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PERSPECTIVES IN BASIC SCIENCE

Lipoxins: Potential anti-inflammatory, proresolution,
and antifibrotic mediators in renal disease
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Lipoxins: Potential anti-inflammatory, proresolution, and an-
tifibrotic mediators in renal disease. Lipoxins are lipoxygenase-
derived lipid mediators with both anti-inflammatory and prores-
olution properties that have been demonstrated in vivo and
in vitro. The bioactivity profile of lipoxins in vitro suggests
that they have therapeutic potential in acute renal failure and
glomerulonephritis; predictions that have been borne out to
date in experimental models of renal disease. We review recent
developments on the molecular basis of lipoxin bioactions medi-
ated through receptor crosstalk and the accumulating evidence
that lipoxins may have potential as novel anti-inflammatory
agents.

Eicosanoids play a key role in the initiation, propa-
gation and termination of inflammatory cascades, which
are vital for efficient host defense [1]. These responses are
characterized initially by generation of proinflammatory
lipid mediators (e.g., leukotrienes and prostaglandins) in
a first-phase response and a subsequent switch, to “sec-
ond phase” anti-inflammatory, proresolution mediators
such as lipoxins and cyclopentenone prostaglandins, such
as 15 deoxy�12,14PGJ2 (reviewed in [1] and [2]). Lipox-
ins, an acronym for lipoxygenease interaction products,
are endogenous anti-inflammatory mediators that pro-
mote resolution of inflammation in vivo (reviewed in [3]).
Lipoxin generation has been demonstrated in a variety of
human and experimental inflammatory, hypersensitivity
and vascular diseases (reviewed in [3]). Here we shall
review accumulating evidence for a role for lipoxins in
limiting inflammation, by influencing key pathophysio-
logic events leading to the generation of a proresolution
phenotype. These developments herald the promise of
novel anti-inflammatory therapies.
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Overview of lipoxin biosynthesis

Lipoxins are produced locally at sites of inflamma-
tion by transcellular routes, involving interaction of neu-
trophils with platelets or resident tissue cells, such as
epithelial cells, by one of at least three biosynthetic
pathways (see Fig. 1). At mucosal surfaces, epithelial-
granulocyte interactions via the action of 15-lipoxygenase
(LO) on arachidonate generate intermediate eicosanoid
products, which serve as substrates for polymorphonu-
clear neutrophil (PMN) 5-LO, generating lipoxin A4

(LXA4) and lipoxin B4 (LXB4).
Within the vascular lumen, platelet-neutrophil inter-

actions, involving neutrophil 5-LO and platelet 12-LO,
generate lipoxins. In this setting platelets convert
neutrophil-derived leukotriene A4 (LTA4) to the lipoxin
intermediate (5,6 epoxytetraene) through the action of
platelet 12-LO (see Fig. 1) [4]. Platelet 12-LO essentially
functions as a 15-LO when its substrate is LTA4, aug-
menting lipoxin biosynthesis via transcellular pathways.
Thus, within a multicellular inflammatory environment,
LTA4 can serve as key intermediate for both lipoxin and
leukotriene formation. Maintaining the balance between
lipoxin and leukotriene formation is likely to be a critical
determinant of the resolution of inflammation.

The third major pathway for lipoxin generation is the
aspirin-triggered lipoxin (ATL) pathway (Fig. 1). Ex-
pression of cyclooxygenase-2 (COX-2) can be induced
rapidly in cells involved in inflammation such as fibrob-
lasts, monocytes, and vascular endothelium, in response
to growth factors, cytokines, hormones, and bacterial en-
dotoxin [5]. Aspirin acetylates COX-2, shifting its activ-
ity from endothelial cell prostanoid production to favor
15 (R) HETE production. In the context of neu-
trophil interaction with endothelial or epithelial cells,
this COX-2–derived 15 (R) HETE can then be con-
verted by neutrophil-derived 5-LO to either 15-epi-LXA4

or 15-epi-LXB4 through cell-cell interactions [6]. These
ATLs share many of the bioactions of the native lipox-
ins but typically demonstrate greater potency [7]. The
production of ATL has led to the hypothesis that, in
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Fig. 1. Transcellular generation of lipoxin A4 (LXA4) and 15-epi-
lipoxin A4. P-selectin–mediated endothelial-polymorphonuclear neu-
trophil (PMN) interaction facilitates LXA4 biosynthesis. In a cytokine
primed milieu aspirin acetylation of endothelial cyclooxygenase (COX-
2) facilitates the transcellular generation of 15-epi-LXA4. Abbrevia-
tions are: LO, lipoxygenase; AA, arachidonic acid; LX: lipoxin, HETE:
hydroxyeicosatetraneoic acid. (From McMahon B, Mitchell S, Brady
HR, Godson C: Lipoxins: Revelations on resolution. Trends Pharma-
col Sci 22:391–395, 2001, with permission.)

addition to inhibition of prostaglandin biosynthesis, fur-
ther benefits of aspirin therapy may include promoting
generation of lipid mediators such as ATL that act lo-
cally to down-regulate inflammatory cell activity [7]. In
addition to transcellular biosynthetic pathways described
above lipoxin precursors such as 15-HETE can be formed
and incorporated into PMN cell membrane for subse-
quent release and transformation upon PMN activation
[7, 8].

