W ebs and Bounded Finitely A dditive M easures*

M anuel López-Pellicer
Departamento de Matemática Aplicada (ETSIA), Universidad Politécnica de Valencia, Apartado 22012, Valencia, E-46971, Spain

metadata, citation and similar papers at core.ac.uk

DEDICATED TO PROFESSOR M. VALDIVIA WHO PIONEERED SOME METHODS IN THIS FIELD AND PROPOSED THE CENTRAL PROBLEM OF THIS PAPER

Let $M=\left\{\mu_{s}: s \in S\right\}$ be a family of scalar bounded finitely additive measures defined on a σ-algebra A. The Nikodym-Grothendieck boundedness theorem states that if M is simply bounded in A then M is uniformly bounded in A. In this paper we prove that if $\mathrm{V}=\left\{\mathrm{A}_{n_{1}, n_{2}, \ldots, n_{p}}: p, n_{1}, n_{2} \ldots n_{p} \in \mathbb{N}\right\}$ is an increasing web in A , then there is a strand $\left\{A_{n_{1} n_{2} \ldots n_{i}}: i \in \mathbb{N}\right\}$ such that if M is simply bounded in one $\mathrm{A}_{n_{1} n_{2} \ldots n_{i}}$ then M is uniformly bounded in A (Theorem 3.1). This result is deduced from the fact that if $\mathrm{W}=\left\{E_{n_{1} n_{2} \ldots n_{p}}: p, n_{1}, n_{2}, \ldots, n_{p} \in \mathbb{N}\right\}$ is a linear increasing web in $l_{0}^{\infty}(X, \mathrm{~A})$, then there exists a strand $\left\{E_{n_{1} n_{2} \ldots n_{i}}: i \in \mathbb{N}\right\}$ such that every $E_{n_{1} n_{2} \ldots n_{i}}$ is barrelled and dense in $l_{0}^{\infty}(X, \mathrm{~A})$ (Theorem 2.7). From this strong barrelledness condition previous results of the author jointly with J. C. Ferrando are improved here. These results are related to the classical result of Diestel and Faires in vector measures. © 1997 A cademic Press

1. INTRODUCTION

Following V aldivia [17], if A is a σ-algebra on a set X, then $l_{0}^{\infty}(X, \mathrm{~A})$ is the normed space generated by the characteristic functions $e(A)$, with $A \in \mathrm{~A}$, provided with the norm $\|z\|=\sup \{|z(\omega)|: \omega \in X\}$, and its topological dual, $l_{0}^{\infty}(X, \mathrm{~A})^{*}$, is the B anach space $b a(\mathrm{~A})$ of bounded finitely additive measures with the variation norm. Given $A \in \mathrm{~A}, l_{0}^{\infty}(A, \mathrm{~A})$ denotes the subspace of $l_{0}^{\circ}(X, \mathrm{~A})$ generated by $\{e(B): B \in \mathrm{~A}, B \subset A\}$, and if $u \in$

[^0]$l_{0}^{\infty}(X, \mathrm{~A})^{*}$, then $|u|(A)$ is the norm of the restriction of u to $l_{0}^{\infty}(A, \mathrm{~A})$. We will write $u(A)$ or $u(e(A))$.

If $A \in \mathrm{~A}$ and $U \subset l_{0}^{\infty}(X, \mathrm{~A})$, then we will say that U is a q-neighbourhood of zero in $l_{0}^{\infty}(A, \mathrm{~A})$ if there exists a finite subset Q_{U} of $l_{0}^{\infty}(X, \mathrm{~A})$ such that the closed absolutely convex hull of $U \cup Q_{U}$ contains a zero neighbourhood of $l_{0}^{\infty}(A, \mathrm{~A})$. This definition follows from V aldivia [17, N ote 1].

We are going to consider the tree with infinitely many branching points, $T_{\infty}=\cup\left\{\mathbb{N}^{k}: k=0,1,2, \ldots\right\}$, where $\mathbb{N}=\{1,2,3, \ldots\}$. An increasing web in a set Y (see [3]) is a family $\mathrm{W}=\left\{E_{t}: t \in T_{\infty}\right\}$ of subsets of Y such that $Y=E_{\varnothing}=\bigcup\left\{E_{n}: n \in \mathbb{N}\right\}, E_{n} \subset E_{n+1}, E_{t}=\bigcup\left\{E_{t, n}: n \in \mathbb{N}\right\}$, and $E_{t, n} \subset$ $E_{t, n+1}$, when $\varnothing \neq t \in T_{\infty}$ and $n \in \mathbb{N}$. If Y is a vector space and every E_{t} is a linear subspace of Y, we will then say that W is a linear increasing web.

If $\mathrm{W}=\left\{E_{t}: t \in T_{\infty}\right\}$ is a linear increasing web in $l_{0}^{\infty}(X, \mathrm{~A})$ and $s \in \mathbb{N}$ then there exists an $E_{n_{1} n_{2} \ldots n_{s}}$ which is barrelled and dense in $l_{0}^{\infty}(X, \mathrm{~A})$ (see V aldivia [17, Theorem 1], R odríguez-Salinas [13, Theorem 1], and [6, Theorem 1; 10, Theorem 1]). When this result was obtained, Professor V aldivia suggested studying the existence of an infinite branch $\gamma=\left\{\varnothing,\left(n_{1}\right)\right.$, $\left.\left(n_{1}, n_{2}\right), \ldots,\left(n_{1}, n_{2}, \ldots, n_{k}\right), \ldots\right\}$ in T_{∞} such that every $E_{t}, t \in \gamma$, is barrelled and dense in $l_{0}^{\infty}(X, \mathrm{~A})$. The aim of this paper is to answer this question in the positive. This problem is proposed in [8, Chap. 11, problem 11.10] and also in [9] in an equivalent form; here Ferrando and Sanchez R uiz ask if $l_{0}^{\infty}(X, \mathrm{~A})$ is baireled [$9, \mathrm{D}$ efinition 1].

2. THE MAIN RESULT

If $t=\left(n_{1}, \ldots, n_{i}, \ldots, n_{q}\right) \in T_{\infty}$, set $|t|=q$ to be the rank of $t, P_{i} t=$ $\left(n_{1}, \ldots, n_{i}\right)$, for $1 \leq i \leq|t|$, and $P_{0} t=\varnothing$. If $T \subset T_{\infty}$ then $P_{i} T:=\left\{P_{i} t\right.$: $t \in T,|t| \geq i\}$.

