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DEDICATED TO PROFESSOR M. VALDIVIA WHO PIONEERED SOME
METHODS IN THIS FIELD AND PROPOSED THE CENTRAL PROBLEM
OF THIS PAPER

Let M = {u,: s € S} be a family of scalar bounded finitely additive measures
defined on a o-algebra A. The Nikodym—Grothendieck boundedness theorem
states that if M is simply bounded in A then M is uniformly bounded in A. In this
paper we prove that if V = {4, , i p,ny,ny...n, € N}is an increasing web
in A, then there is a strand {4,,,,,, . , i € N} such that if M is simply bounded in
one A, ,, .. . then M is unlformly bounded in A (Theorem 3.1). This result is

deduced from the fact that if W = {Eun, ny PN Mgy np € N} is a linear
increasing web in /5(X, A), then there exists a strand {E,. . i € N} such that
every E, ., is barrelled and dense in /5(X, A) (Theorem 2. 7) From this strong

barrelledness condition previous results of the author jointly with J. C. Ferrando
are improved here. These results are related to the classical result of Diestel and
Faires in vector measures.  © 1997 Academic Press

1. INTRODUCTION

Following Valdivia [17], if A is a o-algebra on a set X, then [j(X, A) is
the normed space generated by the characteristic functions e(A4), with
A € A, provided with the norm [|z|| = sup{|z(®)|: @ € X}, and its topologi-
cal dual, /5(X, A)*, is the Banach space ba( A) of bounded finitely additive
measures with the variation norm. Given 4 € A, [;(A4, A) denotes the
subspace of I;(X, A) generated by {e(B): B A, BC A}, and if u

*Supported by DGICYT, Project PB94-0535 and IVEI, Project 034 (1996-97).

257

0022-247X /97 $25.00

Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.


https://core.ac.uk/display/82193392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

258 MANUEL LOPEZ-PELLICER

I5(X, A)*, then |ul(A) is the norm of the restriction of u to [;(A, A). We
will write u(A) or u(e(A)).

If A€ Aand U cIlj(X, A), then we will say that U is a g-neighbour-
hood of zero in [5(A, A) if there exists a finite subset O, of [5(X, A) such
that the closed absolutely convex hull of U U Q, contains a zero neigh-
bourhood of I5(A, A). This definition follows from Valdivia [17, Note 1].

We are going to consider the tree with infinitely many branching points,

= U{N*: £k =0,1,2,...}, where N = {1,2,3,...}. An increasing web in
a set Y (see [3] is a family W = {E,: t € T.} of subsets of Y such that
Y=E,=U{E;:.neN}, E,CcE, ,, E,=U{E neN}and E, A C
E, ... whend #t e T, and n € N. If Y is a vector space and every E, is
a linear subspace of Y, we will then say that W is a linear increasing web.

If W={E;: te T} is a linear increasing web in /j(X, A) and s € N
then there exists an E, , , which is barrelled and dense in /5(X, A)
(see Valdivia [17, Theorem 1] Rodriguez-Salinas [13, Theorem 1], and [6,
Theorem 1; 10, Theorem 1]). When this result was obtained, Professor
Valdivia suggested studying the existence of an infinite branch y = {Z, (n,),
(ny,ny),....,(n,ny,...,np),...} in T, such that every E,,t € v, is bar-
relled and dense in [5(X, A). The aim of this paper is to answer this
question in the positive. This problem is proposed in [8, Chap. 11, problem
11.10] and also in [9] in an equivalent form; here Ferrando and Sanchez
Ruiz ask if /5(X, A) is baireled [9, Definition 1].

2. THE MAIN RESULT

If t=(ny,...,n,...,n) €T, set |t|=q to be the rank of ¢, Pt =
(ny,...,n), for 1<i<|t|, and Pyt =. If TCT, then PT :={Pt:
teT, |t =i}

DerINITION 2.1. A non-void subset T of T, — {&} is called a v-web if it
verifies:

(1) If reT and 1<i<|t| then cardinal {P;s: s T, i<]s|,
1§ =Pt} =

(@ 1teT then{u €T: ul>lt, P,_(w) = P, _,(t)} =T

(3) For each sequence {t, € T: n € N, [t,| > n}, there is a p with
Py, # Pyt

p+1

P.

i—

An element ¢ = (ny, n,,...,n,) € T determines the branch vy, = {J,
(ny), (ny, n,),...,(ny, n,,...,n)} and the set B, = U{y,: t € T} will be
called the v-tree determined by the v-web T. B, does not contain infinite
branches and (n,,n,,...,n;) € T implies that (n,,n,,...,n,_,,p) €
T for infinitely many values of p.
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We have (n,,...,n;_;,n;) € T if, and only if, there is no (n,,...,
n_y,pq €T. .

