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Diet has a significant impact on colorectal cancer and both dietary fiber and plant-derived compounds have been
independently shown to be inversely related to colon cancer risk. Butyrate (NaB), one of the principal products of
dietary fiber fermentation, induces differentiation of colon cancer cell lines by inhibiting histone deacetylases
(HDACs). On the other hand, (−)-epicatechin (EC) and (−)-epigallocatechin gallate (EGCG), two abundant phe-
nolic compounds of green tea, have been shown to exhibit antitumoral properties. In this study we used colon
cancer cell lines to study the cellular and molecular events that take place during co-treatment with NaB, EC
and EGCG. We found that (i) polyphenols EC and EGCG fail to induce differentiation of colon adenocarcinoma
cell lines; (ii) polyphenols EC and EGCG reduce NaB-induced differentiation; (iii) the effect of the polyphenols
is specific for NaB, since differentiation induced by other agents, such as trichostatin A (TSA), was unaltered
upon EC and EGCG treatment, and (iv) is independent of the HDAC inhibitory activity of NaB. Also, (v) polyphe-
nols partially reduce cellular NaB; and (vi) on a molecular level, reduction of cellular NaB uptake by polyphenols
is achieved by impairing the capacity of NaB to relocalize its own transporter (monocarboxylate transporter 1,
MCT1) in the plasma membrane. Our findings suggest that beneficial effects of NaB on colorectal cancer may
be reduced by green tea phenolic supplementation. This valuable information should be of assistance in choosing
a rational design for more effective diet-driven therapeutic interventions in the prevention or treatment of colo-
rectal cancer.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Colorectal cancer constitutes one of the most frequent malignancies
worldwide and is one of the prevalent causes of cancer-related mortal-
ity in the western world [1]. Therefore, further development of thera-
peutic and preventive approaches to control this disease is clearly
needed. A diet rich in fiber and plant-derived compounds present in
tea, fruits and vegetables has been inversely associated with the risk
of colorectal cancer [2,3]. Furthermore, theprotective effect of the bioac-
tive compounds present in these dietary constituents has been shown
to be related to the activity of human intestinal microbiota. In this
te; EC, (−)-epicatechin; EGCG,
MCT1, monocarboxylate trans-
nyltetrazolium bromide; TSA,
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regard, consumption of natural phenolics has been shown to increasemi-
crobial fermentation products such as butyrate (NaB— sodium butyrate)
from dietary fiber [4–6], thereby providing a beneficial effect to the host.
However, themechanism bywhich NaB and phenolics interact at the cel-
lular level has not been satisfactorily addressed.

NaB has been described as a potent antitumoral agent against colon
cancer, and has been used in clinical trials for treating cancers [7]. NaB is
a four-carbon fatty acid that represents amajor oxidative fuel for colonic
epithelial cells [8]. Previous studies have demonstrated that deficiency
in the availability or utilization of NaB causes colitis and may be in-
volved in ulcerative colitis and colon carcinogenesis [9,10]. Moreover,
NaB induces apoptosis and cell cycle arrest in the G1/G0 phase, accom-
panied by terminal cell differentiation in several colon cancer cell lines
[11–13]. The mechanism by which NaB induces differentiation primar-
ily involves epigenetic regulation of gene expression through the inhibi-
tion of histone deacetylases (HDACs) [14], which remove acetyl groups
from lysine residues of histones and decrease the affinity of protein
transcription complexes for DNA.

Numerous studies have evaluated the antitumor activities of green
tea phenolics in different experimental systems. The general consensus
is that these tea components promote cancer cell growth inhibition and
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apoptosis, and reduce invasion, angiogenesis and metastasis [15]. A
plethora of molecular mechanisms of tea phenolics has been suggested,
including anti-oxidant and pro-oxidant effects, inhibition of mitogen-
activated protein kinases, or modulation of growth factor receptor tyro-
sine kinases and the activity of transporters through alteration of lipid
rafts by tea catechins (reviewed in Ref. [16]).

