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Let (R, m) be a d-dimensional local Cohen-Macaulay ring of multiplicity e.
If v denotes the embedding dimension of R, v <e-+d — 1, [1]. If v = d or
d -+ 1 much of the structure of R, in terms of such measuring devices as the
Hilbert function, Betti numbers ctc., is completely determined by e. We show
here that the same is true for d-dimensional local Cohen—-Macaulay rings of
embedding dimension © == e - d — | and d-dimensional local Gorenstein
rings of embedding dimension e —- d — 2. An investigation of these rings was
begun [16] and [17] where properties of the associated graded rings were given.

Inspiration for some of the results in this paper comes from the paper [18] of
‘Wahl which gives equations defining rational surface singularities and certain
elliptic singularities. The local rings at these singularities are examples of the
rings under discussion here. I wish to thank J. Wahl for suggesting that the
investigations begun in [16] and [17] could be carried further.

1. STATEMENT OF THE MAIN REsuLts AND EXAMPLES

Some measures of the singularity of a local ring (R, m) are the Hilbert function
Hy(n) = dimym”/m"™"™ where %k = R/m, the Poincaré series Ppg () ==
3o dimy Tor&(k, k)t* and, if R is presented as a quotient S/I of a regular
local ring .S, the Poincaré series Pg () — Y;., dim, TorS(R, k)ti. We record
here explicit calculation of these measures for d-dimensional local Cohen-
Macaulay rings of embedding dimension e - d — 1 and for d-dimensional local
Gorenstein rings of embedding dimension e -+ d — 2. The main results will
be proved in Sections 3 and 4. Section 5 contains some information on the
behavior of these rings under blowing up.

First, some remarks about notation. If (R, m) is a local ring, % will denote the
residue field R/fm and grR will denote the associated graded ring: grR ==
Rim @ m/m*® @ ---. If a is a nonzero element of R with 2 € m*\m?*+! then we
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will say that @ has order s. @ will denote the initial form of @ in grR, i.e., @ is the
image a -+ ms/m**! in grR. @ has degree s. If L is a filtered R-module, L =
LyDL, 2L, 2 -+, grL will denote the associated graded module grL = L/L; @
L,/L, @ ---. Unless the contrary is stated, the filtration on an ideal I of R will be
the induced filtration I, = I N m™". As binomial coefficients will appear in some
formulas we will use the conventions: (}) = 1if j =0, (}) = 0 if j = 0 and

i<jorifj<0.

THEOREM 1. Let (R, m) be a d-dimensional local Cohen-Macaulay ring of
multiplicity e and embedding dimension v == e -+ d — 1.

() Hg(m) = ("% + ("2 for all n >0, if d > 0. For d =0,
Hy(0) =1, Hy(1) = e — 1 and Hyg(n) = 0 forn > 1.

(i) Pra(t) = (I + )7 X4 (e — 1)F.
(iii) If R = S/I with (S,p) a regular local ring and I C p? then
Tor,S(R, k) = 0 fori > e — 1 and dim Tor,S(R, k) = i(;};) fori = 1,....;e — 1.

CoroLrary. With R = S/I as in (iii) above, I is generated by (3) elements of
order 2 in S. grR = grS|grl where grl is generated by the () initial forms of a
minimal generating set for I.

THEOREM 2. Let (R, m) be a d-dimensional local Gorenstein ring of multiplicity
e > 3 and embedding dimension v = e + d — 2.

(i) Hg(n)=("1%%e + ("8 %) foralln > 2ifd > 0.Ifd = 0, Hyx(0) = 1,
Hy(l) = e —~ 2, Hy(2) = 1 and Hy(n) = 0 for n > 2.

(i) Peat) = (1 + 18 7 ofe — 2601 + 55 ofe — 2y,
(i) If R = S[I with (S,p) a regular local ring and ICp?, then
Tor,S(R, k) = 0 fori > e — 2, dim TorS ,(R, k) = 1 and

. e —7i—2) e .
dim Tor,S(R, k) = ===~ (l ¢ 1), i=1,..,¢—3.

CororLary. With R = S[I as in (iii) above, I is generated by e(e — 3)[2
elements of order 2 in S. grR = grS|grI where grl is generated by the e(e — 3)/2
initial forms of a minimal generating set for I. Thus if R = S/I is a d-dimensional
local Gorenstein ring with embedding dimension v = ¢ + d — 2 and (S, p) is a
regular local ring with I C p?, then R is a complete intersection if and only if e == 3
or 4 if and only if grR is a complete intersection.