Lipoxin biosynthesis has been described in many hu-
man and experimental diseases associated with cell-
cell contact, including glomerulonephritis, asthma, and
rheumatoid arthritis [3]. Lipoxin production is enhanced
in vitro by conditions that may be relevant to dis-
ease. The interaction of PMNs with platelets facilitates
lipoxin generation, as mentioned above [4]. Activation
of platelets with thrombin or platelet membrane disrup-
tion facilitates lipoxin generation during interaction with
leukocytes [9]. Th-2–derived lymphokines interleukin-4
(IL-4) and IL-13, putative negative regulators of the in-
flammatory and immune responses, both induce 15-LO
expression in blood monocytes and epithelial cells, and
are potential enhancers of synthesis during cell-cell in-
teractions [10, 11]. Other cytokines that enhance lipoxin
synthesis include granulocyte macrophage-colony stimu-
lating factor (GM-CSF), which stimulates 5-LO expres-
sion in granulocytes [12] and IL-3, which induces 5-LO
expression in mast cells [13]. Hypoxia and proinflamma-
tory mediators such as IL-1b , IL-6, and tumor necrosis
factor-a (TNF-a) have been shown to induce COX-2,

and may contribute to the generation of ATL in vivo [5].
Lipoxin production may also be affected by the local re-
dox potential as may occur during ischemic oxidant or
leukocyte-mediated stress. In this context reduced cellu-
lar glutathione levels favor lipoxin synthesis over that of
the proinflammatory cysteinyl-leukotrienes [14].

Lipoxin metabolism. Similar to other autocoids,
both lipoxins and ATL are rapidly inactivated by local
metabolism. In monocytes, this involves dehydrogena-
tion and x oxidation mediated, in part, by prostaglandin
dehydrogenase [15]. LXA4 undergoes dehydrogenation
at C15 and probably x oxidation at C20 [15]. Stable syn-
thetic analogues of both native lipoxins and ATL have
been developed with modifications such as addition of
methyl groups to C5 or C15 of LXA4, phenoxyl groups
at C16, or para-fluoro-phenoxyl groups at C16 to both
LXA4 and ATL [15, 16]. Such modifications render the
lipoxin resistant to dehydrogenation and oxidation, ex-
tending their half-lives and enhancing bioactivity and
bioavailability [17, 18]. The selectivity of the modifica-
tions has been highlighted by recent descriptions of re-
duced potency of C1 methyl ester of LXA4 and ATL in
vivo [19]. The enhanced stability and improved efficacy
of stable analogues of lipoxins and ATL permits explo-
ration of lipoxins stable analogues as potential therapeu-
tic agents [16].

Novel anti-inflammatory compounds. The interac-
tion of aspirin acetylated COX-2 with omega-3 polyun-
saturated fatty acid generates novel bioactive compounds
called resolvins [20, 21]. These endogenous lipid-derived
mediators have impressive anti-inflammatory properties
in vivo, mediated in part by modulating cytokine expres-
sion [21]. These novel compounds may in part explain
the anti-inflammatory mechanism of omega-3 fatty acids,
in addition to highlighting beneficial effects of the com-
bination of aspirin and omega-3 polyunsaturated fatty
acids. Together with lipoxin and ATL, these novel com-
pounds expand the field of potent local endogenous
mediators that control inflammation. Other endoge-
nously produced anti-inflammatory mediators may in-
clude the prostaglandin metabolites 15 deoxy�12,14PGJ2

[1] and annexin-1 [22–25]. Investigations on the cy-
clopentenone prostaglandins indicate that these may
suppress proinflammatory macrophage function through
modulation of nuclear factor-kappaB (NF-jB) activity,
activated protein-1 (AP-1), and signal transducer and ac-
tivation of transcription (STAT)–mediated transcription
[1].