Examples of v-webs are N7, U{{i} X N’: i € N}, and the infinite subsets
of N, which will be called trivial v-webs.

Notice that if 7 is a v-web and if its subset 7* verifies the preceding
condition (1) then T* is a v-web.

If W={E;: t< T} is an increasing web in Y and T is a v-web, then
Y=U{E; nePT}and if s€P,T—T then E = U{E, ,: (s,n) €

P,.,T}. Then we have:

PropPosITION 2.2. Y= U{E;:t € T}

Proof. If x € U{E,: n € P,T} — U{E,: t € T}, then there exists ¢, €
T,t, # Pty = a; with x € E, .

If we have obtained in 7' the elements ¢, # P.t; = (a4, ay, ..., ;), for
l<i<n-—1 such that x€E, , a,then x€ UWE, o .4
(ay,...,a,_, ) €PT}— U{E: t € “T}. Therefore there exists in " "an
element ¢, # P,t, = (al,.. a,) such that x € E, . Clearly the se-

quence {z,} contradicts the preceding condition (3). 1

If the v-web T'= T, UT, is trivial and 7, does not contain any v-web
then T, contains a v-web. The next proposition extends this property.

ProposiTiON 2.3. If T, is a subset of the v-web T, and T, does not
contain any v-web, then T — T, contains a v-web.

Proof. We may assume that 7 is not trivial. Clearly there is a € N
such that for ¢, € J;, = {m € P,T: m > a} there does not exist any v-web
U,, with {a;} X U, contained in T; (if this were false 7; would contain a
v-web), and then two cases can occur:

(1) If there exists (a;, m) € T then there is a trivial v-web 7, with
{a} X T, =1, cT — T, The set I, is infinite and we define J, = .

(2) There is no natural number m such that (a,, m) € T. Then, as in
the beginning of the proof, there exists a natural number b such that for
a, > b there does not exist any v-web U, , such that {(a;, a,)} X U, , is

contained in 7;. Now the set J, = {(a;, a,) € P,T, a, > b} is infinite and
we write 1, = .

We will finish the first step of this induction by writing I, = U{Ia13
a; €J}and J, = U{J,: a; €J,}.

If (a,,a,) €J, and there exists (a,,a,, m) € T then there is a trivial
v-web T, o with {(a;,a,)} X T,, < T —T,. Then the set I, , =
{(ay, a)} X'T a0, 18 infinite and we “define J, . =D f(a,a,,m) & T for
each m € N, then there exists ¢ € N such that for a; > c there does not
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exist any v-web U, , , such that {(a;, a,,a)} X U, , ., < T;. In this case
we write I, , =@ and J,, ={(a;,a,,a;) € P;T, a3 > c}. Now J, , s
infinite and we define I, = U{[,,: (al, a,)€lJ,} and J, = Uf]w2
(a;,a,) €J,}.

We continue the induction in an obvious way. If a J, were empty then
the inductive process would be finite. Finally we are going to prove that
I=1,Ul;U - isav-web, obviously contained in T — T;. I is non-empty,
because if I = Jand «, € J, we may determine a sequence («,, a,) € J,,
(ay, a,, az) € J,.... Therefore there exists a sequence {t, € T, n € N}
such that P, = (ay, a,,..., ,), contradicting condition (3). I verifies
condition (1) of the v-web definition because given (a,,...,a;,...,a,) €1
we have that the sets J;, J, . 1<i<n-2,and I, ., areinfinite. |

Remark 2.4. If the v-web T is the union T, U7, U - UT, then a T;
must contain a v-web. The next lemma follows from this remark and from
[17, Proposition 5].

LEMMA 2.5. Let us suppose that A € A, T is a v-web and that for each
(ny,ny,...,n)eT, U, o, I 4 closed absolutely convex subset of
(X, A thch is not a g-neighbourhood of zero in I5(A, A). Let « be a
positive number. If x,,x,,..., and x, are n vectors of I;(X, A) and
(ni,ny,....nh,) €T, for 1 <i<k, then there are in A kpalrwzse disjoint
subsets A € A and k bounded measures u; € (Uy; i )° 1 <i<k,

such that T "
lu,(A4,) = «a, Yo {lu(x)lil<s<n} <1

Moreover, there is a v-web T* C T, containing the elements (ni, n}, ..., nf,,(i)),
1 <i <k, and such that if (ny, n,,..., np) € T* then U is not a
g-neighbourhood of zero in I5(A — U{A,;,1 <i <k}, A).