We now give some examples exhibiting the diversity of rings under discussion.
In all of the examples the dimension can be increased by adjunction of analytic
indeterminates without changing the relation on the embedding dimension. In
Examples 1-6 below, & denotes a field.
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0. Any regular local ring satisfies v = ¢ +- d — 1.

1. Let X be an indeterminate and e an integer = 1.
R[[X®,..., X?1]] is a 1-dimensional local domain with v = e.

2. Let X and Y be indeterminates, and s an integer > 1.

R = K[[(X, Y)*]] is a 2-dimensional normal (cf. [6]) domain with ¢ = s and
v = 5 -+ 1. R is defined by the 2 x 2 minors of the matrix of indeterminates
(257, )- Risan example of a rational surface singularity.

ZyZgees

3. Let X, Y and Z be indeterminates.
R =FkXY, Z iy nl(Z? — X* — YY)

is a 2-dimensional normal domain with non-normal quadratic transform
R[Y[X, Z|XVx.v1x.z/x satisfying © = 3 = e + 1. Ris not a rational singularity.

4. Let X be an indeterminate and e an integer > 2.
k[[Xe,..., X?2]] is a 1-dimensional local Gorenstein domain with v = ¢ — 1.
5. Let X, X,, X, and X, be indeterminates.

R[[(X,, X,, X,)%]] is a 3-dimensional normal Gorenstein local ring (cf. [9]),
withe = 9andv = 10 = e - d — 2. K[[(X,, X, , X, , X,)?]}is a 4-dimensional
normal Gorenstein local ring, (cf. [9]), with ¢ = 8 and ¢ =10 = e 4 d — 2.

6. Let I/ be a finite dimensional vector space over k and let { , ) be a non-
degenerate symmetric bilinear form on V. This form determines a 0-dimensional
local Gorenstein ring R with embedding dimension ¢(R) — 2 as follows. Let
R =k ® V @ ks with multiplications - s =V - s =0,v - w = (v, w) - sforo, w
in V" and multiplication by the first component just ordinary multiplication. We
will see later that grR, for any O-dimensional local Gorenstein ring R of
embedding dimension ¢ — 2, is of this form.

2. PRELIMINARY REMARKS ON GRADED RINGs,
GraDED REsoLUTIONS AND HILBERT FUNCTIONS

In this section we recall some facts to be used in the sequel about the inter-
dependence of certain Hilbert functions and Betti numbers, and some Artin-—-
Rees conditions which allow passage from a resolution of an ideal to a graded
resolution of the form ideal or vice versa. In addition, we state some change of
rings theorems and some facts about reductions and graded rings which will also
be needed.

Let § = k[X] ..., X,] be a polynomial ring over the field k and let [ be a
homogeneous ideal. Let

O—»FT—>FPI——>"'—+F1»>§—>§1/1-—+0, (*)
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with F; a free S-module, be a minimal resolution for S/I. (*) induces exact

sequences
0-— (Fr)n - (Fr~1)'n e (Fl)'n g (g)'n g (S/I)n -0 (*)n

of the homogeneous components of degree n. These are exact sequences of finite
dimensional vector spaces over k so we have that

H i) = dim(SD), = 3. (—1)* dim(F),

with Fy = S. Let the generators Zy ,..., Zy, of F; have degrees a; ..., ap,
respectively. Then, since (1 — 2)~% = 3 _o("T971)t", we get

Z HS/i(”)t” = (1 — z)ﬁq _ (t(lu 4o p t““’l)(l _ t)—q + -
n=0

L (DY e 21— 1) 21

The resolution (*) is said to be pure if F; ~ S(—a;,)*s where S(—i), = S_;.,
and the g; are positive integers with @, < @, < '+ < a, . Since (*) is assumed
to be minimal, “pure” means that the generators Z;, of F; all have the same
degree a; .

If (*) is a pure resolution of S/I we get, from (2.1),

Y Hgymi" = (1 — )™y (—1)" b (2.2)
n=0 =0

Suppose, conversely, that S/I has a minimal resolution (*) and that there are
positive integers @; < @, <C *** < a, such that the Hilbert function Hy(n)
satisfies (2.2) with b, = rank F, . Then it is clear that (*) is a pure resolution
for S/I.