Major lipoxin bioactions

Vascular and bronchial smooth muscle tone. Lipoxins
display vasodilatory roles in in vivo and in vitro disease
models [3]. A direct effect on renal hemodynamics is seen
with LXA4, manifesting as dose-dependent increases in
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renal plasma flow (RPF) and glomerular filtration rate
(GFR) [26]. In in vivo studies in rats, LXA4 antagonizes
LTD4-induced falls in GFR but not RPF, implying pre-
vention of LTD4-mediated reductions in the glomerular
ultrafiltration coefficient, a consequence of mesangial cell
contraction [27]. This action appears to be mediated, in
part, through the ability of LXA4 to act as a partial agonist
at some peptidoleukotriene receptors.

Several studies have demonstrated LXA4 inhibitory
effects on bronchial smooth muscle contraction in vitro
and in vivo [28, 29], including recently published inhi-
bition of bronchoconstriction by LXA4 analogue in re-
sponse to methacholine in a dose-dependent manner in
a murine model of asthma [30]. This bronchodilator ef-
fect is thought to be mediated by LXA4 stimulation of
nitric oxide generation, with inhibition of acetylcholine
release, resulting in reduced vagal nerve–mediated con-
traction of airway smooth muscle [31]. Lipoxin also stimu-
lates the formation of vasodilatory prostaglandins such as
prostacyclin by endothelial cells [32]. Thus, the vasoactive
properties of lipoxin are in part mediated by vasodilatory
prostaglandins and nitric oxide and/or partial agonist ac-
tivity at peptidoleukotriene receptors [31–33].

Leukocyte trafficking. Lipoxins are putative endoge-
nous “stop signals” that inhibit neutrophil recruitment
and promote resolution of inflammation [3]. Lipoxins
display selective actions on specific leukocytes: inhibit-
ing activation of PMNs and eosinophils and activating
monocytes and macrophages [34–49].

Native LXA4, LXB4, ATLs, and several synthetic
lipoxin analogues modulate key steps in PMN recruit-
ment (Table 1), including inhibition of neutrophil chemo-
taxis [34], attenuation of CD11/CD18 up-regulation [35],
inhibition of neutrophil-endothelial cell adhesion, and
migration of neutrophils across endothelial cell mono-
layers [36] and transmigration through epithelial cells
[37]. Chemotaxis of eosinophils in response to proin-
flammatory mediators is also inhibited by both lipoxin
and ATL [38]. Both lipoxin and ATL antagonize many
of the effects of proinflammatory leukotrienes, includ-
ing PMN adhesion mediated by CD11/CD18 expres-
sion [39], endothelial neutrophil adhesion dependent
on endothelial P-selectin [40], and PMN-mesangial cell
adhesion [40].

A role for both lipoxin and ATL in limiting PMN
trafficking and PMN-mediated damage is suggested
by evidence of attenuated PMN-mediated second or-
gan injury by lipoxin and ATL. Following hind limb-
ischemia/reperfusion, transgenic mice over expressing
LTB4 receptor demonstrate markedly increased PMN
infiltration of lungs and skin microabscesses [41]. Ad-
ministration of both lipoxin and ATL attenuated this
reperfusion-initiated second organ injury, with blunted
PMN infiltration of lung tissue, and topical application of
both agents was protective in acute skin inflammation.

Abrogation by lipoxin of ischemia/reperfusion injury–
mediated injury may not merely reflect lipoxin modu-
lation of leukocyte trafficking as will be discussed below
[42, 43].

Cytokine networks. Cytokines are integral to the co-
ordinated response to injury. Lipoxin and ATL have been
shown both in vivo and in vitro to play a key role in
regulating cytokine-chemokine axes. Both lipoxin and
ATL directly modulate the cytokine composition in the
inflammatory environment favoring generation of
proresolution mediators [44–48]. In cytokine-primed hu-
man synovial fibroblasts, LXA4 was found to inhibit
IL-1b-induced matrix metalloproteinase-3 (MMP-3) ex-
pression and IL-6 and IL-8 release while stimulating
the synthesis of tissue inhibitors of metalloproteinase
(TIMP)-1 and -2 proteins [44]. LXA4 and stable ana-
logues of lipoxin attenuate IL-8 release from TNF-a–
primed colonic cell lines [45], human colon ex vivo [46],
and from intestinal epithelia in response to challenge with
Salmonella typhimurium [47]. Additional involvement of
lipoxin in regulatory cytokine loops is demonstrated by
suppression of TNF-a–stimulated release of IL-1b and
macrophage inflammatory peptide-2 and superoxide pro-
duction and by increased production of the potent anti-
inflammatory cytokine IL-4 by both native LXA4 and
ATL [48].