The effect of green tea catechins on differentiation has been addressed
in several cell lines [17–19], including colon cancer cells [20], in which
their effects appear to be cell line-specific. Moreover, a recent study has
investigated the impact of green tea phenolics onNaB-induced colon can-
cer cells differentiation and concluded that changes in NaB uptake in
Caco2 cells induced by phenolics do not correlate with changes upon
cell differentiation [21]. In the present study we evaluated the effect of
the major green tea phenolics (−)-epigallocatechin gallate (EGCG) and
(−)-epicatechin (EC) on NaB-induced differentiation in human colon ad-
enocarcinoma HT29 cells. We demonstrate that phenolics interfere with
NaB induced differentiation, andwe propose amechanism for this inhibi-
tion based on the altered localization of amonocarboxylate transporter in
plasma membrane lipid rafts.

2. Materials and methods

2.1. Chemicals and cell culture conditions

All chemicalswere purchased fromSigma-Aldrich Co. (St. Louis,MO),
unless otherwise specified. HT29 human colon adenocarcinoma cells
(obtained from the American Type Culture Collection) were grown in
Dulbecco's modified Eagle medium 25 mM D-glucose supplemented
with 10% heat-inactivated fetal calf serum (PAA Laboratories, Pasching,
Austria) and 0.1% antibiotics (100 U/mL penicillin and 100 μg/mL strep-
tomycin) (Invitrogen, Paisley, UK). Caco2 cells were maintained in
Dulbecco's modified Eagle medium 25 mM D-glucose, 20% fetal calf
serum, 2 mM glutamine, and 1% antibiotics (100 U/mL penicillin and
100 μg/mL streptomycin). NCM460 (INCELL Corporation, San Antonio,
Texas, USA) is an epithelial cell line derived from the healthy colon mu-
cosa of a 68-year-old Hispanic male [22]. These cells were grown as a
monolayer culture in M3Base medium (which contains growth supple-
ments and antibiotics) supplemented with 10% heat-inactivated FCS
and 2.5 mM of D-glucose. Cells were cultured at 37 °C in a humidified
atmosphere with 5% CO2.

2.2. Determination of cell viability

Assays were performed using a variation of theMTT assay described
by Mosmann [23]. HT29 cells were seeded at 3 × 103 cells/well in 96-
well flat-bottom plates. After 24 h of incubation at 37 °C, fresh media
containing (−)-epicatechin (EC) and (−)-epigallocatechin gallate
(EGCG) at different concentrations were added. After 72 h, the media
was removed, and 50 μL of MTT (1 mg/mL in phosphate buffered sa-
line) with 50 μL of freshmediumwas added to eachwell and incubated
for 1 h. The MTT reduced to blue formazan and the precipitate was
dissolved in 100 μL of dimethyl sulfoxide. Absorbance valuesweremea-
sured on an ELISA plate reader (550 nm) (Tecan Sunrise MR20-301,
Tecan, Salzburg, Austria).

2.3. Alkaline phosphatase (AP) activity assay

AP activity was measured using p-nitrophenyl phosphate as a sub-
strate according to the published procedures [24]. HT29 cell cultures
were started with 6 × 105 in 60-cm2 petri dishes and incubated for
24 h at 37 °C. New medium containing phenolics, butyrate (NaB) and
NaB + phenolics was added and incubated for 24, 48 and/or 72 h at
37 °C. The medium was changed every 24 h. After incubation, the cells
were washed with phosphate buffered saline (PBS), detached from the
flasks using 0.025% trypsin-EDTA (Invitrogen) and then resuspended
in lysis buffer (1 mM dithiothreitol, 1 mM EDTA, 0.02% Triton X-100,
0.02% sodium deoxycholate, 0.2 mM phenylmethylsulfonyl fluoride,
1% sodium azide and 20 mMTris-HCl, pH 7.5). Cells were homogenized
using a laboratory sonicator (1/2 Liter Branson 200 Ultrasonic bath,
5 min, 40 kHz, 4 °C) and immediately ultracentrifuged at 105,000 ×g
for 1 h at 4 °C. The supernatant was separated and used for the determi-
nation of AP activity using a CobasMira Plus chemistry analyzer (HORIBA
ABX, Montpellier, France). The enzyme activity was estimated by mea-
suring the absorbance at 405 nm due to formation of p-nitrophenol
and was expressed as mU/mg of protein. Protein determination was
performed in the same lysates using the BCA protein assay (Pierce Bio-
technology, Rockford, IL).