Definition 2.1. A non-void subset T of $T_{\infty}-\{\varnothing\}$ is called a v-web if it verifies:
(1) If $t \in T$ and $1 \leq i \leq|t|$ then cardinal $\left\{P_{i} s: s \in T, i \leq|s|\right.$, $\left.P_{i-1} s=P_{i-1} t\right\}=\infty$.
(2) If $t \in T$, then $\left\{u \in T:|u|>|t|, P_{|t|-1}(u)=P_{|t|-1}(t)\right\}=\varnothing$.
(3) For each sequence $\left\{t_{n} \in T: n \in \mathbb{N},\left|t_{n}\right| \geq n\right\}$, there is a p with $P_{p} t_{p} \neq P_{p} t_{p+1}$.

An element $t=\left(n_{1}, n_{2}, \ldots, n_{s}\right) \in T$ determines the branch $\gamma_{t}=\{\varnothing$, $\left.\left(n_{1}\right),\left(n_{1}, n_{2}\right), \ldots,\left(n_{1}, n_{2}, \ldots, n_{s}\right)\right\}$, and the set $\mathrm{B}_{T}=\bigcup\left\{\gamma_{t}: t \in T\right\}$ will be called the v-tree determined by the v-web $T . \mathrm{B}_{T}$ does not contain infinite branches and $\left(n_{1}, n_{2}, \ldots, n_{i}\right) \in T$ implies that $\left(n_{1}, n_{2}, \ldots, n_{i-1}, p\right) \in$ T for infinitely many values of p.

We have $\left(n_{1}, \ldots, n_{i-1}, n_{i}\right) \in T$ if, and only if, there is no $\left(n_{1}, \ldots\right.$, $\left.n_{i-1}, p, q\right) \in T$.

Examples of v-webs are $\mathbb{N}^{p}, \cup\left\{\{i\} \times \mathbb{N}^{i}: i \in \mathbb{N}\right\}$, and the infinite subsets of \mathbb{N}, which will be called trivial v-webs.

Notice that if T is a v-web and if its subset T^{*} verifies the preceding condition (1) then T^{*} is a v-web.

If $W=\left\{E_{t}: t \in T_{\infty}\right\}$ is an increasing web in Y and T is a v-web, then $Y=\bigcup\left\{E_{n}: n \in P_{1} T\right\}$ and if $s \in P_{p} T-T$ then $E_{s}=\bigcup\left\{E_{(s, n)}:(s, n) \in\right.$ $\left.P_{p+1} T\right\}$. Then we have:

Proposition 2.2. $\quad Y=\cup\left\{E_{t}: t \in T\right\}$.
Proof. If $x \in \cup\left\{E_{n}: n \in P_{1} T\right\}-\cup\left\{E_{t}: t \in T\right\}$, then there exists $t_{1} \in$ $T, t_{1} \neq P_{1} t_{1}=\alpha_{1}$ with $x \in E_{\alpha_{1}}$.

If we have obtained in T the elements $t_{i} \neq P_{i} t_{i}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}\right)$, for $1 \leq i \leq n-1$ such that $x \in E_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}}$, then $x \in \bigcup\left\{E_{\alpha_{1}, \ldots, \alpha_{n-1}, q}\right.$: $\left.\left(\alpha_{1}, \ldots, \alpha_{n-1}, q\right) \in P_{n} T\right\}-\cup\left\{E_{t}: t \in T\right\}$. Therefore there exists in T an element $t_{n} \neq P_{n} t_{n}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ such that $x \in E_{\alpha_{1} \ldots \alpha_{n}}$. Clearly the sequence $\left\{t_{n}\right\}$ contradicts the preceding condition (3).

If the v-web $T=T_{1} \cup T_{2}$ is trivial and T_{1} does not contain any v-web then T_{2} contains a v-web. The next proposition extends this property.

Proposition 2.3. If T_{1} is a subset of the v-web T, and T_{1} does not contain any v-web, then $T-T_{1}$ contains a v-web.

Proof. We may assume that T is not trivial. Clearly there is $a \in \mathbb{N}$ such that for $a_{1} \in J_{1}=\left\{m \in P_{1} T: m>a\right\}$ there does not exist any v-web $U_{a_{1}}$ with $\left\{a_{1}\right\} \times U_{a_{1}}$ contained in T_{1} (if this were false T_{1} would contain a v-web), and then two cases can occur:
(1) If there exists $\left(a_{1}, m\right) \in T$ then there is a trivial v-web $T_{a_{1}}$ with $\left\{a_{1}\right\} \times T_{a_{1}}=I_{a_{1}} \subset T-T_{1}$. The set $I_{a_{1}}$ is infinite and we define $J_{a_{1}} \stackrel{a_{1}}{=} \varnothing$.
(2) There is no natural number m such that $\left(a_{1}, m\right) \in T$. Then, as in the beginning of the proof, there exists a natural number b such that for $a_{2}>b$ there does not exist any v-web $U_{a_{1} a_{2}}$ such that $\left\{\left(a_{1}, a_{2}\right)\right\} \times U_{a_{1} a_{2}}$ is contained in T_{1}. Now the set $J_{a_{1}}=\left\{\left(a_{1}, a_{2}\right) \in P_{2} T, a_{2}>b\right\}$ is infinite and we write $I_{a_{1}}=\varnothing$.

We will finish the first step of this induction by writing $I_{2}=\cup\left\{I_{a_{1}}\right.$: $\left.a_{1} \in J_{1}\right\}$ and $J_{2}=\cup\left\{J_{a_{1}}: a_{1} \in J_{1}\right\}$.
If $\left(a_{1}, a_{2}\right) \in J_{2}$ and there exists $\left(a_{1}, a_{2}, m\right) \in T$ then there is a trivial v-web $T_{a_{1} a_{2}}$ with $\left\{\left(a_{1}, a_{2}\right)\right\} \times T_{a_{1} a_{2}} \subset T-T_{1}$. Then the set $I_{a_{1}, a_{2}}=$ $\left\{\left(a_{1}, a_{2}\right)\right\} \times T_{a_{1} a_{2}}$ is infinite and we define $J_{a_{1} a_{2}}=\varnothing$. If $\left(a_{1}, a_{2}, m\right) \notin T$ for each $m \in \mathbb{N}$, then there exists $c \in \mathbb{N}$ such that for $a_{3}>c$ there does not
exist any v-web $U_{a_{1} a_{2} a_{3}}$ such that $\left\{\left(a_{1}, a_{2}, a_{3}\right)\right\} \times U_{a_{1} a_{2} a_{3}} \subset T_{1}$. In this case we write $I_{a_{1} a_{2}}=\varnothing$ and $J_{a_{1} a_{2}}=\left\{\left(a_{1}, a_{2}, a_{3}\right) \in P_{3} T, a_{3}>c\right\}$. Now $J_{a_{1} a_{2}}$ is infinite and we define $I_{3}=\cup\left\{I_{a_{1} a_{2}}:\left(a_{1}, a_{2}\right) \in J_{2}\right\}$ and $J_{3}=\cup\left\{J_{a_{1} a_{2}}^{2}\right.$: $\left.\left(a_{1}, a_{2}\right) \in J_{2}\right\}$.