Host defense. Modulation of proinflammatory re-
sponses during microbial infection by lipoxin in vivo has
been described [49, 50]. Lipoxin inhibits IL-12 production
in vivo by murine splenic dendritic cells stimulated with
extract of Toxoplasma gondii; furthermore, mice deficient
of 5-LO developed more severe infection with the par-
asite [49, 50]. Additional powerful immunomodulatory
effects of lipoxin include regulation of T-cell responses
to TNF-a, as recently described [51]. Activated human
peripheral blood T cells treated with ATL demonstrate
inhibition of TNF-a secretion, an effect that is mediated
through an LXA4 receptor [51]. Further host protective
effects of lipoxin include the recent report that epithelial
cells treated with ATL stimulate production of mRNA
for a host protective protein bactericidal/permeability-
increasing protein (BPI), a protein that inhibits endotoxin
signaling [52], thereby circumventing potential immuno-
suppressive effects of anti-inflammatory treatment.

Proresolution. Movement of monocytes to sites of
inflammation and injury and subsequent clearance of
apoptotic leucocytes by monocyte-derived macrophages
are key steps in wound healing and resolution of in-
flammation [1]. Defective clearance of apoptotic cells
by macrophages has been implicated in several chronic
inflammatory diseases, including glomerulonephritis and
systemic lupus erythematosis (SLE) [53]. The initial re-
sponse to inflammation is characterized by leukocyte in-
filtration to an inflammatory focus under the influence
of chemoattractants, generated by proinflammatory lipid
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mediators, including leukotrienes and prostaglandins [2].
Subsequently, in an attempt to limit the inflammatory
response, a second-phase response is observed, charac-
terized by a switch in the biosynthesis of lipid mediators
in favor of agents with proresolutory activities, including
lipoxins [2]. Thus, in addition to attenuating effects on
proinflammatory mediators and PMN recruitment, both
lipoxin and ATL are involved in the dynamic regulation
of the resolution-phase of PMN-mediated inflammation
[53–57]. Lipoxin and ATL cause potent activation and
increased adhesion of monocytes, without degranulation
suggesting that these actions of lipoxin are host protective
[15, 18]. Both lipoxins and ATL enhance phagocytosis of
apoptotic PMN by monocyte-derived macrophages [53,
54], rat bone marrow–derived macrophages in vitro with-
out proinflammatory cytokine release and in a murine
model of peritonitis in vivo [54], highlighting the ability
of lipoxin to promote clearance of apoptotic leukocytes
by macrophages at an inflammatory site [53]. This effect
seems to be coupled to lipoxin-mediated alterations of
the macrophage actin cytoskeleton [55].

Antiproliferative. Growth factor and chemokine-
triggered enhancement of cellular proliferation is a char-
acteristic of many injury and regeneration responses,
which typically subsides with resolution of inflammation.
Excessive proliferation is a hallmark of inflammatory dis-
eases (e.g., glomerulonephritis characterized by mesan-
gial cell proliferation and psoriasis with keratinocyte
hyperproliferation). Lipoxin modulates the proliferative
responses of mesangial cells to prototypic mitogens, in-
cluding platelet-derived growth factor (PDGF) [56]. In
mesangial cells in vitro, LXA4 inhibits LTD4-induced
mesangial cell proliferation by modulating LTD4-induced
transactivation of the PDGF receptor [56]. ATL is a
potent inhibitor of vascular endothelial growth factor
(VEGF) and LTD4-stimulated angiogenesis in vitro, and
also inhibits angiogenesis in an in vivo granuloma model
[57]. Attenuated epidermal proliferation by topical ATL
in an in vivo model of cutaneous inflammation has
recently been described [58]. This antiproliferative ef-
fect contributes to the aforementioned anti-inflammatory
mechanisms of lipoxin that can interfere with the activa-
tion and migration of inflammatory cells.

Lipoxin in disease. A physiologic role for lipoxin in
vivo is supported by the demonstration of lipoxin pro-
duction in diseases associated with cell-cell interaction,
including asthma, sarcoidosis, pneumonia, rheumatoid
arthritis, juvenile periodontal disease, and postcoronary
angioplasty [3]. It may be suggested that susceptibility
to chronic inflammation may reflect dysregulated gen-
eration of lipoxin [66] or end-organ responsiveness to
these agents. With this in mind, attempts have been made
to harness the lipoxin network in generating an anti-
inflammatory phenotype in numerous diseases charac-
terized by acute inflammation.

Efficacy of lipoxin analogues in acute renal failure
and glomerulonephritis

Over the past few decades, the mortality associated
with acute renal failure (ARF) due to acute tubular
necrosis (ATN) has changed little, despite introduction
and refinement of dialysis techniques and improvement
in the supportive care of patients with ARF [59–61]. This
lack of progress may be accounted for by increased age
and comorbidity among patients with ARF [58–60]. The
static mortality rates may also reflect the complete ab-
sence of therapies that influence the course of ATN and
the possible contribution of renal injury to dysfunction in
other organs (so-called “second-organ injury”).