Lo n

Proof. By [17, Proposition 4] there is a partition of the set A in

p =pQ +p(2) -+ +p(k) + 2 subsets, By, B,,..., B, € A, and p linear
forms, Ay, Ap,.oi A, € WUy s, t,)° SUCh that

(B > a, Y {a(x)lil<l<n} <1

Proposition 3 of [17] enables us to obtain a By, such that U, .
not a g-neighbourhood of zero in [5(B,;, A), 1 <i < k.

By [17, Proposition 3], given a U, ,, , there exists a B, such that
Usin, ..n, 18 NOt @ g-neighbourhood of zero'in I5(B,, A). This observation
and the preceding remark enables us to obtain the following two conse-
quences:

(1) There exists a B,, and a v-web 7, c T such that if
(ny,n,,...,n,) € Ty then n; > max{ny, nf,...,nj}and U, , | s not a

n
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g-neighbourhood of zero in [5(B,q,, A). In fact, let T, = {(ny, n,,...,n,)
€ T: U,,,..,, is not a g-neighbourhood of zero in I5(B,, A)}. By [17
Propostion 3], T = T,UT, --- UT,; the remark implies that there is a
Tyoy 1 <h0) <p, that contalns a v-web T,. The v-web T,

{(ny,ny,....n) € Ty ny > max((n, nf, ..., nf)} fulfllls the propertles we

are Iookmg for
(2) For each i and m, such that 1 <i < k and 2 < m < p(i), there
exists a B ,, and a v-web T, ,, such that every

P i P i
(Rfnhs Ay 1 Ry ) € {(niny,.onb )} X T;

belongs to T, verifies that n!, < n,, and Ui onyont o is not a
g-neighbourhood of zero in lm(Bh(l myr A The proof is"like fn the above
case, changing T for T" = {(n,,..., n,,,): (nl, nh, ...,
n n )eT} and T, for T ={(n,,... )eT”’

m—11
is not a g-neighbourhood of zero in l“(Bh, A)}.

mi m+q
U A Ny 1,y
Now T =TruT) = UT"

The quantity of sets Bh(l),Bh(O), and B, ,, obtained is less than or
equal to K+ 1+ (p(1)—1) + - +(plk) — 1) =p — 1. Hence there
must be a B, which has not been used. Let us define A, = B, and
u; = A,. Then we have that u; € (U 1 n;m)o and

------

lu,(A)l > «a, Yo {lu(x)ll<i<n} <1

Moreover, the union of {(n’in"z - nt ) 1 <i <k}, the v-web Ty, and
the cartesian products {(ny, n5,...,n;,, N} X T, ., 1 <i<k,2<m <p(i)
is a v-web T such that if (ny,n,,...,n,) € T* then U, ,, ., isnota
g- nelghbourhood of zero in /(A — Al, A) since 4 — A ‘must contain
some B, such that U, ., is nota g-neighbourhood of zero in I5(B,, A).

Repeating the above process with the set 4 — 4,, the v-web T}*, and
the sets U, 0 , for i=23,...,k and 1, we obtain some A4, € A,

Mg

A, CA— Ay, u, € W2, 2 "im) and a v-web T(c T;), such that:

(1) T3 contains (njny...nh,), 1 <i <k,
@ If (n,n,,..., np) e TS, then Ui, n,
hodd of zero in /(A4 — (A4, U 4,), A),
) u (Al > a, Y {lu(x)l 1 <i<n} <l
If we continue in the same way we obtain the sets A4,, 4,,..., 4, the

linear forms u,,u,,...,u, and the v-web 77 = T* C T satisfying the
lemma. |

is not a g-neighbour-

PrRoPosITION 2.6. Let W= {E, , D pyonyn,,...,n, €N} be a lin-
ear increasing web in [5(X, A) and Iet T be a v-web. Then there exists
some (n;, n,,...,n,) € T such that E, is barrelled.

ning...n,
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Proof. Let us suppose that there exists a v-web T such that for every

(ny,n,,....n,) €T, E, o, is not barrelled and let U, , ., be the
closure in l°°(X A) of a ‘barrel Wing.on, OF Epy ) which is not a zero
neighbourhood in E, , ., . By [17 Proposrtlon 7] Upiny ..., is not a

g-neighbourhood of zero |n I5(X, A), and then, by recurrence we will
obtain:

e Av-web{i* e T:ieN}.

e Asequence {I; ={1,2,...,j,....,r(DY N, j € N}, with j <r(j) <
r(j+1,jeN.

o Afamily {A4,;:i € I, j € N} of pairwise disjoint sets belonging to A.