Now let (S, p) be a local ring. We will say that a finitely generated S-module E
is p-filtered if for all large 7, E, ; = pE;. Let E and F be finitely generated
p-filtered S-modules. A homomorphism f: E — F is strict if f(E;) = f(E) N F;
for every £ > 0. “Strict” means that the grading which f(F) has as a quotient of £
is the same as the induced grading which f(F) gets as a submodule of F. Strict
homomorphisms preserve exactness upon passage to the associated graded
modules.

(2.3) Lemma. Let E L F Y H be an exact sequence of finitely generated
p-filtered S-modules. If f and h are strict homomorphisms then

grE 2L orF s oy H

s exact.
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Proof. cf. [10; chapter 9, Thm. 9].
We will apply (2.3) to obtain conditions which will allow passage from a
minimal resolution to a minimal associated graded resolution.

(2.4) CoroLLARY. Let (S, p) be a local ring and I an ideal. Let

.

0—rF, > —F U F, s F, S ST 0

be a minimal free resolution for S/I over S. Let K; = d(F;) = kernel d,_, . If, for
each j > 1, there is a positive integer q; such that p*K; = K; N p%+"F;_; for all
n = 0, then the F; can be p-filtered so that

0 grF, grE; iridi)ng‘—l —— o ——grFy AN erS
—> grSIT —— 0
1s a pure minimal free resolution of grS|I over grS, where grF; o~ grS(—q, — ** — ¢;).

Thus, in particular, the initial forms of a minimal generating set for I minimally
generate grl.

Proof. Wefilter the F; to make d; strict. Filter F| as follows: (F), = p"~0F, ,
where p? = S for j <C 0. Then the generators of F, have order ¢, and the map
d;: F; — S is strict since

di(Fy)y) = di(p" " Fy) = p" " F, = p" I = I np" = d,F, Nnp?,

forall » > 0.

Suppose that

grF; RN grF; 4 grS grSII——0

is exact and F; has the filtration: (F;), = p*~%—"~%F, . Filter F;,, as follows:
(Fi31)n = p*9—~uaF, ;. The generators of F;,, have degree q; + - + ¢,
and the map d;_, is strict since
dif((Fiin) = diy(p"™" TINE, ) = ptTTTTIMK
= K, np" " TUF;
=K, N(F), =dinFinn(F), for n=

On the other hand, in [18], Wahl shows that a pure minimal resolution of
grS/I over grS can be lifted to a minimal resolution of S/I over S.

(2.5) Lemma [18]. Let (S,p) be a local ring and ECF finitely generated
S-modules. Give F the p-adic filtration and E the induced filtration: E, —= E N p"F
so that grE C grF. If grE is generated by homogeneous elements of degree q, then
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Enprit =p*E for all n = 0. e ,..., e, mimimally generate E if and only if
&y yeoy € munimally generate grE

(2.6) CoroLrarY [18]. Let (S, p) be a local ring and let I be an ideal of S such
that S!I has homological dimension r over S. If

F:0>F,— - —>F; —dj—>Fj~1 > B orS > ST 0
is a pure minimal free resolution for grS|/I over grS with, say, F; = grS(—a;), then
ds

Fi0F, o oo By By > Fy > S > ST 0

is a minimal free resolution for S/I over S, where F; has the ﬁltratzon (F;)p, =p™%F;
and grF; = F;and grd; = d; forj = 1,.... 7, i.e., gr(F) =

(2.7) CoroLLaRY. Let (S, p) be a local ring and I an ideal of S such that S|I
has homological dimension r over S. If

— — ~d —
F:0—>F, - —>F—5F - —>F—>gS->gSI->0

15 a minimal free resolution for grS|I over grS with b; = rank F; , and if there are
positive integers ay < -+ < a, such that the Hilbert function H,,s (n) satisfies (2.2),
then & is a pure minimal resolution for grS|I over grS so that the conclusion of (2.6)
holds.

Proof. 'This follows from the remark following (2.2).

Since we will be working with Cohen-Macaulay local rings it is often possible
to reduce questions to the case of dimension zero by dividing by 2 maximal
resular sequence. For later reference we state two results which allow us to do
this.

(2.8) ProposiTION [5]. Let (R, m) be a local ring and x a nonzero divisor in
m\m? Let R* = R/xR. Then

Pra(t) = (1 + 1) Proi(®).