Lipoxins are potential therapeutics in ischemic ARF,
as they can influence a variety of pathobiologic functions
that are relevant to ATN, including vascular tone, epithe-
lial cell injury and cytokine release, and leukocyte recruit-
ment and clearance (Table 1, Fig. 2). We have recently
demonstrated that the stable lipoxin analogue, 15-epi-16-
(FPhO)-LXA4-Me, is protective in experimental murine
ARF in vivo [42, 43]. Administration of the ATL, prior
to ischemia, resulted in significant functional and mor-
phologic protection and attenuated chemokine and cy-
tokine responses [42]. Using a transcriptomic approach to
explore the events that underlie lipoxin renoprotection,
we found that treatment with the ATL, prior to injury,
modified the expression of many differentially expressed
pathogenic mediators, including cytokines, growth fac-
tors, adhesion molecules, and proteases [43]. Lipoxin-
modulated transcriptomic response included many genes
expressed by renal parenchymal cells and was not merely
reflective of a reduced renal mRNA load by blunted
leukocyte recruitment. In aggregate, these results sug-
gested that the lipoxin analogue modulated events at the
core of ATN.

Acute glomeruluonephritis represents another impor-
tant cause of ARF [61]. Current treatments for this dis-
ease are limited by life-threatening side effects. Lipoxins
and ATL offer therapeutic potential, by switching the
cellular response from inflammation in favor of resolu-
tion, with dissipation of local gradients of proinflamma-
tory mediators, inhibition of further PMN recruitment,
enhanced clearance of recruited inflammatory cells, inhi-
bition of mesangial cell proliferation, and potential reg-
ulation of matrix accumulation in this context. In the
concanavalin A-ferritin model of immune complex
glomerulonephritis, treatment of rat neutrophils ex vivo
with LXA4 reduces their subsequent trafficking into in-
flamed glomeruli [4]. Decreased LXA4 biosynthesis is
associated with exaggerated neutrophil infiltration in
nephrotoxic serum nephritis in P-selectin knockout mice
[62]. Administration of wild-type platelets, that express
P-selectin, restore lipoxin generation and equilibrate
neutrophil infiltration between knockout and wild-type
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Table 1. Key biologic actions of lipoxins

Bioactivity
Cell type/tissue of lipoxin Reference

Polymorphonuclear Inhibits
neutrophil

Chemotaxis, adhesion, and
transmigration

34, 37

L selectin shedding 36
Interleukin (IL)-1b , monocyte

chemoattractant protein (MCP-1)
and superoxide production and
stimulates IL-4 production

48

Peroxynitrite, attenuation of nuclear
factor-kappa B (NF-jB) and
activated protein-1 (AP-1),
reduced IL-8 expression

82

Down-regulation of CD11/CD18
expression

35, 36

Monocytes/ Stimulates
macrophages

Chemotaxis and adhesion 15, 18
Phagocytosis of apoptotic PMN in

vivo and in vitro
53, 54

Actin reorganization 55
Attenuates

Bone marrow–derived macrophages
matrix metalloproteinase
(MMP-2) activity

54

L-selectin shedding 36
CD11/CD18 expression 36

Eosinophils Inhibits
Plasminogen-activated factor

(PAF)–stimulated chemotaxis,
IL-5 and eotaxin secretion

38

Endothelial cells Inhibits
P-selectin mobilization 39, 40
Adhesiveness for PMN 39
Attenuates
CD11/CD18 expression 36
CysLT1-mediated vascular leakage

+ PMN trafficking
39

Fibroblasts Inhibits
IL-6 and IL-8 release, reduction of

MMP-3 and increased tissue
inhibitor matrix
metalloproteinase (TIMP)-1 and
-2 expression

44

Enterocytes Inhibits
IL-8, MCP-1, and RANTES release

from pathogenic-stimulated cells
45, 47

Apoptosis 46
Stimulates
Expression of bactericidal

permeability-increasing protein
(BPI)

52

Mesangial cells Inhibits
Proliferation, contractility and

adherence for neutrophils
26, 40

Bronchial epithelium Blocks bronchoconstriction 67–69
Stimulates cytosolic calcium

increase with resultant chloride
release

70

Dendritic cells Inhibit IL-12 production in response
to stimulation by Toxoplasma gondii

49, 50

mice [62]. Overexpression of 15-LO in rat kidney, pro-
tects in a model of antiglomerular basement membrane
nephritis possibly related to increased lipoxin produc-
tion [63]. Together, these results support the concept
that it may be possible to harness the lipoxin network

Inhibition of
PMN recruitment

Endothelial cell

Modulation of
cytokine release

Modulation of
vascular tone

Clearance of
apoptotic PMN

Modulation of 
mesangial cell
matrix accumulation

Anti-proliferative

Anti-inflammation Pro-resolution

Fig. 2. Potential cellular targets of lipoxin in the kidney. Lipox-
ins demonstrate anti-inflammatory and proresolution actions within
the kidney, modulating responses in numerous cell types, includ-
ing endothelial cells, mesangial cells, polymorphonuclear neutrophils
(PMNs), monocytes, and macrophages as described in the text.

therapeutically in ARF and inflammatory glomerular
disease.