« A family of measures {u;;: i € I, j € N}, u;; € U2, such that for
i€land jEN

lu (A >, L A{uw(A)llel 1<k<j-1} <1

Indeed, let us start by taking 1* as the first element (n,, n,,...,n,) € T
with respect to the Iexicographic order. The preceding lemma enables us
to determine A,; € A, u;, € U2 and a v-web T, contained in 7, such that
luy, (Al > 1,1* € T, and if (ny, n,,...,n,) € Ty, then U, . ., IS NOt A
g-neighbourhood of zero in I;(X — A4,,, A). For the sake of srmpI|C|ty we
will write 4; = X — A,;, and this step of the induction concludes by
writing I, = {1}.

Let us now assume that after applying the above reasoning A times we
have obtained

e The finite sequence {1* 2* ...,s* c T, the family {I, =
4,....j,...,r( N, j < h}, with j <r(j) <r(j + 1) and r(h) =, and
the v-webs T;, 1 <j <h, such that t* € T}, for 1 <t <r(j), and given
i€l,j<hifi*=0my...,m,_y,m,...,m, ) then for each r < g, there
isaw €I, such that w* = (my,...,m,_y,n,,...,n,) €T, and m, <
n

e

e The pairwise disjoint sets A4,; € Aji €1, j<h, such that if
(ny,ny,...,n,) €T, and A, =X — Uf{A,,i €l,1<r<j} then

ir?

Uwin,...n, 18 NOt @ g-neighbourhood of zero in [5CA;, A).
e The measures u,; € U?, i € I, j < h, such that
lu (A >, LA{uw(A)llel 1<k<j-1} <1
In the step h + 1 for each w* =(my,....,m,_,m, m, . ,,...,m, ),

1<w<r(h)=s, and each natural r<gq, we obtain an element
(my,...,m,_y,n,,n,,q...,n,) €T, such that m, < n,. The elements so
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obtained will be denoted by (s + 1)*, (s + 2)*,...,t*. Since m, < n, the
sequence {1*,2%,...,s* (s + 1)*,(s + 2)*,...,t*,...} obtained in this in-
duction will be a v-web. If I, ., ={1,2,...,s,5 + 1,...,t}, then the cardi-
nality of 1,,, is greater than or equal to % + 1, since, by induction,
h<r(h)=sands <t=r(h + 1. Ifweapply Lemma25with « =4 + 1,
A=A, T=T,x,,x,5,...,%, equal to the characteristic functions of A4,;
i€l,1<j<h,and (n n2 nbq) = i*i €I, ,, we obtain:

e ¢ pairwise disjoint subsets 4, ,,; € A,1 </ <t, contained in 4,,

e ¢ linear forms u, , ., € U2, 1 <[ < ¢, such that for each /

) poa( Ayl >0+ 1, )y {|ul,h+1(Aij)|: i€l 1<j< h} <1,

(2.1)
e some v-web T}, ,, with {1*,2%,...,s*, (s + D*,...,t*} c T, ., C T,
such that if (ny,n,,...,n,) € T),, then Unln2 ., 15 NOt & g-neighbour-

hood of zero in [(A4, — U{A4, , s 1 <i <t} A).

The induction ends by writing 4, , =A4, — U{4, ,,,;: 1 <i<t} In
the induction we have taken m, < n,. This implies that {i* € T: i € N}
verifies condition (1) of Definition 2.1, and therefore it is a v-web.

Let us now denote by 1= (1,1),2"=(1,2),3"= (2,1, 4"=(3,1),.
the elements of N2 following the diagonal order. Our next task will be to
obtain a contradiction with some pairwise disjoint elements B;. € A, and
some measures v;; € U2, 1 <i,j < %, such that v;,(B;) > j, lv;(U{B,,,
(m,n) <@, )Yl <1, and |v;(U{B,,,: (m,n)>(,j}) <1 These ele-
ments will be drawn out from the previous 4,,, and u,,,, by applying a
new induction.