2.4. Histone deacetylase (HDAC) assay

HT29 cells were incubated in 60-cm2 petri dishes for 48–72 h at 37 °C
(65–85% confluence). Next, cells were washed in PBS pH 7.4 followed by
incubation in hypotonic buffer (20 mM HEPES pH 7.6, 20% glycerol,
10 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA, 0.1% Triton X-100) for
5 min. Then, cells were collected and nuclei pelleted at 1000 rpm in the
microfuge for 10 min. Purified nuclei were resuspended in hypertonic
buffer (20 mM HEPES pH 7.6, 20% glycerol, 450 mM NaCl, 1.5 mM
MgCl2, 0.2 mM EDTA, 0.1% Triton X-100) and gently shaken for 1 h at
4 °C. After centrifuging at 13,000 rpm in the microfuge for 5 min at
4 °C, the supernatant obtainedwas thenuclear extract. Then, nuclear ex-
tracts of non-treated HT29 cells were quantified using a standard BCA
Protein Assay (Pierce Biotechnology, Rockford, IL) and an equivalent
quantity of protein was subjected to treatment with NaB and NaB/
phenolics for 30 min at 37 °C. HDAC activity was measured employing
a Fluorometric Assay Kit (Biovision), following manufacturer's instruc-
tions. The procedure involves the use of the HDAC substrate, which
consists of an acetylated lysine side chain, and incubation with a sample
containing nuclear extract. Deacetylation sensitizes the substrate,
and treatment with the lysine developer produces a fluorophore,
which can be analyzed with a fluorometer (Ex/Em = 350 − 380/
440 − 460 nm). A HeLa cell nuclear extract was used as a positive con-
trol. Percent inhibition of treated cells was compared with HT29
untreated controls.

2.5. [14C]-NaB uptake

HT29 cells were seeded at 2 × 104 cells/well in 24-well plates.
After 24 h of incubation at 37 °C, fresh media containing NaB and
NaB + phenolics was added and incubated for 48 h at 37 °C. Themedi-
umwas changed after 24 h of incubation and left 24 hmore. Next, cells
were incubated at room temperature for 20 min in tracer-free buffer
containing (in mM): 110 NaCl, 1 CaCl2, 4 KCl, 0.44 K2HPO4, 1 MgSO4, 5
glucose, 50 mannitol and 5 HEPES, pH 7.4. Cells were then washed
and incubated with buffer containing (in mM): 259 mannitol, 20
HEPES, pH 6.5, 2 [14C]-NaB (1 μCi/mL) for 5 min. The uptake was
stopped by washing the cells twice with ice-cold PBS. Finally, cells
were solubilized with 0.5 N NaOH for at least 4 h. The protein concen-
tration wasmeasured by the method of BCA. Incorporated radioactivity
was counted by a Tri-CARB 1600-TR liquid scintillation counter
(Packard Instruments, Downers Grove, IL). The values were expressed
as nmol/mg protein/5 min.

2.6. Cell lysates and Western blotting

6 × 105HT29 cellswere plated on60-cm2 petri dishes and incubated
for 24 h. Then, freshmediumwithNaB andNaB + phenolicswas added
and incubated for 48 h. After incubation, the cellswerewashedwith ice-
cold PBS and lysed in 20 mM Tris·HCl, pH 7.5, 150 mM NaCl, 1% Triton
X-100, 1 mM EDTA, 1 mM EGTA, and 1× complete protease inhibitor
cocktail. The lysate was sonicated and centrifuged at 5,000 ×g for
5 min at 4 °C, and protein concentration was determined by Bradford.
The samples obtained above were subjected to 10% SDS–PAGE and



Fig. 1. Dose–effect curves of (−)-epicatechin and (−)-epigallocatechin gallate on cell vi-
ability. HT29 cell cultures were treated with increasing doses of (−)-epicatechin (EC)
(A) or (−)-epigallocatechin gallate (EGCG) (B) as indicated on the x axis for 72 h. Cell
viability was expressed as a percentage with respect to untreated control. IC20 (EC) =
100 μM and IC20 (EGCG) = 20 μM.

2266 S. Sánchez-Tena et al. / Biochimica et Biophysica Acta 1832 (2013) 2264–2270
transferred to nitrocellulose membranes. MCT1 expression was detect-
ed utilizing human anti MCT1 antibody (Santa Cruz Biotechnology, sc-
50324). Flotillin expression was analyzed using human anti flotillin
antibody (BD Transduction Laboratories, 610820). β-Actin was used as
a loading control (MP Biomedicals, Eschwege, Germany, 69100).