Effects in other diseases

Asthma. A possible role for the involvement of
lipoxin in asthma has been highlighted by the detection
of LXA4 in the bronchoalveolar lavage fluids of patients
with pulmonary diseases, including asthma [64]. Levels of
LXA4 are significantly higher in the sputum of mild asth-
matic patients compared to the levels measured in normal
subjects or severe asthmatics [65]. In addition PMNs from
mild asthmatics in vitro generate larger amounts of LXA4

compared to normal individuals [65]. Aspirin-intolerant
asthmatics display lower biosynthetic capacity for these
potentially protective lipid mediators relative to aspirin-
tolerant asthmatics or healthy subjects [66].

LXA4 stable analogue attenuates both airway hy-
perreactivity and inflammation in a murine model of
asthma [67], inhibiting generation of proinflammatory
mediators IL-5 and IL-13. Native LXA4 given to hu-
man asthmatics inhibits LTC4-stimulated airway hyperre-
sponsiveness [68] and blocks LTD4-initiated constriction
of airway smooth muscle in vitro [69]. Together these
findings suggest that lipoxin plays a key physiologic
role in asthma, regulating airway hyperreactivity via ef-
fects on key proinflammatory pathways and antagoniz-
ing cysteine-leukotriene–mediated actions on bronchial
smooth muscle. Recent reports of LXA4 stimulating
rapid cytosolic calcium increase in human bronchial ep-
ithelium with resultant chloride release suggests that
in addition to its anti-inflammatory role, LXA4 maybe
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Table 2. Actions of lipoxin and aspirin-triggered lipoxins in vivo in renal disease

Renal disease Model Lipoxin bioaction Reference

Acute renal failure Murine ischemia- Functional and histologic protection 42
reperfusion injury Modified transcriptomic response to injury 43

Glomerulonephritis Concanavalin A-ferritin Treatment of rat neutrophils ex vivo with lipoxin A4 (LXA4) blunts
their subsequent trafficking into inflamed glomeruli

4

Nephrotoxic serum nephritis in
P-selectin knockout

Decreased LXA4 biosynthesis is associated with exaggerated
neutrophil infiltration, measures to restore lipoxin generation and
reduce neutrophil infiltration

62

Antigomerular basement
membrane nephritis

Overexpression of 15-lipoxygenase (LO) in rat kidney protects from
injury

63

Vascular tone Mesangial cell contraction LXA4 antagonizes leukotriene D4 (LTD4)-induced falls in
glomerular filtration rate but not renal plasma flow in rat kidney
(native lipoxin)

27

involved in ionic transport regulation in the lung [70],
thus offering potential for use in respiratory diseases as-
sociated with ion transport dysfunction such as cystic fi-
brosis.

Skin. The potential therapeutic efficacy of these
agents has been evaluated in dermal inflammation. In
vivo both native LXA4 and aspirin triggered analogues
inhibit PMN infiltration and vascular permeability in a
model of dermal inflammation [71]. ATL modulates, in
a dose-dependent manner, PMN infiltration, edema, and
epidermal proliferation in several in vivo inflammatory
dermatoses [72]. When compared to standard topical
anti-inflammatory treatment (methylprednisolone) and
LTB4 receptor antagonists (LTB4 R-Ant) in these cuta-
neous inflammatory models, topical ATL showed equiv-
alent efficacy on most end points measured [72]. This
further extends the therapeutic potential of these agents,
without the detrimental local and systemic side effects
associated with currently used corticosteroids.

Lipoxin and its stable analogues are currently being
evaluated in other inflammatory diseases associated with
PMN-mediated tissue injury such as periodontal disease
[73] and intestinal inflammation (see Table 3). Several
chronic inflammatory diseases, including SLE, are asso-
ciated with accumulation of apoptotic leukocytes at an
anti-inflammatory focus. Recent data suggest potential
therapeutic gain for lipoxins in such diseases. In addi-
tion, a protective role for LXA4 in protecting gastric
mucosa from aspirin-induced damage has been recently
highlighted [74]. LXA4 in a dose-dependent manner at-
tenuated aspirin-induced leukocyte adherence in in vivo
studies, suggesting further anti-inflammatory effects [74].