We will start by taking B;~= B,; = A;; and v,~= vy; = u,;;. Now we
split the family { B, = {A4,;: i € [}}: j > 1} into infinitely many C,, n € N,
such that each C, contains infinitely many B,. Since v,; is a bounded
measure there must be a family C, such that the variation of v, in U{C:
Ce Cp} is less than 1. We will denote this family by D,.

Let us suppose that we have determined the B;., v;» and the families
D, for 1 <i < k — 1, such that if i * = (m, n) then:

e Bix=B,, =A,,i, With h(i —1) <h(), and D, cD,_, for 2 <
i<k-—1,

e D, is the union of infinitely many families B, = {Apj: p € I}, with
Jj > h(),

® U;n= 10, = U, Verifies that [v;.(U{B: B€ D} <1, for 1<
i<k-—-1

mn
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Suppose that k"= (r,s). From the fact that D,_, contains infinitely
many B, = {Aij: i€ Ij}, where the cardinality of /; is greater than or
equal to j, it follows that there must be some A,,, in D,_, such that
h(k — 1) < h(k). Then, we define B, .= B,; = A,,;, and v, = v, = -

Now we split the family { B, = {A4,;: i € I} € D,_,,j > h(k)} into finitely
many subfamilite as above and denote by Dk one of these subfamilies such
that the variation of v, . in D, is less than 1. In this way the inductive
process supplies the families {B,:(r,s) € N?}, {v,;:(r,s) € N?}, and
{D,: k € N}, with v,, € U2 and

10, (VB (m,n) > (r,s)}) <lvl(U{B:BeD}) <1. (22)
From (2.1) it follows that for every (r, s) € N2,
o, (B)l >, |0, (U{B,: (m,n) <(r,s)})I<1. (2.3)

If we settle B = U{B,;: (i, )) € N2} then, applying Proposition 2.2 to the
v-web {s*: s € N}, we conclude that there must be some s* such that
e(B) € E,.. Therefore there exists a A > 0 such that e(B) € AU,.. Since
v,; € U2 we deduce that v, (B)| < A, for every j € N.

This contradicts (2.2) and (2.3) by means of which |v (B)| = |v (U{B,,
(m,n) < (s, D + v(B) + v,;(U{B,, ,: (m,n) > (s, pPI>j—2. 1

THEOREM 2.7. Let W={E;: t € T} be a linear increasing web in
I[5(X, A). Then there exists a strand {E, , i i €N} such that every

Loongt

E, ., ., is barrelled and dense in I(X, A).
Proof.  Let us assume that each strand {E,, , ,:i € N} of W contains
some E,, , Which is not barrelled or not dense in I5(X, A). By an

inductive process, we are going to obtain a v-web T such that none of the
E, t €T, are barrelled, in contradiction with Proposition 2.6.

From Valdivia’'s theorem of suprabarrelledness of /5(X, A) [17, Theo-
rem 1], it follows that there exists a natural number b, such that for
n, > b, every E, is barrelled and dense in /5(X, A). We wrlte J,={n;, €
N: n; > by} By the Amemiya—Komura property [1; 12, Corollary 8.2.12]
given n, € J; we have that there exists a b, € N such that for n, > b,
each E, , isdensein [5(X, A). Butif the barrelled space F is dense in G
then G is barrelled and, therefore, for each a, € J,, two cases can occur:

(1) There exists in N a cofinite subset N, such that for every
(ay,a,) € {a;} X N, we have that E, a, 1 NON- barrelled. Then we write
I, =a; XN, and J = (J. The set I, is infinite.

()] There eX|sts in N a cofmlte subset M, such that for every
(ay,a,) €{a;} X M, we have that E1 is barrelled and dense in

I5(X, A). Then we write 1, = = ¢ and I, {a } X M, . Now J, is infinite.
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We will conclude the first step of this induction by writing I, = U{Ial,
a, €J,}and J, = U{J,,a, €J,}.

If (a,, a,) € J, then by the aforementioned Amemiya—Komura property
there exists a b; € N such that for ny > b; each E, , ., is dense in
I5(X,A), and then we may obtain I; and J exactly as before, and we
continue the induction in an obvious way. If some J;, were empty then the
inductive process would be finite.