We continue the induction in an obvious way. If a J_{i} were empty then the inductive process would be finite. Finally we are going to prove that $I=I_{2} \cup I_{3} \cup \cdots$ is a v-web, obviously contained in $T-T_{1} . I$ is non-empty, because if $I=\varnothing$ and $\alpha_{1} \in J_{1}$ we may determine a sequence (α_{1}, α_{2}) $\in J_{2}$, $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in J_{3}, \ldots$. Therefore there exists a sequence $\left\{t_{n} \in T, n \in \mathbb{N}\right\}$ such that $P_{n} t_{n}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, contradicting condition (3). I verifies condition (1) of the v-web definition because given $\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right) \in I$ we have that the sets $J_{1}, J_{a_{1}, \ldots, a_{i}, 1 \leq i \leq n-2}$, and $I_{a_{1} a_{2} \ldots a_{n-1}}$ are infinite.

Remark 2.4. If the v-web T is the union $T_{1} \cup T_{2} \cup \cdots \cup T_{p}$ then a T_{i} must contain a v-web. The next lemma follows from this remark and from [17, Proposition 5].

Lemma 2.5. Let us suppose that $A \in \mathrm{~A}, T$ is a v-web and that for each $\left(n_{1}, n_{2}, \ldots, n_{p}\right) \in T, U_{n_{1} n_{2} \ldots n_{p}}$ is a closed absolutely convex subset of $l_{0}^{\infty}(X, \mathrm{~A})$ which is not a q-neighbourhood of zero in $l_{0}^{\infty}(A, \mathrm{~A})$. Let α be a positive number. If x_{1}, x_{2}, \ldots, and x_{n} are n vectors of $l_{0}^{\infty}(X, \mathrm{~A})$ and $\left(n_{1}^{i}, n_{2}^{i}, \ldots, n_{p(i)}^{i}\right) \in T$, for $1 \leq i \leq k$, then there are in $A k$ pairwise disjoint subsets $A_{i} \in \mathrm{~A}$, and k bounded measures $u_{i} \in\left(U_{n_{1}^{i}, n_{2}^{i}, \ldots, n_{p(i)}^{i}}\right)^{0}, 1 \leq i \leq k$, such that

$$
\left|u_{i}\left(A_{i}\right)\right| \geq \alpha, \quad \sum\left\{\left|u_{i}\left(x_{s}\right)\right|: 1 \leq s \leq n\right\} \leq 1 .
$$

Moreover, there is a v-web $T^{*} \subset T$, containing the elements ($n_{1}^{i}, n_{2}^{i}, \ldots, n_{p(i)}^{i}$), $1 \leq i \leq k$, and such that if $\left(n_{1}, n_{2}, \ldots, n_{p}\right) \in T^{*}$ then $U_{n_{1} n_{2} \ldots n_{p}}$ is not a q-neighbourhood of zero in $l_{0}^{\infty}\left(A-\cup\left\{A_{i}, 1 \leq i \leq k\right\}\right.$, A).

Proof. By [17, Proposition 4] there is a partition of the set A in $p=p(1)+p(2)+\cdots+p(k)+2$ subsets, $B_{1}, B_{2}, \ldots, B_{p} \in \mathrm{~A}$, and p linear forms, $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p} \in\left(U_{n_{1}^{1}, n_{2}^{1}, \ldots, n_{p(1)}^{1}}\right)^{0}$ such that

$$
\left|\lambda_{i}\left(B_{i}\right)\right| \geq \alpha, \quad \sum\left\{\left|\lambda_{i}\left(x_{l}\right)\right|: 1 \leq l \leq n\right\} \leq 1 .
$$

Proposition 3 of [17] enables us to obtain a $B_{h(i)}$ such that $U_{n_{1}^{i}, n_{2}^{i}, \ldots, n_{p(i)}^{i}}$ is not a q-neighbourhood of zero in $l_{0}^{\infty}\left(B_{h(i)}, \mathrm{A}\right), 1 \leq i \leq k$.

By [17, Proposition 3], given a $U_{n_{1} n_{2} \ldots n_{q},}$ there exists a B_{h} such that $U_{n_{1} n_{2} \ldots n_{q}}$ is not a q-neighbourhood of zero in $l_{0}^{\infty}\left(B_{h}, \mathrm{~A}\right)$. This observation and the preceding remark enables us to obtain the following two consequences:
(1) There exists a $B_{h(0)}$ and a v-web $T_{0} \subset T$ such that if $\left(n_{1}, n_{2}, \ldots, n_{p}\right) \in T_{0}$ then $n_{1}>\max \left\{n_{1}^{1}, n_{1}^{2}, \ldots, n_{1}^{k}\right\}$ and $U_{n_{1} n_{2} \ldots n_{p}}$ is not a
q-neighbourhood of zero in $l_{0}^{\infty}\left(B_{h(0)}, \mathrm{A}\right)$. In fact, let $T_{h}=\left\{\left(n_{1}, n_{2}, \ldots, n_{q}\right)\right.$ $\in T: U_{n_{1} n_{2} \ldots n_{q}}$ is not a q-neighbourhood of zero in $\left.l_{0}^{\infty}\left(B_{h}, \mathrm{~A}\right)\right\}$. By [17, Propostion 3], $T=T_{1} \cup T_{2} \cdots \cup T_{p}$; the remark implies that there is a $T_{h(0)}, 1 \leq h(0) \leq p$, that contains a v-web T_{*}. The v-web $T_{0}=$ $\left\{\left(n_{1}, n_{2}, \ldots, n_{q}\right) \in T_{*}: n_{1}>\max \left(\left(n_{1}^{1}, n_{1}^{2}, \ldots, n_{1}^{k}\right)\right\}\right.$ fulfills the properties we are looking for.
(2) F or each i and m, such that $1 \leq i \leq k$ and $2 \leq m \leq p(i)$, there exists a $B_{h(i, m)}$ and a v-web $T_{i, m}$ such that every

$$
\left(n_{1}^{i}, n_{2}^{i}, \ldots, n_{m-1}^{i}, n_{m}, \ldots, n_{m+q}\right) \in\left\{\left(n_{1}^{i}, n_{2}^{i}, \ldots, n_{m-1}^{i}\right)\right\} \times T_{i, m}
$$