(2.9) ProposiTiON [2]. Let (S, p) be a local ring and I an ideal. Let x be a
nonzero divisor inp, S* = S/xS and I'* = (I, x)/xS. If
F*0—>Ff— - >FF ﬁ;Ff_l — > Ff > 8% L §¥F 50

is a minimal free resolution of S*[I* over S*, then F* can be lifted to a minimal free
resolution

Fi0—>F— "'”’Ff_dL’Fy;l—’ P> S —>ST-0
of S/l over S where F¥ =F; (%) S* and df = d; ® S*.
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Remark. The same result holds if .S is a graded ring with unique maximal
homogeneous ideal p, and I and x are homogeneous.

The proofs of Theorems 1 and 2 depend upon the relationship between
embedding dimension and minimal reductions of the maximal ideal. Proofs of
the facts which are given below can be found in [11, 16, 17].

Let (R, m) be a d-dimensional Cohen—Macaulay local ring with R/m infinite.
Then grR has a system of parameters consiting of elements of degree 1; in other
words, there are elements x, ,..., x; in R such that m™! = (x, ,..., x;)m" for
some 7 2= 0. Such a system of elements is called a minimal reduction for m. We
will use the notation x to stand either for the sequence of elements «x, ,..., x, or
for the ideal generated by x, ,..., x5 . The context will make it clear.

If the embedding dimension of R is e + d — 1 then there are elements
X = X ,..., &z such that m? = xm. If R is Gorenstein of embedding dimension
¢ + d — 2 then there are elements x = x, ..., x; such that m® = xm?. In both
cases the initial forms ¥ ,..,%; in grR form a regular sequence so that
or(Rl(%y ..., 25)R) ~ grR/(%, ,..., %) grR. This means that the Hilbert function
for R can be computed from the Hilbert function for R* = R/xR as follows.

the above hypotheses,
Hg(n) = Hg(n) forall n > 0.

(2.10) In the case where R is Cohen—Macaulay of embedding dimension
e+ d— 1, grR is Cohen—Macaulay and Hg.(1) = e — 1 and Hyp(n) = O for
n> 1.

(2.11) In the case where R is Gorenstein of embedding dimension e + d — 2,
grR is Gorenstein and Hp.(0) = 1, Hgi(1) = e — 2, Hp{2) = 1 and Hy(n) = 0
for n > 2.

3. CoueN-Macavray LocaL Rings oF EMBEDDING DIMENSION ¢ ~— d — 1

Let (R, m) be a d-dimensional local Cohen-Macaulay ring of embedding
dimension v = e - d — 1. For the proof of Theorem 1 we may assume that
(R, m) has infinite residue field R/m = k. For if # is an indeterminate, the
ring R(u) = R[u]yngin is faithfully flat over R. Consequently, the dimensions of
the vector spaces to be computed for Theorem 1 remain the same under the
change of rings R — R(u).

The proof of Theorem 1 follows from the fact that with R/m infinite, v =
e + d — 1 implies that there are d elements x = x, ,..., x; in R with m? = xm.

Proof of Theorem 1. Let R* = R/xR and m* = m/xR. R* is a zero dimen-
sional local ring of embedding dimension e — 1.
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(i) By (2.10) we have

SI if =20
Hypn) = Hiu(n) = ee —1 f n=1
0 if n>1

and Hg(n) = HS,(n). Using the relation H}(n) = H}{n — 1) + HiXn), we
may use double induction on # and d to get

n+d-—2 ,(n+d—2

Hefn) = Hin) = (" 777 %) o - ( )

n—1 n J

forall n >0, ifd > 0.

(i) As R is Cohen-Macaulay we may apply (2.8) to get Py {t) =
(1 - £)2Ppg. 1(2). Since (m*)2 = 0, m™ is a vector space over & and, as is well-
known, Pg. (t) = X _4(e — 1)i. For

Torl (k, k) = Tort(m™*, k) = Tor (K" k) = TorXy(k, k)Y, for i > 1.

Explicitly we have,

dim Tor*(k, k) — Zo (e — 1)~ (‘]") (3.2)

and

4
dim Tor,*(k, k) = Y} (e — 1) (f) for 7 >d.
=0

(1) Now assume that R = S/I with (S, p) a regular local ring and
IC p? The elements x, ,..., x; with m® = xm are images of elements %, ,..., &,
in S which are part of a minimal basis for p. By (2.9) a minimal resolution for R
over S can be obtained by lifting a minimal resolution for R* = R/xR over
S* = §/xS. But R* = S*/(p*)2 p*? can be realized as the ideal generated
by the 2 X 2 minors of the matrix