2.7. Rafts isolation and biochemical characterization

Lipid rafts were isolated by floatation on OptiPrep density gradient
as previously described [25]. HT29 human colon adenocarcinoma cells
were started in 60-cm2 petri dishes with the same number of cells
(6 × 105) and incubated for 24 h at 37 °C. Then, cells were exposed to
or not exposed to NaB or NaB + phenolics for 48 h. After incubation,
cells were resuspended and incubated for 30 min at 4 °C in TNE buffer
containing (in mM) 25 Tris (pH 7.4), 150 NaCl, 5 EDTA, and 1% Triton
X-100 supplemented with 1× complete protease inhibitor cocktail.
The membranes were then adjusted to 40% final concentration of
OptiPrep and layered at the bottom of density gradient with steps of
final concentrations of 35, 30, 25, and 20% of OptiPrep in TNE buffer.
TNE buffer was laid on the top of the gradient, which was then centri-
fuged at 48,000 rpm for 4 h at 4 °C. Fractions of 1 mL were collected
from the top to the bottom of the gradient and then analyzed byWest-
ern blotting (see above). MCT1 and the described marker for lipid rafts,
flotillin, were analyzed in each fraction [26].

2.8. Data presentation and statistical analysis

Data are given as the means ± S.D. (standard deviation). For each
assay, the parametric unpaired two-tailed independent sample t-test
was used and differences were considered to be significant when
p b 0.05 or p b 0.001.

3. Results

3.1. Viability of HT29 cells treated with (−)-epicatechin (EC) and
(−)-epigallocatechin gallate (EGCG)

To determine a non-toxic but still active concentration of EC and
EGCG, HT29 cell viability was determined in the presence of different
phenolic concentrations (Fig. 1). From the obtained dose-viability
curve we estimated the inhibitory concentration 20 (IC20), defined as
the concentration of product that causes 20% inhibition of cell viability
with respect to viability of control (non-treated) cells after 72 h. Al-
though increasing concentrations of both EC and EGCG produced a
dose-dependent decrease in cell viability, EGCG was much more effi-
cient at doing so. The 72 h IC20 values obtained were 100 μM for EC
and 20 μM for EGCG, which were the concentrations used throughout
the study.

3.2. Phenolics reduce butyrate (NaB)-induced differentiation in colorectal
adenocarcinoma cell lines

Firstly, we studied whether EC and EGCG affected NaB-induced dif-
ferentiation. Cells were exposed to 2 mM NaB for 24, 48 and 72 h,
alone or in the presence of 100 μMEC or 20 μMEGCG. NaB-induced dif-
ferentiationmeasured as an increase in alkaline phosphatase (AP) activ-
ity, was reduced by both phenolics at 48 and 72 h of combined
treatment (Fig. 2A). EC also reduced NaB-induced AP activity at 24 h
(Fig. 2A). It should be noted that treatments with phenolics alone had
no impact on differentiation (Fig. 2B). To rule out a direct effect of the
phenolics on AP activity, we repeated the experiments measuring the
activity of another differentiation marker (aminopeptidase N) at 48 h.
Consistently, phenolics reduced NaB-induced differentiation (Supple-
mental Fig. 1A) and did not show an increase in differentiation when
used alone (Supplemental Fig. 1B). This effect of phenolics was also ex-
tended to another epithelial colorectal adenocarcinoma cell line, Caco2,
which showed the same differentiation profile with respect to NaB and
phenolics treatment (Supplemental Fig. 2A and B).

To verifywhether our observationswere cancer cell line-specific,we
determined NCM460 cell differentiation, measured as AP activity, after
incubation with 2 mM NaB, alone or in the presence of 100 μM EC or
20 μM EGCG, for 24, 48 and 72 h. Supplemental Fig. 3 shows that cell
differentiation was not significantly altered when NCM460 cells were
treated with NaB and phenolics.

3.3. The effect of tea phenolics on differentiation is not related to histone
deacetylase (HDAC) activity modulation

Given that the NaB-induced differentiation is related to its inhibition
of HDAC activity [27], we decided to study the effects of EC and EGCG in
HDAC-related differentiation. Firstly, we studied whether phenolics
modified differentiation induced by trichostatin A (TSA), another well-
described HDAC inhibitor. HT29 cells were exposed to 180 nM TSA for
48 h, alone or in presence of 100 μM EC and 20 μM EGCG. The addition
of phenolics to TSA had no impact on TSA-induced differentiation, mea-
sured as AP activity (Fig. 3A).