belongs to T, verifies that $n_{m}^{i}<n_{m}$ and $U_{n_{1}^{i}, n_{2}^{i}, \ldots, n_{m-1}^{i}, n_{m}, \ldots, n_{m+q}}$ is not a q-neighbourhood of zero in $l_{0}^{\infty}\left(B_{h(i, m)}, \mathrm{A}\right)$. The proof is like in the above case, changing T for $T^{m}=\left\{\left(n_{m}, \ldots, n_{m+q}\right):\left(n_{1}^{i}, n_{2}^{i}, \ldots\right.\right.$, $\left.\left.n_{m-1}^{i}, n_{m}, \ldots, n_{m+q}\right) \in T\right\}$ and T_{h} for $T_{h}^{m}=\left\{\left(n_{m}, \ldots, n_{m+q}\right) \in T^{m}\right.$: $U_{n_{1}^{i}, n_{2}^{i}, \ldots, n_{m-1}^{i}, n_{m}, \ldots, n_{m+q}}$ is not a q-neighbourhood of zero in $\left.l_{0}^{\infty}\left(B_{h}, A\right)\right\}$. $\mathrm{Now} T^{m} \stackrel{ }{=} T_{1}^{m^{m}} \cup T_{2}^{m+q} \cdots \cup T_{p}^{m}$.
The quantity of sets $B_{h(i)}, B_{h(0)}$, and $B_{h(i, m)}$ obtained is less than or equal to $k+1+(p(1)-1)+\cdots+(p(k)-1)=p-1$. Hence there must be a B_{h} which has not been used. Let us define $A_{1}=B_{h}$ and $u_{1}=\lambda_{h}$. Then we have that $u_{1} \in\left(U_{n_{1}^{1}, n_{2}^{1}, \ldots, n_{p(1)}^{1}}\right)^{0}$ and

$$
\left|u_{1}\left(A_{1}\right)\right|>\alpha, \quad \sum\left\{\left|u_{1}\left(x_{i}\right)\right|: 1 \leq i \leq n\right\} \leq 1 .
$$

M oreover, the union of $\left\{\left(n_{1}^{i} n_{2}^{i} \ldots n_{p(i)}^{i}\right), 1 \leq i \leq k\right\}$, the v-web T_{0}, and the cartesian products $\left\{\left(n_{1}^{i}, n_{2}^{i}, \ldots, n_{m-1}^{i}\right)\right\} \times T_{i, m}, 1 \leq i \leq k, 2 \leq m \leq p(i)$ is a v-web T_{1}^{*} such that if $\left(n_{1}, n_{2}, \ldots, n_{p}\right) \in T_{1}^{*}$ then $U_{n_{1} n_{2} \ldots n_{p}}$ is not a q-neighbourhood of zero in $l_{0}^{\infty}\left(A-A_{1}, \mathrm{~A}\right)$, since $A-A_{1}$ must contain some B_{k} such that $U_{n_{1} n_{2} \ldots n_{p}}$ is not a q-neighbourhood of zero in $l_{0}^{\infty}\left(B_{k}, \mathrm{~A}\right)$.

Repeating the above process with the set $A-A_{1}$, the v-web T_{1}^{*}, and the sets $U_{n_{1}^{i} n_{2}^{i} \ldots n_{p(i)^{\prime}}^{i}}$ for $i=2,3, \ldots, k$ and 1 , we obtain some $A_{2} \in \mathrm{~A}$, $A_{2} \subset A-A_{1}, u_{2} \in\left(U_{\left.n_{1}^{2}, n_{2}^{2}, \ldots, n_{p(2)}^{2}\right)}\right)^{0}$ and a v-web $T_{2}^{*}\left(\subset T_{1}^{*}\right)$, such that:
(1) T_{2}^{*} contains $\left(n_{1}^{i} n_{2}^{i} \ldots n_{p(i)}^{i}\right), 1 \leq i \leq k$,
(2) If $\left(n_{1}, n_{2}, \ldots, n_{p}\right) \in T_{2}^{*}$, then $U_{n_{1}, n_{2}, \ldots, n_{p}}$ is not a q-neighbourhodd of zero in $l_{0}^{\infty}\left(A-\left(A_{1} \cup A_{2}\right), \mathrm{A}\right)$,
(3) $\left|u_{2}\left(A_{2}\right)\right|>\alpha, \sum\left\{\left|u_{2}\left(x_{i}\right)\right|: 1 \leq i \leq n\right\} \leq 1$.

If we continue in the same way we obtain the sets $A_{1}, A_{2}, \ldots, A_{k}$, the linear forms $u_{1}, u_{2}, \ldots, u_{k}$ and the v-web $T_{k}^{*}=T^{*} \subset T$ satisfying the lemma.

Proposition 2.6. Let $\mathbb{W}=\left\{E_{n_{1} n_{1} \ldots n_{p}}: p, n_{1}, n_{2}, \ldots, n_{p} \in \mathbb{N}\right\}$ be a linear increasing web in $l_{0}^{\circ}(X, \mathrm{~A})$ and let T be a v-web. Then there exists some ($n_{1}, n_{2}, \ldots, n_{p}$) $\in T$ such that $E_{n_{1} n_{2} \ldots n_{p}}$ is barrelled.

Proof. Let us suppose that there exists a v-web T such that for every $\left(n_{1}, n_{2}, \ldots, n_{p}\right) \in T, E_{n_{1} n_{2} \ldots n_{p}}$ is not barrelled and let $U_{n_{1} n_{2} \ldots n_{p}}$ be the closure in $l_{0}^{\circ}(X, \mathrm{~A})$ of a barrel $W_{n_{1} n_{2} \ldots n_{p}}$ of $E_{n_{1} n_{2} \ldots n_{p}}$ which is not a zero neighbourhood in $E_{n_{1} n_{2} \ldots n_{p}}$. By [17, Proposition 7], $U_{n_{1} n_{2} \ldots n_{p}}$ is not a q-neighbourhood of zero in $l_{0}^{\infty}(X, \mathrm{~A})$, and then, by recurrence we will obtain:

- A v-web $\left\{i^{*} \in T: i \in \mathbb{N}\right\}$.
- A sequence $\left\{I_{j}=\{1,2, \ldots, j, \ldots, r(j)\} \subset \mathbb{N}, j \in \mathbb{N}\right\}$, with $j \leq r(j) \leq$ $r(j+1), j \in \mathbb{N}$.
- A family $\left\{A_{i j}: i \in I_{j}, j \in \mathbb{N}\right\}$ of pairwise disjoint sets belonging to A .
- A family of measures $\left\{u_{i j}: i \in I_{j}, j \in \mathbb{N}\right\}, u_{i j} \in U_{i}{ }^{0}$, such that for $i \in I_{j}$ and $j \in \mathbb{N}$

$$
\left|u_{i j}\left(A_{i j}\right)\right|>j, \quad \sum\left\{\left|u_{i j}\left(A_{l k}\right)\right|: l \in I_{k}, 1 \leq k \leq j-1\right\} \leq 1 .
$$