(yi" U v 2)
0 ¥y - y;k—z Ve

where p* = (¥§,...,7,). Thus the Eagon-Northcott complex [4] gives
a minimal resolution for R* over S*. In this case the Eagon—Northcott complex
has the form

F:0—>F, ,—>F,_,—  —>F — 8% S*(p*)2 -0

where F, = K,;,, ®®,, for i = 1,...,e — 1 with o = (K,) the exterior
S*-algebra on Z, ..., Z, and @ = (P,) the symmetric S*-algebra on Y, Y,,
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and differential determined by the minors of the matrix. Thus F, is a free
S*-module oni(;¢,) generators for i = 1,..., e — 1.1t follows that Tor,S(R, k) = 0
fori > e — 1 and dim Tor,S(R, k) = i(;{,) for i = I,..., e — 1. This concludes
the proof of Theorem 1.

If R = S/I is as in Theorem 1(iii), we have by Theorem 1 that I is generated
by (;) elements. The following lemma shows that these generators all have
order 2.

(3.4) Lemma.  Let (S, p) be a local ring and I an ideal contained in p™ for some
v > 0. Let x = %, ,..., x; be elements in p which form a regular sequence mod I.
IfprCxp™t + I, then p’ll = I np™ forj > 0.

Proof. By induction on j, it follows that p™ = x/*p™! + p’l. Thus,
Inpti =1nxtpt 4 pil =il -+ I N xHp1 Cpill + 1N xS =
p'I + xI C pil.

Remark. 'There is an analogous formulation of the above lemma for a
homogeneous ideal I in a graded ring S with unique maximal homogeneous
ideal p. Observe that we do need some hypotheses on S/I. For example, let
I'= (XY — Y2 Y% inK[[X, Y]], k£ afleld. Then (X, Y2 C (X)X, Y)+ I but
YielIn (X, Y)(X, Y). Note that XY? = V(XY — V%) — Y3el

(3.5) CoroLLARY. Let (R, m) be a d-dimensional local Cohen—Macaulay ring
of embedding dimension e + d — 1. Assume that R = S|I with (S, p) a regular
local ring and I C p?. Then I is generated by () elements of order 2 in S. grR =
grS|grl where grl is generated by the initial forms of a minimal generating set for I.

Proof. 'The first statement follows from (3.3) and (3.4) since we may assume
that R/m is infinite to count the number of elements in a minimal basis for I. The
second statement follows from (3.4) and (2.3) but it is even easier to notice that
with R* = R/xR as in the proof of Theorem 1, grR* =~ grR/(%, ,..., X;) grR and
grR* is a zero dimensional local ring of maximal embedding dimension e — 1.
Applying Theorem 1 and the first statement of this Corollary to grR* we see that
(grl, &y o, T)[(y yeony Xg) 2 grI[(%y ..., ¥,) gr] is generated by (§) homogeneous
forms of degree 2.

(3.4) begins the process of grading the resolution of R = S/I over S by the
method described in (2.4) but to carry this further we would need more informa-
tion about the differential in the Eagon-Northcott resolution. Instead we use the
method of (2.6) or (2.7).

(3.6) ProrositioN. Let (R, m) be a d-dimension local Cohen-Macaulay ring
of embedding dimension e + d — 1. Assume that R = S/I with (S, p) a regular
local ring and I C p?. Then the ith syzygies, | < i < e — 1, in a minimal resolution
Jor R over S are generated by i(;$,) elements of order 1. A minimal resolution for R
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over S can be graded to give a minimal associated graded resolution for grR
over grS.

Proof. We may assume that R/m is infinite. Let $* = S/xS, R* = R/xR
and I* = (I, x)/xS, where x = &, ,..., &; are elements of S mapping to the
minimal reduction x of m with m? = xm. We look at a minimal resolution #
for grR over grS. By the graded version of (2.9), such a resolution can be lifted
from a minimal resolution & * for grR* over grS*. Now grR* is a 0-dimensional
local ring of embedding dimension e — 1, hence, as we have seen, the Eagon—
Northcott complex is a minimal resolution for grR* over grS*, That this resolu-
tion is pure can be seen directly by looking at the degrees of the generators, or,
using the method of (2.7), since we know the Hilbert function H,p.(n), by
checking that relation (2.2) holds with @; =71 for ¢ == 1,...,e — 1. The

degree of the generators of the ith syzygies in # isa; — a;_;fori = 2,...,¢e — 1.