To confirm these results, we wondered whether phenolic com-
pounds could directly alter the HDAC activity of HT29. We determined
theHDAC activity of nuclear extracts after incubationwithNaBandphe-
nolics alone or in combination. As expected, NaB was found to be a po-
tent HDAC inhibitor, significantly decreasing HDAC activity by 55% and
67% at 500 μM and 2 mM of NaB, respectively (Fig. 3B). Phenolics had
no effect with respect to HDAC activity, both when incubated alone
(Fig. 3B) and incubated simultaneously with NaB (Fig. 3C). These results



Fig. 2. Phenolics reduce butyrate-induced differentiation. (A) HT29 cells were treated with butyrate (NaB) 2 mM or with NaB and phenolics (EC 100 μM and EGCG 20 μM) for 24, 48 and
72 h and alkaline phosphatase (AP) activity wasmeasured and normalized by protein level. The data are normalized and statistically testedwith respect to NaB-treated cells. Mean ± SD;
n ≥ 3; **Different fromNaB, p b 0.01. (B) HT29 cellswere treatedwith NaB2 mMorwith phenolics alone (EC 100 μMand EGCG20 μM) for 24, 48 and72 h andAP activitywasmeasured.
The data are normalized and statistically tested with respect to Ctrl cells. Values are mean ± SD; n ≥ 3; */**Different from Ctrl, p b 0.05/p b 0.01.
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led us to conclude that phenolics do not affect NaB differentiation by di-
rectly modulating HDAC activity.

3.4. Phenolics impair NaB entry to the cell

To study themechanism of interference between NaB and phenolics
we studied the cellular entry of NaB into HT29 cells. HT29 cells were in-
cubated with 2 mM NaB alone or in the presence of 100 μM EC and
20 μMEGCG for 48 h and acute [14C]-NaB incorporation wasmeasured.
We observed that NaB treatment enhanced its own transport (Fig. 4).
Moreover, we detected a significant decrease in [14C]-NaB cellular
entry after NaB and phenolics incubation relative to NaB-treated cells
(Fig. 4).

3.5. The effect of tea phenolics onNaB-induced differentiation is not related to
monocarboxylate transporter 1 (MCT1) expression, but with its membrane
localization

Next, we evaluated the role of the intestinal transporter MCT1,
which is known to be involved in NaB transport [28]. We examined
MCT1 protein expression in response to NaB and phenolics. Western
blot analysis of MCT1 showed no differences at protein level in any of
the treatments (Fig. 5A).

Since phenolics have been shown to be lipid raft regulators [29], we
next investigatedwhether EC and EGCG caused any alterations in the as-
sociation ofMCT1with lipid rafts. Lipid raft microdomains were isolated
by OptiPrep gradient ultracentrifugation and proteins in the gradient
fractions were analyzed by SDS–PAGE and Western blot. Flotillin rich
fractions account for the lipid rafts. As shown in Fig. 5B, MCT1 was pre-
dominantly expressed in these high-density non-raft fractions of control
HT29 cells, even though someMCT1 expressionwas found in lipid rafts-
corresponding fractions. NaB treatment for 48 h enhanced the presence
of MCT1 in low-density fractions representing lipid rafts. When phe-
nolics were added to NaB, MCT1 was redistributed in all fractions,
counteracting NaB-mediated enhanced localization of the transporter
in the lipid rafts (Fig. 5B).

4. Discussion

In this study we analyzed the effect of phenolics (−)-epicatechin
(EC) and (−)-epigallocatechin gallate (EGCG) on butyrate (NaB)-
induced differentiation. We decided to use the IC20 concentrations at
72 h (EC: 100 μM, EGCG: 20 μM) to avoid massive cell damage by phe-
nolics. We used a NaB concentration of 2 mM, which has been demon-
strated to induce differentiation inHT29 colon cancer cells [9]. Although
treatment with EC and EGCG alone did not change cell differentiation,
NaB-induced differentiation was reduced by both phenolics in colon
cancer cells (Fig. 2, Supplemental Fig. 1, Supplemental Fig. 2). In con-
trast, previous studies using colon cancer Caco2 cells showed that
ECGC was not able to revert the differentiation induced by NaB [21].
This discrepancy could be explained because a larger concentration of
NaB (5 mM) and lower concentrations of EGCG (0.1–10 μM) were
used. Worthy of note, since NaB effects were not exerted on the non-
tumoral NCM460 cells (Supplemental Fig. 3), the observed effects are
cancer cell specific.