Indeed, let us start by taking 1^{*} as the first element $\left(n_{1}, n_{2}, \ldots, n_{2}\right) \in T$ with respect to the lexicographic order. The preceding lemma enables us to determine $A_{11} \in \mathrm{~A}, u_{11} \in U_{1^{*}}^{0}$ and a v-web T_{1}, contained in T, such that $\left|u_{11}\left(A_{11}\right)\right|>1,1^{*} \in T_{1}$ and if $\left(n_{1}, n_{2}, \ldots, n_{p}\right) \in T_{1}$, then $U_{n_{1} n_{2} \ldots n_{p}}$ is not a q-neighbourhood of zero in $l_{0}^{\infty}\left(X-A_{11}, \mathrm{~A}\right)$. For the sake of simplicity we will write $A_{1}=X-A_{11}$, and this step of the induction concludes by writing $I_{1}=\{1\}$.

Let us now assume that after applying the above reasoning h times we have obtained

- The finite sequence $\left\{1^{*}, 2^{*}, \ldots, s^{*}\right\} \subset T$, the family $\left\{I_{j}=\right.$ $\{1, \ldots, j, \ldots, r(j)\} \subset \mathbb{N}, j \leq h\}$, with $j \leq r(j)<r(j+1)$ and $r(h)=s$, and the v-webs $T_{j}, 1 \leq j \leq h$, such that $t^{*} \in T_{j}$, for $1 \leq t \leq r(j)$, and given $i \in I_{j}, j<h$, if $i^{*}=\left(m_{1}, \ldots, m_{r-1}, m_{r}, \ldots, m_{q_{i}}\right)$ then for each $r \leq q_{i}$ there is a $w \in I_{j+1}$ such that $w^{*}=\left(m_{1}, \ldots, m_{r-1}, n_{r}, \ldots, n_{u}\right) \in T_{j+1}$ and $m_{r}<$ n_{r}.
- The pairwise disjoint sets $A_{i j} \in A, i \in I_{j}, j \leq h$, such that if $\left(n_{1}, n_{2}, \ldots, n_{p}\right) \in T_{j}$ and $A_{j}=X-\cup\left\{A_{i r}, i \in I_{r}, 1 \leq r \leq j\right\}$ then $U_{n_{1} n_{2} \ldots n_{p}}$ is not a q-neighbourhood of zero in $l_{0}^{\infty}\left(A_{j}, \mathrm{~A}\right)$.
- The measures $u_{i j} \in U_{i^{*}}^{0}, i \in I_{j}, j \leq h$, such that

$$
\left|u_{i j}\left(A_{i j}\right)\right|>j, \quad \sum\left\{\left|u_{i j}\left(A_{l k}\right)\right|: l \in I_{k}, 1 \leq k \leq j-1\right\} \leq 1 .
$$

In the step $h+1$ for each $w^{*}=\left(m_{1}, \ldots, m_{r-1}, m_{r}, m_{r+1}, \ldots, m_{q_{w}}\right)$, $1 \leq w \leq r(h)=s$, and each natural $r \leq q_{w}$ we obtain an element $\left(m_{1}, \ldots, m_{r-1}, n_{r}, n_{r+1}, \ldots, n_{v}\right) \in T_{h}$ such that $m_{r}<n_{r}$. The elements so
obtained will be denoted by $(s+1)^{*},(s+2)^{*}, \ldots, t^{*}$. Since $m_{r}<n_{r}$ the sequence $\left\{1^{*}, 2^{*}, \ldots, s^{*},(s+1)^{*},(s+2)^{*}, \ldots, t^{*}, \ldots\right\}$ obtained in this induction will be a v-web. If $I_{h+1}=\{1,2, \ldots, s, s+1, \ldots, t\}$, then the cardinality of I_{h+1} is greater than or equal to $h+1$, since, by induction, $h \leq r(h)=s$ and $s<t=r(h+1)$. If we apply Lemma 2.5 with $\alpha=h+1$, $A=A_{h}, T=T_{h}, x_{1}, x_{2}, \ldots, x_{n}$ equal to the characteristic functions of $A_{i j}$, $i \in I_{j}, 1 \leq j \leq h$, and $\left(n_{1}^{i} n_{2}^{i} \ldots n_{p(i)}^{i}\right)=i^{*}, i \in I_{h+1}$, we obtain:

- t pairwise disjoint subsets $A_{l, h+1} \in \mathrm{~A}, 1 \leq l \leq t$, contained in A_{h},
- t linear forms $u_{l, h+1} \in U_{l^{*}}^{0}, 1 \leq l \leq t$, such that for each l

$$
\begin{equation*}
\left|u_{l, h+1}\left(A_{l, h+1}\right)\right|>h+1, \quad \sum\left\{\left|u_{l, h+1}\left(A_{i j}\right)\right|: i \in I_{j}, 1 \leq j \leq h\right\} \leq 1, \tag{2.1}
\end{equation*}
$$

- some v-web T_{h+1}, with $\left\{1^{*}, 2^{*}, \ldots, s^{*},(s+1)^{*}, \ldots, t^{*}\right\} \subset T_{h+1} \subset T_{h}$ such that if $\left(n_{1}, n_{2}, \ldots, n_{p}\right) \in T_{h+1}$ then $U_{n_{1} n_{2} \ldots n_{p}}$ is not a q-neighbourhood of zero in $l_{0}^{\infty}\left(A_{h}-\cup\left\{A_{i, h+1}: 1 \leq i \leq t\right\}, \mathrm{A}\right)$.

The induction ends by writing $A_{h+1}=A_{h}-\cup\left\{A_{i, h+1}: 1 \leq i \leq t\right\}$. In the induction we have taken $m_{r}<n_{r}$. This implies that $\left\{i^{*} \in T: i \in \mathbb{N}\right\}$ verifies condition (1) of D efinition 2.1 , and therefore it is a v-web.