Mechanism of action

Lipoxin receptors. Numerous cell types including
PMN, monocytes, epithelia, endothelia, and fibroblasts
express high affinity (Kd in subnanomolar range) G pro-
tein coupled receptors (GPCR) for LXA4 (ALXR) [3].
Cloning of human, murine and rat receptors indicates
that this receptor has homology with members of the
chemokine receptor superfamily [56, 75]. A provisional

nomenclature for the LX receptor has only recently been
proposed [76]. The ALXR was originally identified as
a low affinity N-formyl-methionyl-leucyl-phenyalanine
(FMLP) receptor and there is accumulating evidence
that the ALXR binds pleiotropic ligands: lipids, peptides,
and proteins, including serum amyloid A, amyloid B, and
prion proteins [22–25], the consequences of ALXR acti-
vation being dependent on the activating ligand.

Receptor expression may be induced by interferon c
(INF-c) and IL-13, mediators thought to down-regulate
inflammatory responses [45]. In several cell types, includ-
ing mesangial and endothelial cells it has been shown that
LXA4 interacts with a subclass of peptido-leukotriene
receptors (cysLT1) acting as a partial agonist, attenuat-
ing the pro inflammatory effects of LTD4 in these cells
[56]. We have shown that LXA4, acting through dis-
tinct GPCR, inhibits LTD4-induced mesangial cell pro-
liferation by modulating LTD4-induced transactivation
of the PDGF receptor and subsequent phosphatidylinos-
itol 3 (PI3)-kinase activation and mitogenic responses
[56]. Studies in polarized intestinal epithelial cells have
shown the LXA4 receptor to be preferentially expressed
on the basolateral cell surface, facilitating locally gener-
ated lipoxin to act rapidly on epithelial lipoxin receptor to
down-regulate intestinal inflammation [77]. In addition
to acting via GPCRs, there is evidence that LXA4 can
activate the aryl hydrocarbon receptor (AhR), a ligand-
activated transcription factor, albeit at high (micromolar)
concentrations [78].

ALXR signaling. Current understanding of the intra-
cellular signaling pathways triggered on lipoxin receptor
engagement remains incomplete. Controversy exists over
whether LXA4 binding to ALXR triggers distinct anti-
inflammatory signals or whether receptor binding results
in down regulation of proinflammatory signals [56].

Engagement of ALXR in both monocytes and PMNs
results in a distinct profile of cell signalling events that
may include guanosine triphosphate (GTP) hydrolysis,
pertussis toxin-sensitive mobilization of intracellular cal-
cium, activation of phospholipases A2, C, and D, and
arachidonic acid release [3].
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Table 3. Lipoxins in other disease models

Disease Lipoxin and aspirin-triggered lipoxin (ATL) bioactions Reference

Asthma Lipoxin A4 (LXA4) detected in the bronchoalveolar lavage fluids of patients with asthma 64
Higher levels of LXA4 in sputum of mild asthmatic patients compared to normal subjects or severe

asthmatics
65

Polymorphonuclear neutrophils (PMNs) from mild asthmatics in vitro generate larger amounts of LXA4
compared to normal individuals

65

Aspirin-intolerant asthmatics display lower biosynthetic capacity for LXA4 than aspirin-tolerant
asthmatics or healthy subjects

66

LXA4 stable analogue attenuates both airway hyperreactivity and inflammation in vivo, inhibiting
generation of pro-inflammatory mediators interleukin (IL)-5 and IL-13

67

Native LXA4 given to human asthmatics inhibits leukotriene C4 (LTC4)-stimulated airway
hyperresponsiveness and blocks LTD4-initiated constriction of airway smooth muscle in vitro

68

Dermal inflammation Native LXA4 and ATL inhibit PMN infiltration and vascular permeability in vivo 71
ATL modulates PMN infiltration, edema, and epidermal proliferation in several in vivo inflammatory

dermatoses
72

Peridontal disease Both topical LXA4 analogues and ATL reduce Porphyromonas gingivalis–elicited PMN infiltration 73
Intestinal inflammation ATL improves clinical features of DSS-induced inflammatory colitis 82

Attenuated aspirin-induced gastritis 74
Induces bactericidal permeability-increasing protein (BPI) expression, localized to cell surface 52

DSS, dextran sodium sulphate.

Lipoxin may activate specific anti-inflammatory sig-
nals as highlighted by identification of the polyisoprenyl
phosphate-signaling pathway [79]. Presqualene diphos-
phate (PDSP), a component of this pathway, is a potent
regulator of intracellular signals in PMN. Activation of
the ALXR inhibits PDSP remodeling, resulting in accu-
mulation of PDSP leading to inhibition of phospholipase
D and superoxide anion generation and PMN activation
[80].