4. GorensTeIN Locar RiNnGgs oF EMBEDDING DIMENSION ¢ + d — 2

The Gorenstein local rings of embedding dimension e -+ d -—— 1 have multi-
plicity at most 2 and consequently v = d or d -+ 1 [17]. Thus the maximal
embedding dimension of a Gorenstein local ring R of multiplicity e > 2 is
e + d — 2. If R has multiplicity 3 then v = d -~ 1 and R, the completion of R,
is a hypersurface. Theorem 2 gives the structure of Gorenstein local rings of
embedding dimension v = e -+ d — 2 and multiplicity e > 3.

As for the proof of Theorem 1 we may assume that R/m is infinite. The proof
of Theorem 2 is based on the fact that a d-dimensional local Gorenstein ring
(R, m) with R/m infinite and embedding dimension e + d — 2 has a minimal
reduction X = % ,..., ¥; for m with m® = xm? Let R* = R/xR and m* =
m/xR. R* is a zero dimensional local Gorenstein ring of embedding dimension
e — 2. Parts of the proof of Theorem 2 are more involved than the proof of
Theorem 1, so we handle each part separately.

Proof of Theorem 2(i). (i) of Theorem 2 follows immediately from (2.11).
We have Hy(n) = HE.(n) and

1 f n=0
e —2 f n=1
Hie(m) = {4 if n=2
0 if n>2.

It follows, by double induction on # and 4, that if d > 0,

HR(n)z(n:d—‘z)e—i—(n_}_d——?)) for =n

—1 n

A\
b
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(1) of Theorem 2 follows from a recent result of Avramov and Levin [8]
and of Rahbar-Rochandel [I3] on the computation of the Betti numbers
dim TorR(k, k) for a zero dimensional local Gorenstein ring R under the
change of rings R-> Ry, , where Ry, = R/socle R, and socle R is the anni-
hilator of m.

(4.1) Taeorem [8, 13]. Let (R, m) be a zero dimensional local Gorenstein
ring with residue field k and embedding dimension greater than one. Then,

PRsoc.k(t) = PR,k(t) + t2PR,k(t) PRSOCJ:(t)'

Proof of Theorem 2(ii). We use (2.8) to reduce the computation to that of
Praift). We have (m*)? = socle R* = sR* for some s in (m*)?2. R¥ =
R*[sR* is a zero dimensional local ring of embedding dimension e — 2 with
maximal ideal of square zero, i.e., RY,, is a zero dimensional local ring of maximal
embedding dimension e(RY.) — 1 as e(R¥,.) = ¢ — 1. Hence, as in the proof of
of Theorem 1(ii), Pg (f) == S (e — 2)iti. Thus, by (4.1),

Proa(t) = i (e — 2yl ~ ¢ ‘Z (e — 2)iti

i=0

and
Pri(t) = (1 + 12 Y (e — 201 + Y (e — 2)F+2.
i=0 i=0

Remark. 1t is well-known that the homology of the Koszul complex K(y)
on the generators y = y, ,..., ¥, of the maximal ideal of a zero dimensional local
Gorenstein ring (R, m) is a Poincaré algebra, ie., H{(K(y)) - H,_{(K(y)) =
H, (K(y)) az socle R. If R has embedding dimension e¢ — 2, this is the only
non-trivial product, i.e., H{K(y)) - H(K(y)) = Ofori +j < =n.

To prove Theorem 2(iii) we will use Wahl’s method, cf. (2.6), for lifting
resolutions from grR to R. To begin we need to know that grl is generated by
elements of degree 2.

(4.2) LemMa. Let (S, p) be a local ring of embedding dimension q. Let I be an
ideal properly contained in p? with S[I Gorenstein. Let x = %y ,..., %, , t << g — 1,
be a subset of a mintmal basis for p such that x is a maximal regular sequence mod I.

Ifp® Cxp?® + I, then p® = xp* + pl.

Proof. Let %y ,...; X, ¥y 50y ¥r» ¥ > 1, minimally generate p. The Gorenstein
hypothesis provides an element s in p* p® such that p? = (s, xp, I). For we have
(Z, x): p = (s, x, I) for some s € p\p® Butp? - p C{J, x)so we have p* C (5, x, I)
and, by the hypothesis on x, we have p* = (s, xp,I). We may assume that
s =32 or s = y,¥,. We need to show that sp Cxp? 4 pl. We have that
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sp Cxp + I. Note that we may assume that y,y,exp + I for j # 1, 2. For
yy; —es+n+i with nexp and iel. If cep, y,y;exp + 1. If c¢p,
then yy(¥; — ¢yn) €xp + I, where 2 =1 or 2, and we may replace y; by
y; — ¢y, . Consequently, sy;exp? + pl for j # 1, 2.