Let us now denote by $1^{\wedge}=(1,1), 2^{\wedge}=(1,2), 3^{\wedge}=(2,1), 4^{\wedge}=(3,1), \ldots$, the elements of \mathbb{N}^{2} following the diagonal order. Our next task will be to obtain a contradiction with some pairwise disjoint elements $B_{i j} \in \mathrm{~A}$, and some measures $v_{i j} \in U_{i^{*}}^{0}, 1 \leq i, j<\infty$, such that $v_{i j}\left(B_{i j}\right)>j, \mid v_{i j}\left(\cup\left\{B_{m n}\right.\right.$: $(m, n)<(i, j)\}) \mid<1$, and $\left|v_{i j}\right|\left(\cup\left\{B_{m n}:(m, n)>(i, j)\right\}\right)<1$. These elements will be drawn out from the previous $A_{m n}$ and $u_{m n}$, by applying a new induction.

We will start by taking $B_{1^{\wedge}}=B_{11}=A_{11}$ and $v_{1^{\wedge}}=v_{11}=u_{11}$. Now we split the family $\left\{\mathrm{B}_{j}=\left\{A_{i j}: i \in I_{j}\right\}\right.$: $\left.j>1\right\}$ into infinitely many $\mathrm{C}_{n}, n \in \mathbb{N}$, such that each C_{n} contains infinitely many B_{j}. Since v_{11} is a bounded measure there must be a family C_{p} such that the variation of v_{11} in $\cup\{C$: $\left.C \in \mathrm{C}_{p}\right\}$ is less than 1 . We will denote this family by D_{1}.

Let us suppose that we have determined the $B_{i \wedge}, v_{i \wedge}$ and the families D_{i}, for $1 \leq i \leq k-1$, such that if $i^{\wedge}=(m, n)$ then:

- $B_{i \wedge}=B_{m n}=A_{m h(i)}$, with $h(i-1)<h(i)$, and $\mathrm{D}_{i} \subset \mathrm{D}_{i-1}$ for $2 \leq$ $i \leq k-1$,
- D_{i} is the union of infinitely many families $\mathrm{B}_{j}=\left\{A_{p j}: p \in I_{j}\right\}$, with $j>h(i)$,
- $v_{i \wedge}=v_{m n}=u_{m h(i)}$ verifies that $\mid v_{i} \wedge\left(\cup\left\{B: B \in \mathrm{D}_{i}\right\}\right)<1$, for $1 \leq$ $i \leq k-1$.

Suppose that $k^{\wedge}=(r, s)$. From the fact that D_{k-1} contains infinitely many $\mathrm{B}_{j}=\left\{A_{i j}: i \in I_{j}\right\}$, where the cardinality of I_{j} is greater than or equal to j, it follows that there must be some $A_{r h(k)}$ in D_{k-1} such that $h(k-1)<h(k)$. Then, we define $B_{k^{\wedge}}=B_{r s}=A_{r h(k)}$ and $v_{k^{\wedge}}=v_{r s}=u_{r h(k)}$.

Now we split the family $\left\{\mathrm{B}_{j}=\left\{A_{i j}: i \in I_{j}\right\} \subset \mathrm{D}_{k-1}, j>h(k)\right\}$ into finitely many subfamilite as above and denote by D_{k} one of these subfamilies such that the variation of $v_{k^{\wedge}}$ in D_{k} is less than 1. In this way the inductive process supplies the families $\left\{B_{r s}:(r, s) \in \mathbb{N}^{2}\right\},\left\{v_{r s}:(r, s) \in \mathbb{N}^{2}\right\}$, and $\left\{\mathrm{D}_{k}: k \in \mathbb{N}\right\}$, with $v_{r s} \in U_{r^{*}}^{0}$ and

$$
\begin{equation*}
\left|v_{r s}\right|\left(\cup\left\{B_{m n}:(m, n)>(r, s)\right\}\right) \leq\left|v_{k^{\wedge}}\right|\left(\cup\left\{B: B \in \mathrm{D}_{k}\right\}\right) \leq 1 . \tag{2.2}
\end{equation*}
$$

From (2.1) it follows that for every $(r, s) \in \mathbb{N}^{2}$,

$$
\begin{equation*}
\left|v_{r s}\left(B_{r s}\right)\right|>s, \quad\left|v_{r s}\left(\cup\left\{B_{m n}:(m, n)<(r, s)\right\}\right)\right|<1 . \tag{2.3}
\end{equation*}
$$

If we settle $B=\cup\left\{B_{i j}:(i, j) \in \mathbb{N}^{2}\right\}$ then, applying Proposition 2.2 to the v-web $\left\{s^{*}: s \in \mathbb{N}\right\}$, we conclude that there must be some s^{*} such that $e(B) \in E_{s^{*}}$. Therefore there exists a $\lambda>0$ such that $e(B) \in \lambda U_{s^{*}}$. Since $v_{s j} \in U_{s^{*}}^{0}$ we deduce that $\left|v_{s i}(B)\right|<\lambda$, for every $j \in \mathbb{N}$.

This contradicts (2.2) and (2.3) by means of which $\left|v_{s j}(B)\right|=\mid v_{s j}\left(\cup\left\{B_{m, n}\right.\right.$: $(m, n)<(s, j)\})+v_{s j}\left(B_{s j}\right)+v_{s j}\left(\cup\left\{B_{m, n}:(m, n)>(s, j)\right\}\right) \mid>j-2$.
Theorem 2.7. Let $W=\left\{E_{t}: t \in T_{\infty}\right\}$ be a linear increasing web in $l_{0}^{\infty}(X, \mathrm{~A})$. Then there exists a strand $\left\{E_{n_{1} n_{2} \ldots n_{i}}: i \in \mathbb{N}\right\}$ such that every $E_{n_{1} n_{2} \ldots n_{i}}$ is barrelled and dense in $l_{0}^{\infty}(X, \mathrm{~A})$.

Proof. Let us assume that each strand $\left\{E_{n_{1} n_{2} \ldots n_{i}}: i \in \mathbb{N}\right\}$ of W contains some $E_{n_{1} n_{2} \ldots n_{i}}$ which is not barrelled or not dense in $l_{0}^{\infty}(X, \mathrm{~A})$. By an inductive process, we are going to obtain a v-web T such that none of the $E_{t}, t \in T$, are barrelled, in contradiction with Proposition 2.6.