We have that I = U{l,,n € N} is non-empty, because if I = ¢J and
a,; € J;, then we may determine a sequence («,, a,) € J,, (a, a,, a3) €
Js,..., and then each E, , . would be barrelled and dense in
I5(X, A), contradicting our initial hypothe5|s Finally I verifies condition
(1) of the wv-web’s definition, because, by construction, given
(ay,...,a;...,a,) €1, we have that the sets J,,J, ., 1 <, o and
I, . _, are |nf|n|te By construction I verifies the condition (2) of
Definition 2. 1; the condition (3) follows from the hypothesis on the strands
of W. Therefore, we would have a v-web I such that each E,, t € I would

be non-barrelled, contradicting Proposition 2.6.

Remark 2.8. 1t was proved in [2] that /;(X, A) is not totally barrelled
[18, Definition 1]. This property was proposed as a open question in [18].

3. APPLICATIONS TO THE SPACE OF BOUNDED
FINITELY ADDITIVE MEASURES

A subset M of I5(X, A)* = ba(A) is said to be simply bounded in a
subset B of A if, for every A € B, sup{| u(A)|: u € M} < w,

Our next result extends the Nikodym—Grothendieck boundedness theo-
rem [4, VII].

THeoreM 3.1. If V ={A: t € T.} is an increasing web in the o-algebra
A, there exists a strand {A, , . i € N}in V such that every family { u:
s € S} € ba(A) which is szmply bounded in an A, ,, ., verifies that it is
bounded in I5( X, A)*.

Proof. Let W={E,: t € T} be the linear increasing web in /j(X, A)
such that E, is the linear hull of the characteristic functions {e(A4):
A € A}. By Theorem 2.7 there exists a strand {E, , ' i € N} such that
every E, ., is barrelled and dense in [5(X, A).

Therefore if {p,: s € S} cba(A) is simply bounded in A, , , then
{p;: s eStis o(lg(X, A E,, ,)bounded. As E, , . is barrelled
and dense in [5(X, A), it follows that {un, seStis equwontmuous and,

therefore, { u,, s € S} is bounded in [5(X, A)*.
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4. APPLICATIONS TO VECTOR MEASURES

From now onwards the word space will stand for a real or complex locally
convex Hausdorff space. If E is a space, the topological dual of E will be
denoted by E’, as in [11, Sect. 15.9]. A space E is dual locally complete [16,
Definition 1], if its weak topological dual, E'(c(E’, E)), is locally com-
plete. A space E is T, [15, Definition 1], (A,) [16, Definition 2]) if given
any quasi-complete (locally complete) subspace G of the weak algebraic
dual of E such that G meets E’ in a weak dense subspace, then E' C G.
The B,-complete spaces are I'-spaces. Reflexive Banach spaces and
Fréchet-Schwartz spaces provide some simple examples of A, -spaces.
When (E, T) is a T.(A,) space we will say that T is a T.(A,) topology.

Using our Theorem 2.7 in [7], instead of [6, Theorem 1], we would obtain
the following results:

PropPOSITION 4.1. Let p be a bounded finitely additive measure on A
with values in a space E, and let W = {E,: t € T,} be a linear increasing web
in E such that every E, has a T, topology T, finer than the topology induced
by E.

Then there exists a strand {E, |, ny ieN} in W such that u is a
G-valued bounded finitely addltwe measure G bemg N{E cie N}

nin,...n;"
endowed with the initial topology corresponding to T, ieN

nng...n;?

The next proposition extends a well-known result of J. Diestel and
B. Faires [5, Theorem 1.1].

PROPOSITION 4.2. Let w be a finitely additive measure on A with values
in a space E that has a web W = {E,: t € T}, such that each E, has a
sequentially complete T, topology T,, finer than that induced by E, under
which it does not contain a copy of I”.

If up is a countably additive measure for every u belonging to a weak total
subset H of E', then there exists a strand {E, , i € N}in E such that
is a G-valued countably additive vector measure, G being the vector space
ﬂ{Enln2 a1 E N} endowed with the initial topology corresponding to
Tonyns P €N

The [* condition of the preceding result may be avoided if we change
the I', by the A, Valdivia spaces.

PrROPOSITION 4.3.  Let w be a finitely additive measure on A with values
in a space E that has a web W = {E,: t € T}, such that each E, has a A,
topology T,, finer than that induced by E.

If up is a countably additive measure for every u belonging to a weak total
subset H of E', then there exists a strand {E, :i € N} in E such that u

ny...n;*
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a G-valued countably additive vector measure, G being the vector space

M{E, ., .. i €N} endowed with the initial topology corresponding to

Ny ... N,

LieN.
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