Case 1. s = y,2 For this case we may assume, just as above, in addition that
Y1y, €xp + I so that sy; = y,2y;€xp + pl for j = 1. Now there is some /
such that y,y;, = ¢s + 7 + ¢ with nexp, iel and c¢p. Otherwise y,p C
xp + I so y, € (s, %, I}, a contradiction. Thus y,v; = ¢s - 7 + 7 with ¢ ¢ p and
sy =y =Wy — ¢y — ¢y exp +pl.

Case 2. s = y,v,. We assume, by Case 1, that v.2,...,y,2exp - I. Thus
sy, = 2y, exp? + pl and sy, = v, v,% € xp% + pl.

(4.3) CororLarY. Witk the hypotheses as in (4.2),
pl=Inpt: forall j=0.

Proof. From (4.2), by induction on j, we have p'*? = x/p? 4 p’l. So
Inp?2=Inxp?+pl=p 1+ InxptCpll+InxiS=pl+xICpl

Proof of Theorem 2(iii). Let X = #, ,..., &, be elements of S mapping onto
X = % ,..., ¥z in R. Let §* = §/X§ and, as usual, R* = R/xR. Let

F:0->F,_,—~ - —F —‘ii—>Fj_1—> o> Fy > grS* — grR* 0

be a minimaj free graded resolution of the graded (local) ring grR*. Since grR* is
Gorenstein, F, , o~ grS*. As Stanley observes in [15, Thm. 4.1] a result of
Buchsbaum and Eisenbud [3] shows that there is a degree preserving pairing
F,®F, , ,—~F, ,~ grS* which induces an isomorphism

Fi = Homors*(Fe~2—i vgrS*)'

By (4.3) the generators of F; are all of degree 2. This means that the degree g of
the generator of F,_, is at least e. Assume that g = e. From F, @ F, , - F,_,
it follows that F,_, has all of its generators in degree e — 2, Thus we have
Fio grS¥(—j — 1) for 1 <j<e—2 and F, yo¢grS*(—e). Thus to
conclude that grR* has a pure resolution over grS* it remains to show that g = e.

(4.4) LemMa (cf. Proof of Thm. 4.1 in [15]). Let R = S/I be a zero dimen-
sional graded Gorenstein ring which is a quotient modulo homogeneous ideal I of a
polynomial ring S = R[X ,..., X,] over a field k. Let

0—>Fq->Fq_1—>"’—~>F]-—>S—~>R—>O

481/56/1-13
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be a minimal resolution of R. Then the degree of the generator of F, is ¢ 1+ gq,
where R, is the socle of R.

Proof. let R = Ry@ R, ® - @ R, with R, = k. Since R is Gorenstein,

12y dimy Ry(1/t) = ; dim,, R;#.

=0

By (2.1) we have

A(f) = ) dimy Rit' = (1 — )70 — (¢ -+ 4 g m)(] — )™ 4 -

=0
+ (= 1) (1 — 1),

where a;, ,..., g, are the degrees of the generators of F;. We have %(¢) =
tZ(1/t). But

PPE) = (1 — (/)™ — 51 - - 10— (1)) +
+ (=D — (1))
— (_l)q tc+a(1 ___ t)-—a . (__])q tc+q(1/t““ + + l/ta“l)(l — t)—a + vee
(1) (1) (] — 2y
The fact that the pairing F; @ F,_; — F, is degree presering means that a;; < a4,
for all j << g and 1 <{ ! <{ b;. Thus the last term in the expression of t°Z(1/t)
above must be equal to (I — £)7¢, thatis, gy = ¢+ ¢.
Thus we have that grR* has a pure resolution over grS* and we can compute
the Betti numbers of the resolution from (2.2). We have ¢ = ¢ — 2 == r and
a,=0,a; =7+ 1for1 <j < 2and q,_, = e. Explicitly,

(1= £)=2(1 4 (e — 2t + 12) == 1 — byt + -+ o (= 1)ibyaid 4 oo - (—1)e-22e.