From V aldivia's theorem of suprabarrelledness of $l_{0}^{\infty}(X, \mathrm{~A})$ [17, Theorem 1], it follows that there exists a natural number b_{1} such that for $n_{1} \geq b_{1}$ every $E_{n_{1}}$ is barrelled and dense in $l_{0}^{\infty}(X, \mathrm{~A})$. We write $J_{1}=\left\{n_{1} \in\right.$ $\mathbb{N}: n_{1} \geq b_{1}$]. By the Amemiya-Kōmura property [1; 12, Corollary 8.2.12] given $n_{1} \in J_{1}$ we have that there exists a $b_{2} \in \mathbb{N}$ such that for $n_{2} \geq b_{2}$ each $E_{n_{1}, n_{2}}$ is dense in $l_{0}^{\infty}(X, \mathrm{~A})$. But if the barrelled space F is dense in G then G is barrelled and, therefore, for each $a_{1} \in J_{1}$, two cases can occur:
(1) There exists in \mathbb{N} a cofinite subset $N_{a_{1}}$ such that for every $\left(a_{1}, a_{2}\right) \in\left\{a_{1}\right\} \times N_{a_{1}}$ we have that $E_{a_{1}, a_{2}}$ is non-barrelled. Then we write $I_{a_{1}}=a_{1} \times N_{a_{1}}$ and $J_{a_{1}}=\varnothing$. The set $I_{a_{1}}$ is infinite.
(2) There exists in \mathbb{N} a cofinite subset $M_{a_{1}}$ such that for every $\left(a_{1}, a_{2}\right) \in\left\{a_{1}\right\} \times M_{a_{1}}$ we have that $E_{a_{1}, a_{2}}$ is barrelled and dense in $l_{0}^{\infty}(X, \mathrm{~A})$. Then we write $I_{a_{1}}=\varnothing$ and $J_{a_{1}}=\left\{a_{1}\right\} \times M_{a_{1}}$. Now $J_{a_{1}}$ is infinite.

We will conclude the first step of this induction by writing $I_{2}=\cup\left\{I_{a_{1}}\right.$, $\left.a_{1} \in J_{a_{1}}\right\}$ and $J_{2}=\cup\left\{J_{a_{1}}, a_{1} \in J_{a_{1}}\right\}$.

If $\left(a_{1}, a_{2}\right) \in J_{2}$ then by the aforementioned A memiya-K ōmura property there exists a $b_{3} \in \mathbb{N}$ such that for $n_{3} \geq b_{3}$ each $E_{n_{1}, n_{2}, n_{3}}$ is dense in $l_{0}^{\infty}(X, \mathrm{~A})$, and then we may obtain I_{3} and J_{3} exactly as before, and we continue the induction in an obvious way. If some J_{i} were empty then the inductive process would be finite.

We have that $I=\cup\left\{I_{n}, n \in \mathbb{N}\right\}$ is non-empty, because if $I=\varnothing$ and $\alpha_{1} \in J_{1}$, then we may determine a sequence $\left(\alpha_{1}, \alpha_{2}\right) \in J_{2},\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in$ J_{3}, \ldots, and then each $E_{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{i}}$ would be barrelled and dense in $l_{0}^{\circ}(X, \mathrm{~A})$, contradicting our initial hypothesis. Finally I verifies condition (1) of the v-web's definition, because, by construction, given $\left(a_{1}, \ldots, a_{i}, \ldots, a_{n}\right) \in I$, we have that the sets $J_{1}, J_{a_{1}, \ldots, a_{i} 1 \leq i \leq n-2}$, and $I_{a_{1}, \ldots, a_{n-1}}$ are infinite. By construction I verifies the condition (2) of Definition 2.1; the condition (3) follows from the hypothesis on the strands of W . Therefore, we would have a v-web I such that each $E_{t}, t \in I$ would be non-barrelled, contradicting Proposition 2.6.

Remark 2.8. It was proved in [2] that $l_{0}^{\infty}(X, \mathrm{~A})$ is not totally barrelled [18, Definition 1]. This property was proposed as a open question in [18].

3. APPLICATIONS TO THE SPACE OF BOUNDED FINITELY ADDITIVE MEASURES

A subset M of $l_{0}^{\infty}(X, \mathrm{~A})^{*}=b a(\mathrm{~A})$ is said to be simply bounded in a subset B of A if, for every $A \in \mathrm{~B}$, $\sup \{|\mu(A)|: \mu \in M\}<\infty$.

O ur next result extends the Nikodym-G rothendieck boundedness theorem [4, VII].

Theorem 3.1. If $\mathrm{V}=\left\{\mathrm{A}_{t}: t \in T_{\infty}\right\}$ is an increasing web in the σ-algebra A , there exists a strand $\left\{\mathrm{A}_{n_{1} n_{2} \ldots n_{i}}\right.$: $\left.i \in \mathbb{N}\right\}$ in V such that every family $\left\{\mu_{s}\right.$: $s \in S\} \subset b a(\mathrm{~A})$ which is simply bounded in an $\mathrm{A}_{n_{1} n_{2} \ldots n_{i}}$ verifies that it is bounded in $l_{0}^{\infty}(X, \mathrm{~A})^{*}$.

Proof. Let $\mathrm{W}=\left\{E_{t}: t \in T_{\infty}\right\}$ be the linear increasing web in $l_{0}^{\infty}(X, \mathrm{~A})$ such that E_{t} is the linear hull of the characteristic functions $\{e(A)$: $\left.A \in \mathrm{~A}_{t}\right\}$. By Theorem 2.7 there exists a strand $\left\{E_{n_{1} n_{2} \ldots n_{i}}: i \in \mathbb{N}\right\}$ such that every $E_{n_{1} n_{2} \ldots n_{i}}$ is barrelled and dense in $l_{0}^{\circ}(X, \mathrm{~A})$.

Therefore if $\left\{\mu_{s}: s \in S\right\} \subset b a(\mathrm{~A})$ is simply bounded in $\mathrm{A}_{n_{1} n_{2} \ldots n_{i}}$ then $\left\{\mu_{s}: s \in S\right\}$ is $\sigma\left(l_{0}^{\infty}(X, \mathrm{~A})^{*}, E_{n_{1} n_{2} \ldots n_{i}}\right)$-bounded. As $E_{n_{1} n_{2} \ldots n_{i}}$ is barrelled and dense in $l_{0}^{\infty}(X, \mathrm{~A})$, it follows that $\left\{\mu_{s}, s \in S\right\}$ is equicontinuous, and, therefore, $\left\{\mu_{s}, s \in S\right\}$ is bounded in $l_{0}^{\infty}(X, \mathrm{~A})^{*}$.

