

xi

)
− f (x1 + x2 + x3)− f (x1 + x2 + x4 − t)

− f (x1 + x3 + x4)− f (x2 + x3 + x4 + t)+ f (x1 + x2 − t)

+ f (x1 + x3)+ f (x1 + x4 − t)+ f (x2 + x3 + t)+ f (x2 + x4)

+ f (x3 + x4 + t)− f (x1 − t)− f (x2)− f (x3 + t)− f (x4)

(with x1 − t onx1, x2 onx2, x3 + t onx3, andx4 onx4)

+ [
f (x1 + x2 + x4 − t)− f (x1 + x2 + x4)− f (x1 + x2 − t)

− f (x1 + x4 − t)− f (x2 + x4 − t)+ f (x1 + x2)+ f (x1 + x4)

+ f (x1 − t)+ f (x2 + x4)+ f (x2 − t)+ f (x4 − t)− f (x1)

− f (x2)− f (x4)− f (−t)
]

(with x1 onx1, x2 onx2, x4 onx3, and − t onx4)

+ [
f (x2 + x3 + x4 + t)− f (x2 + x3 + x4)− f (x2 + x3 + t)

− f (x2 + x4 + t)− f (x3 + x4 + t)+ f (x2 + x3)+ f (x2 + x4)

+ f (x2 + t)+ f (x3 + x4)+ f (x3 + t)+ f (x4 + t)− f (x2)

− f (x3)− f (x4)− f (t)
]

(with x2 onx1, x3 onx2, x4 onx3, andt onx4)

− [
f (x2 + x4)− f (x2 + x4 + t)− f (x2 + x4 − t)− f (x2)− f (x4)

+ f (x2 + x4)+ f (x2 + t)+ f (x2 − t
)+ f (x4 + t)+ f (x4 − t)

+ f (0)− f (x2)− f (x4)− f (t)− f (−t)
]

(with x2 onx1, x4 onx2, t onx3, and − t onx4),

we get
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∥∥∥∥∥f
(

4∑
i=1

xi

)
+

∑
1�i<j�4

f (xi + xj )−
4∑

i=1

f (xi)

−
∑

1�i<j<k�4

f (xi + xj + xk)

∥∥∥∥∥� 4δ+ ∥∥f (0)∥∥� 5δ. (34)

Applying the Theorem 7 and the inequality (34), we prove that there exists a
unique quadratic mappingQ :X → Y that satisfies the quadratic equation (25)
and the inequality (32), completing the proof of the Theorem 8.✷

We note that if we defineS4 = {(x1, x2, x3, x4) ∈X4: ‖xi‖< d, i = 1,2,3,4}
for some fixedd > 0, then{(x1, x2, x3, x4) ∈X4:

∑4
i=1 ‖xi‖ � 4d} ⊂X4\S4.

Corollary 7. If we assume that an approximately even mappingf :X → Y

satisfies the inequality(26) for some fixedδ � 0 and θ � 0, and for all
(x1, x2, x3, x4) ∈X4\S4, then there exists a unique quadratic mappingQ :X → Y

satisfying(32) for all x ∈X.

Corollary 8. An approximately even mappingf :X → Y is quadratic and satis-
fies the quadratic equation(25) if and only if the following asymptotic condition∥∥∥∥∥f

(
4∑

i=1

xi

)
+

∑
1�i<j�4

f (xi + xj )−
4∑

i=1

f (xi)

−
∑

1�i<j<k�4

f (xi + xj + xk)

∥∥∥∥∥→ 0, as
4∑

i=1

‖xi‖ → ∞,

holds.
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