The mechanism of action of NaB in colon cancer mainly includes
effects on differentiation via its inhibition of histone deacetylases
(HDACs). EGCG has also been identified as an inhibitor of HDAC activity
in prostate, skin and breast cancer cells [30]. However, studies in HT29
cells have found no significant change in the HDAC activity of cytoplas-
mic or nuclear fractions after sulforaphane and EGCG treatment [31].
Similarly, we also failed to detect any significant inhibition of HDAC ac-
tivity in vitro by EC and EGCG (Fig. 3B), and differentiation was not im-
paired in response to treatment with trichostatin A (TSA) (Fig. 3A),

image of Fig.�2


Fig. 3. Phenolics effect on differentiation is not histone deacetylase-related. (A) HT29 cells were treated with TSA at 180 nM or with TSA in the presence of phenolics (EC 100 μM
and EGCG 20 μM) for 48 h and AP activity was measured. Data are normalized and statistically tested with respect to TSA-treated cells. Mean ± SD; n = 3; **Different from TSA,
p b 0.01. (B) Histone deacetylase (HDAC) activity determined in nuclear extracts from HT29 cells after treatment with NaB or NaB with phenolics for 30 min. The data are nor-
malized and statistically tested with respect to Ctrl cells. Values are mean ± SD; n ≥ 2; **Different from Ctrl, p b 0.01. (C) HDAC activity determined in nuclear extracts from
HT29 cells after treatment with NaB or phenolics for 30 min. The data are normalized and statistically tested with respect to NaB cells. Mean ± SD; n ≥ 2; **Different from
NaB, p b 0.01.

Fig. 4. Phenolics impair NaB influx into the cells. HT29 cells were treated with NaB 2 mM
or with NaB and phenolics (EC 100 μM or EGCG 20 μM) for 48 h. Acute [14C]-NaB uptake
was subsequently measured as described in Materials and methods. Results are normal-
ized and statistically tested with respect to NaB cells. Values are mean ± SD; n ≥ 2;
**Different from NaB, p b 0.01.
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another well-known HDAC inhibitor also proposed as anti-tumor agent
[32].

The effect of phenolics on NaB-induced differentiation could be due
to an interaction between NaB and phenolics that prevents the entry
and cellular action of NaB. Determination of [14C]-NaB uptake showed
that although NaB treatment stimulated its own transport, phenolic
treatment impaired NaB uptake (Fig. 4). It has been previously reported
that phenolics differentially affect NaB uptake depending on the studied
compound, the time of incubation and the NaB concentration used.
Nevertheless, on the contrary to our observations, the differences in
NaB uptake induced by phenolics did not correlate with changes in
the anticarcinogenic activity including effects on cell differentiation
[21].

The impairment of NaB uptake by phenolics led us to studyNaB intes-
tinal transporters. NaB enters into colonocytes by two major carrier-
mediated mechanisms, the Na+-coupled monocarboxylate transporter
1 (SMCT1) and the aforementioned H+-coupled monocarboxylate