4. APPLICATIONS TO VECTOR MEASURES

From now onwards the word space will stand for a real or complex locally convex Hausdorff space. If E is a space, the topological dual of E will be denoted by E^{\prime}, as in [11, Sect. 15.9]. A space E is dual locally complete [16, Definition 1], if its weak topological dual, $E^{\prime}\left(\sigma\left(E^{\prime}, E\right)\right.$), is locally complete. A space E is Γ_{r} [15, Definition 1], (Λ_{r}) [16, Definition 2]) if given any quasi-complete (locally complete) subspace G of the weak algebraic dual of E such that G meets E^{\prime} in a weak dense subspace, then $E^{\prime} \subset G$. The B_{r}-complete spaces are Γ_{r}-spaces. Reflexive Banach spaces and Fréchet-Schwartz spaces provide some simple examples of Λ_{r}-spaces. When ($E, \mathrm{~T}$) is a $\Gamma_{r}\left(\Lambda_{r}\right)$ space we will say that T is a $\Gamma_{r}\left(\Lambda_{r}\right)$ topology.
U sing our Theorem 2.7 in [7], instead of [6, Theorem 1], we would obtain the following results:

Proposition 4.1. Let μ be a bounded finitely additive measure on A with values in a space E, and let $\mathrm{W}=\left\{E_{t}: t \in T_{\infty}\right\}$ be a linear increasing web in E such that every E_{t} has a Γ_{r} topology T_{t} finer than the topology induced by E.

Then there exists a strand $\left\{E_{n_{1} n_{2} \ldots n_{i}}: i \in \mathbb{N}\right\}$ in W such that μ is a G-valued bounded finitely additive measure, G being $\cap\left\{E_{n_{1} n_{2} \ldots n_{i}}: i \in \mathbb{N}\right\}$ endowed with the initial topology corresponding to $\mathrm{T}_{n_{1} n_{2} \ldots n_{i}}, i \in \mathbb{N}$.

The next proposition extends a well-known result of J. Diestel and B. Faires [5, Theorem 1.1].

Proposition 4.2. Let μ be a finitely additive measure on A with values in a space E that has a web $\mathrm{W}=\left\{E_{t}: t \in T\right\}$, such that each E_{t} has a sequentially complete Γ_{r} topology T_{t}, finer than that induced by E, under which it does not contain a copy of l^{∞}.
If $u \mu$ is a countably additive measure for every u belonging to a weak total subset H of E^{\prime}, then there exists a strand $\left\{E_{n_{1} n_{2} \ldots n_{i}}: i \in \mathbb{N}\right\}$ in E such that μ is a G-valued countably additive vector measure, G being the vector space $\cap\left\{E_{n_{1} n_{2} \ldots n_{i}}: i \in \mathbb{N}\right\}$ endowed with the initial topology corresponding to $\mathrm{T}_{n_{1} n_{2} \ldots n_{i}} i \in \mathbb{N}$.

The l^{∞} condition of the preceding result may be avoided if we change the Γ_{r} by the $\Lambda_{r} V$ aldivia spaces.

Proposition 4.3. Let μ be a finitely additive measure on A with values in a space E that has a web $\mathrm{W}=\left\{E_{t}: t \in T\right\}$, such that each E_{t} has a Λ_{r} topology T_{t}, finer than that induced by E.

If $u \mu$ is a countably additive measure for every u belonging to a weak total subset H of E^{\prime}, then there exists a strand $\left\{E_{n_{1} n_{2} \ldots n_{i}}: i \in \mathbb{N}\right\}$ in E such that μ
is a G-valued countably additive vector measure, G being the vector space $\bigcap\left\{E_{n_{1} n_{2} \ldots n_{i}}: i \in \mathbb{N}\right\}$ endowed with the initial topology corresponding to $\mathrm{T}_{n_{1} n_{2} \ldots n_{i}} i \in \mathbb{N}$.

ACKNOWLEDGMENTS

The author is grateful to Professors J. M as, V. M ontesinos, and L. M. Sánchez Ruiz for their many valuable comments and suggestions and to Professors R. Bru and J. M as for assistance with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$.

REFERENCES

1. I. A memiya and Y. Kōmura, Ü ber nicht vollständige M ontelräume, Math. Ann. $\mathbf{1 7 7}$ (1968), 273-277.
2. J. A rias de Reyna, $l_{0}^{\infty}(\Sigma)$ no es totalmente tonelado, Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid 79 (1980), 77-78.
3. M . de Wilde, "Closed Graph Theorem and W ebbed Spaces," Pitman, London, 1978.
4. J. Diestel, "Sequences and Series in Banach Spaces," Springer-V erlag, Berlin/H eidelberg/N ew Y ork, 1984.
5. J. Diestel and B. Faires, On Vector measures, Trans. Amer. Math. Soc. 198 (1975), 253-271.
6. J. C. Ferrando and M. López Pellicer, Strong barrelledness properties in $l_{0}^{\infty}(X, \mathrm{~A})$ and bounded finitely additive measures, Math. Ann. 287 (1990), 727-736.
7. J. C. Ferrando and M. López Pellicer, A note on a theorem of J. Diestel and B. Faires, Proc. Amer. Math. Soc. 115 (1992), 1077-1081.
8. J. C. Ferrando, M. López Pellicer, and L. M. Sanchez Ruiz, M etrizable barrelled spaces, in "Pitman Res. Notes M ath. Ser.," V ol. 332, L ongman, H arlow/New Y ork, 1995.
9. J. Ferrando and L. M. Sánchez Ruiz, A maximal class of spaces with strong barrelledness conditions, Proc. Roy. Irish Acad. Sect. A 92, No. 1 (1992), 69-75.
10. J. Ferrando and L. M. Sánchez Ruiz, On a barrelled space of class \mathfrak{R}_{0} and measure theory. Math Scand. 71 (1992), 96-104.
11. G. Köthe, "Topological Vector Spaces I," Springer-V erlag, Berlin/H eidelberg/New Y ork, 1969.
12. P. Pérez Carreras and J. Bonet, Barrelled locally convex spaces, in "N orth-H olland M ath. Stud.," V ol. 131, N orth-H olland, A msterdam, 1987.
13. B. R odríguez-Salinas, Sobre la clase del espacio tonelado $l_{0}^{\infty}(\Sigma)$, Rev. Real Acad. Cienc. Exact. Fis. Natur. 74, No. 5 (1980), 827-829.
14. S. A. Saxon, Nuclear and product spaces, Baire-like spaces and the strongest locally convex topology, Math. Ann. 197 (1972), 87-106.
15. M. V aldivia, Sobre el teorema de la gráfica cerrada, Collect. Math. 22 (1971), 52-72.
16. M . V aldivia, M ackey convergence and the closed graph theorem, Arch. Math. 25 (1974), 649-656.
17. M . V aldivia, On certain barrelled normed spaces, Ann. Inst. Fourier 29 (1979), 39-56.
18. M. V aldivia and P. Pérez Carreras, On totally barrelled spaces, Math. Z. 178 (1981), 263-269.
19. M . V aldivia, Topics in locally convex spaces, in "N orth H olland M ath. Stud." V ol. 67, N orth-H olland, A msterdam, 1982.

[^0]: *Supported by D GICY T, Project PB94-0535 and IV EI, Project 034 (1996-97).