In gastrointestinal epithelial cells and human leuko-
cytes, lipoxin has been shown to inhibit the transcription
factor NF-jB, which is a central regulator of inflam-
matory molecules and also is key for proliferation and
antiapoptosis [82, 83]. In an in vitro model of acute inflam-
mation, Salmonella typhimurium–induced colitis, LXA4

analogue mediated down-regulation of proinflammatory
gene expression via inhibition of the NF-jB pathway [81].
Inhibition of cytotoxic oxidant, peroxynitrite (ONOO−)
formation by activated leukocytes, concomitant with re-
duced activation of NF-jB and AP-1, and subsequent
attenuation of proinflammatory IL-8 gene expression by
pretreatment with both lipoxin and ATL, has been re-
cently demonstrated [82].

In PMNs, stimulation by lipoxin stable analogue has
been shown to up-regulate NAB1, a transcriptional core-
pressor identified previously as a glucocorticoid response
gene [83]. NAB1 can counterregulate or “switch off”
proinflammatory programs highlighting protective anti-
inflammatory transcriptional signaling by lipoxin. In re-
nal cells in vivo, we have shown that lipoxin modulates
anti-inflammatory signals, up-regulating expression of
suppressor of cytokine signaling 1 and 2 (SOCS1 and
2) [42]. Investigation of cDNA microarray data from
lipoxin-treated and control samples may indicate tran-

scriptional regulatory modules sensitive to modulation by
lipoxin within the promoters of distinct cohorts of genes
[43].

Additional signaling pathways have been highlighted
in monocytes and macrophages, by the observation that
LXA4 and stable lipoxin analogues induce changes in
actin cytoskeleton in these cells but not in PMNs [55].
Lipoxin-mediated cytoskeleton reorganization is depen-
dent on monomeric GTPases RhoA- and Rac in THP-1
cells differentiated to a macrophage-like phenotype [55].

Transinactivation. A novel mechanism of action,
namely receptor transinactivation by LXA4, has been
demonstrated in human mesangial cells [56]. LXA4 in-
hibits PDGF activation and proliferative responses by
PDGF and subsequent mitogenic responses as a conse-
quence of receptor transinactivation [56]. This appears
to be coupled to modulation of recruitment of SH2 do-
main containing proteins to the activated PDGF receptor.
Given the significance of PDGF in regulating production
of transforming growth factor-b (TGF-b) and other fi-
brotic agents [84], this suggests potential antifibrotic ac-
tions of lipoxins.

Receptor ligands. As is typical of the chemokine re-
ceptor superfamily, the ALXR binds pleiotropic lipid and
peptide ligands, including N-formyl hexapeptides, serum
amyloid A protein, prion protein, and the glucocorticoid-
derived peptide annexin-1 [3, 22–25]. Interestingly, en-
gagement of serum amyloid A protein with ALXR in
human neutrophils, generates a proinflammatory phe-
notype, triggering PMN chemotaxis, IL-8, and TNF-
a production as a consequence of NF-jB activation
[22]. The production of this proinflammatory response
in PMNs by peptide agonists can be blunted by LXA4

[22]. This novel finding of a GPCR mediating disparate
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functions dependent on ligand binding suggests the
ALXR plays a key role in governing inflammatory and
immune responses.

The human ALXR has recently been demonstrated
to bind glucocorticoid-derived annexin-1 peptide [23].
Glucocorticoids, in addition to attenuating NF-jB acti-
vation and proinflammatory gene transcription, regulate
the synthesis of the anti-inflammatory peptide annexin-
1 [23–25]. Glucocorticoid-derived annexin-1 peptide has
been demonstrated in vivo to attenuate leukocyte mi-
gration and both acute and chronic inflammation [24,
25]. Addition of ATL to this model results in synergistic
anti-inflammatory effects [23]. Annexin-1 knockout mice,
in models of acute inflammation, demonstrate exagger-
ated inflammatory responses, effects that are associated
with resistance to the anti-inflammatory effects of gluco-
corticoids [25]. This novel mechanism of action of cor-
ticosteroids suggests that endogenous lipid and peptide
anti-inflammatory mediators in binding to a common re-
ceptor may share similar intracellular signaling pathways.
Thus, exploring the precise signals triggered on diverse
ligand binding to this GPCR offers enormous potential
for therapeutic gain.

CONCLUSION

The growing repertoire of powerful anti-inflammatory
and proresolution actions of endogenous and aspirin trig-
gered lipoxins coupled to their efficacy in vivo suggest
these agents possess exciting therapeutic potential for use
in human disease. As the cellular and molecular basis for
these impressive actions continues to be explored and
with new evidence that other anti-inflammatory media-
tors share lipoxin-evoked responses, exciting prospects
for future therapies unfold.
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