image of Fig.�3
image of Fig.�4


Fig. 5. Effect of NaB and phenolics on monocarboxylate transporter 1 (MCT1). (A) After
48 h of incubation with NaB, phenolics or both, HT29 lysates were probed against MCT1
in a Western blot, using β-actin as a loading control. A representative blot is shown. (B)
EC and EGCG antagonize plasma membrane redistribution of MCT1 caused by NaB.
HT29 cells were incubated with NaB or NaB/phenolics for 48 h and then lysed and laid
at the bottom of an OptiPrep density gradient. After ultracentrifugation, fractions were
collected from the top (lipid rafts low-density fractions) to the bottom of the gradient
(high-density non-raft fractions). Proteins in the fractions were separated on 10% SDS–
PAGE and blots were probed with anti-MCT1 or anti-flotillin antibodies.
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transporter 1 (MCT1). Since their substrate, NaB, prevents and inhibits
colon carcinogenesis, both transporters have been proposed to function
as tumor suppressors [33]. Accordingly, MCT1 expression has been
shown to be down-regulated during transition from normalcy to malig-
nancy in colonic tissues. Regarding SMCT1 expression, it has been found
to be silenced in colorectal carcinoma and colon cancer cell lines such as
HT29 and Caco2 [34]. Moreover, given that some phenolics have been
described to interplay withMCT1 [35–38], the next step was the evalua-
tion of MCT1 expression. A substrate-induced MCT1 activity by NaB at
higher concentrations has been previously demonstrated in AA/C1
human colonic epithelial cells [39] and colon cancer Caco2 cells [40].
However, no change inMCT1 protein levels was induced by NaB, pheno-
lics, or both (Fig. 5A).

Since we did not detect an enhanced MCT1 protein, we investigated
the possibility of another mechanism to explain the effects of phenolics
on NaB-induced differentiation. This mechanism may imply alterations
in transduction pathways or cellular membrane characteristics that af-
fect the intrinsic activity of the transporter [21]. Recent reports have in-
dicated that optimal function of many transporters is dependent on
their association with lipid rafts [41]. Lipid rafts are defined as
microdomains within the lipid bilayer of cellular membranes that as-
semble subsets of transmembrane or glycosylphosphatidylinisotol-
anchored proteins and lipids (cholesterol and sphingolipids) and exper-
imentally resist extraction in cold detergent. Interestingly, lipid rafts
have been related to some of the biological effects induced by tea
phenolics [42]. EGCG has been shown to prevent activation of c-Met re-
ceptor [43] and epidermal growth factor receptor (EGFR) [44] via per-
turbations of the membrane lipid rafts. Similarly, our analysis of lipid
raft-dependentMCT1 function in HT29 cells suggests that NaB activates
MCT1 functions at least in part by enhancing its distribution in lipid
rafts, and that tea phenolics produce a redistribution of MCT1 in the
non-lipid raft fractions (Fig. 5B). These observations led us to hypothe-
size that EGCG and EC might inhibit MCT1-mediated NaB transport by
altering lipid raft organization. At the same time, this provides an expla-
nation for the observed increase in NaB uptake after NaB treatment
(Fig. 4), which could not be explained by changes in the quantity of
MCT1 (Fig. 5A), but due to the modulation of lipid rafts by 2 mM NaB
(Fig. 5B).

It has been shown that the chemical structure of phenolics is related
to their biological activity [45]. In green tea catechins, themost bioactive
catechin has been described to be EGCG, which contains a trihydroxyl
structure in the D ring (gallate) as well as a pyrogallol B-ring, followed
closely by ECG with a gallate group, and then to a lesser extent EGC
and EC that possess a basic structure [46]. We have observed that al-
though the global trend of EC and EGCG treatments is similar, small
changes regarding the efficiency of both compounds can be distin-
guished. Apart from differences in the chemical structure, differences
in the modulation of signal transduction pathways that affect the activ-
ity of the transporter or the process of differentiation may also account
for the differences observed throughout the study.

As previously mentioned, several studies (4–6) have described an
increase in cecal concentration of short chain fatty acids in response
to phenolics. However, the mechanism by which phenolics induce this
increase is not known. First of all, we hypothesize thatmodulation of in-
testinal microbiota by phenolics to increase production of fermentation
products, such as NaB, might compensate the inhibition of cellular NaB
uptake described in this study. On the other hand, we propose that the
increase in intestinal NaB concentration found in previous studies may
be, at least in part, a consequence of the inhibitory action of phenolics
on NaB intestinal uptake.

5. Conclusions

The present study provides novel evidence that the tea phenolics EC
and EGCG impair NaBuptake and the subsequentNaB-induced differen-
tiation in HT29 cells. These novel findings suggest that although both
NaB and green tea catechins have been reported to have a wide range
of beneficial effects for human health, when used in tandem the func-
tions of the two compounds interfere at a cellular level. This suggests
that NaB and green tea catechins should be used separately. Further
studies may be required to investigate the physiological significance of
our findings, which provides a better understanding about the interac-
tions of prebiotics andmay aid in preparing a rational design for preven-
tive and therapeutic interventions.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.bbadis.2013.08.009.
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