Comparing coeflicients of #+1 we get, for 1 <7 <<e — 2
== () =T =20
=e=a ()= () (T -2 ()

:6(6?2)“@48-1):"(1';1)%2—1—2'
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This completes the proof of Theorem 2 and the Corollary which follows the
statement of Theorem 2 in Section 1. We have also proved the following.

(4.5) CororLary. Let (R, m) be a d-dimensional local Gorenstein ring of
embedding dimension e + d — 2, e > 3. Assume that R = S[I with (S,p) a
regular local ring and I C p®. Then the ith syzygies in a minimal resolution for R
over S are generated by i(;{,)(e — ¢ — 2)[(e — 1) elements of order 1 if 1 < i <
e — 2. The first and last syzygies are generated respectively by e(e — 3)/2 and 1
elements of order 2.

As is well known, the socle of a zero dimensional local Gorenstein
ring (R, m) of embedding dimension e — 2 determines a non-degenerate
symmetric bilinear form ( , ) on the k-vector space I = m/m? If ¥, j € m/m?,
define (%, ) = 7, where 7 is the image in % of the element r given by the product
xy = rs where socle R == sR. Thus grR has the form grR =k @V D ks as in
Example 6 in Section 1. Hence, if & = R/m has characteristic 2, we can find
a basis for m/m? so that the matrix corresponding to ( , ) is diagonal and there
are cONStants Cyp ,..., Co_g o o i &k so that grR = k(X ..., X, |/Z, with & =
(XoX55 1 # J, Xi? — e Xo?esy, X2 — Cop 00Xy )

5. QuaDRATIC TRANSFORMS

The quadratic transform of a local ring (4, q) is the morphism

Proj & q’ — Spec 4

j=0

obtained from the embedding A — @], q’. Proj @;_,q’ is covered by the
affine open sets Spec A[q/z;], 7 = 1,..., n, where z;,..., &, are a subset of a
minimal basis for g which generate a g-primary ideal. The morphism ¢ is an
isomorphism except at . The fiber over q is Proj(gr4). Hence it follows—and
is part of the folklore of quadratic transforms—that the properties of Proj(grA4)
determine some of the properties of Proj (®,_,q’. Algebraic proof of this fact,
where the property in question is “‘being Cohen—Macaulay,” can be found in
[7, 12]. The same proof works for the property of ‘‘being Gorenstein.”

(5.1) TreoreMm (cf. [7, Thm. 4.11]). Let (R, m) be a local Cohen—Macaulay
(resp. Gorenstein) ring of dimension d > 0. If grR is Cohen—Macaulay (resp.
Gorenstein) then Proj 69;0:0 m’ is Cohen—Macaulay (resp. Gorenstein).

Proof. By the remarks above, (5.1) will follow if we show that grR Cohen—
Macaulay (resp. Gorenstein) implies that the rings R[m/b] are Cohen—-Macaulay
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(resp. Gorenstein) for any nonzero divisor b€ m. Let Z = R[mt, 1/t]. Then,
[14], 2[(1]1)% ~ grR, and grR is Cohen-Macaulay (resp. Gorenstein) if and
only if Z is Cohen-Macaulay (resp. Gorenstein) since 1/f is a nonzero divisor
in the maximal homogeneous ideal of #. (Here we use the fact that # is Cohen—
Macaulay (resp. Gorenstein) if and only if # , is, where .# is the maximal
homogeneous ideal, # = (mt, 1/5)%. But #[1/bt] = R[m/b, 1/bt] is Cohen-
Macaulay (resp. Gorenstein). Since b is a nonzero divisor in m, bt is transcen-
dental over R{m/b], and we have that R[m/b] is Cohen—-Macaulay (resp.
Gorenstein).

(5.2) CororLary. If (R, m) is a Cohen-Macaulay local ring of dimension
d > 0 and embedding dimension v == ¢ + d — 1, then Proj @?;0 m’ is Cohen—
Macaulay. If (S, p) is a local Gorenstein ring of dimension d >> O and embedding
dimension © = e -+ d — 2, then Proj @,.,p’ is Gorenstein.

Remarks. Note that if grR has a system of parameters &, ,..., ¥; of degree 1,
i€, % ,..,%; is a minimal reduction for m, then the d affine open sets
Spec R[m/x,] cover Proj @, m’.

The property © = e + d — 1 need not be preserved under quadratic trans-
form. For example, with d = 1, if R = R[[£8, £10, 11, 14 #15 119]] £k a field, then
R[m /5] = K[[#4, 15, 1%]] so 2(R[m/t]) 5= e(R[m/t%]).
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