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Abstract

The tight junction (TJ) is an essential component of the differentiated epithelial cell required for polarised transport and intercellular integrity
and signalling. Whilst much can be learnt about how the TJ is constructed and maintained and how it functions using a wide range of cellular
systems, the mechanisms of TJ biogenesis within developmental models must be studied to gain insight into this process as an integral part of
epithelial differentiation. Here, we review TJ biogenesis in the early mammalian embryo, mainly considering the mouse but also including the
human and other species, and, briefly, within the amphibian embryo. We relate TJ biogenesis to inherent mechanisms of cell differentiation and
biosynthesis occurring during cleavage of the egg and the formation of the first epithelium. We also evaluate a wide range of exogenous cues,
including cell–cell interactions, protein kinase C signalling, gap junctional communication, Na+/K+-ATPase and cellular energy status, that may
contribute to TJ biogenesis in the embryo and how these may shape the pattern of early morphogenesis.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction—the value of embryos

Early embryos begin as undifferentiated, totipotent cells
derived from cleavage of the egg following fertilisation. For cell
biological studies, especially mammalian embryos, they have a
major disadvantage of small size with scarcity of available
material for analysis. The mammalian embryo before implan-
tation is some 100 μm in diameter, comprises around 50–100
cells, and has a protein content of about 20 ng, a nightmare for
biochemical investigation. However, early embryos have
several advantages that compensate for this restriction and
make them a valuable model for inclusion in cell biological
review series such as this one, focusing on tight junctions (TJs).
The first differentiated cell type formed in embryogenesis is an
epithelium; in mammals this is a unique single-layered tissue
called the trophectoderm (TE) which forms on the outside of the
embryo during cleavage and gives rise later in pregnancy to the
chorioallantoic placenta. In the amphibian early embryo, also
considered in this review, the outer epithelium becomes the
founding tissue for gastrulation and comprises progenitors for
all three germ layers. In both cases, this initial epithelium
engages in polarised transport to generate the blastocoel cavity,
providing an opportunity for the embryo to regulate the com-
position of its internal tissues for metabolism and developmen-
tal purposes and, most importantly, providing a malleable
platform upon which cell rearrangements and morphogenesis
can shape the future anatomy of the developing embryo.

Why are embryos so valuable in cell biology? Because these
epithelia are real and constitute a natural and essential step in
animal development; the process of their biogenesis is con-
trolled by an inherent developmental programme during which
cells mature from an undifferentiated to a differentiated state.
The overwhelming bulk of research on epithelial (and TJ) form
and function utilize epithelial cell lines which are commonly
manipulated in culture using artificial protocols (such as
extracellular calcium switching) to ‘re-enact’ the biogenesis
process in cells, already fully mature and long-removed from
the in vivo environment. Whilst cell lines provide unrivalled
capacity for detailed biochemistry, we need to return to the
native process of differentiation to confirm our findings on
epithelial, and TJ, biogenesis. Early embryos formed during
cleavage are the lead models in this respect because they can
readily undergo epithelial differentiation in an accessible
environment for investigation, throughout the entire period of
differentiation, and, unlike most adult primary tissues, in the
absence of any contaminating cells. Moreover, with the current
advances in reproductive technologies, embryo epithelial dif-
ferentiation is a critical step in, for example, clinical treatment
for infertility, improving efficiency of domestic animal bio-
production, and the isolation and manipulation of embryonic
stem cells.

In this review, we focus primarily on TJ biogenesis in the
mammalian early embryo, with the mouse being the predom-
inant species. Key steps in embryo morphogenesis associated
with TJ biogenesis are considered, as well as the underlying
developmental programme governing temporal expression of
TJ constituents and the role of cell contact patterns and sig-
nalling in the spatial organization of the TJs. We also consider,
more briefly, TJ biogenesis in the amphibian model with respect
to Xenopus cleavage.

2. Tight junction biogenesis in the mouse early embryo

The outer epithelial TE begins to form overtly from the 8-cell
stage and completes this process at the 32-cell stage, covering a
period of approximately 24 h. Upon completion, the embryo is
known as a blastocyst and the TE engages in vectorial transport
to generate the blastocoel (Fig. 1). During the biogenesis period,
asymmetric cell divisions at 8- and 16-cell stages result in an
inward allocation of daughter cells which lose their epithelial
characteristics and form the inner cell mass (ICM), the pro-
genitor of the entire fetus. In the late blastocyst, upon expansion
of the blastocoel to occupy the bulk of embryo volume, the ICM
segregates a second epithelium, the primary endoderm on its
blastocoel surface which gives rise to extra-embryonic lineages
of the parietal and visceral yolk sac layers. The remaining ICM
cells, the epiblast, form the embryo and fetus proper (Fig. 1).

3. Compaction, the foundation for tight junction biogenesis

Following fertilisation, sperm–oocyte mediated signalling
via the phosphatidyl inositol second messenger pathway acti-
vates intracellular calcium oscillations which in turn reinitiate
cell cycling, stimulate cortical granule extrusion to block poly-
spermy, and activate chromatin remodelling and the embryonic
genome transcription programme [1,2]. Transcriptional and
translational activity from the embryonic genome during the 2-
cell and 4-cell stages is necessary for the first morphogenetic
transition in the embryo, the activation of intercellular adhesion
and cell polarity, known as compaction, which occurs during the
8-cell stage, some 48 h after fertilisation [3,4]. Compaction
converts an embryo with eight clearly defined blastomeres into
a ball of cells where cell outlines are not readily distinguishable
and is mediated primarily by activation of E-cadherin adhesion
[5], although nectin-2 and vezatin adhesion are also recogni-
sable at this time [6–8]. E-cadherin adhesion occurs coincident
with its redistribution from uniform to basolateral membrane
domains and is regulated predominantly post-translationally
apparently involving cell contact-mediated protein kinase C α
isotype and myosin light-chain kinase signalling [9–15]. Other
transmembrane proteins may also interact with E-cadherin to
mediate compaction, such as epithin [16] and vezatin [6,7].
Evidence suggests that modification to β-catenin via serine–
threonine phosphorylation and tyrosine dephosphorylation may
result from signalling activity to provide cytoskeletal anchorage
for the E-cadherin/catenin complex and intercellular adhesion
[12,17].

Activation of cell adhesion at compaction coincides with cell
polarisation and the emergence of distinct apical (outward-
facing) and basolateral (cell contact-facing) domains on all
blastomeres. Morphologically, cell polarity comprises a non-
adhesive apical pole of ezrin-rich microvilli [18–20]; an ad-
hesive, non-microvillous, basolateral surface where intercellular
junctions form (see below); and reorganization of cytoplasmic



Fig. 1. Blastocyst cavitation, tight junction formation and inner/outer cell orientation. (A) Schematic depicting inner cell mass (ICM) and trophectoderm (TE) cell
lineages in early blastocysts and in re-cavitated isolated ICMs upon culture as well as additional primitive endoderm lineage in expanded blastocysts. (B) Bright field
photograph of nascent mouse blastocyst before and (C) after differential labelling [172] to visualise inner cells (blue) and outer cells (red) by the fluorochromes,
bisbenzimide and propidium iodide, respectively. (D, E) Confocal images of mouse blastocysts fixed and stained for TJ proteins, (D) showing a 3D projection
demonstrating the belt-like distribution of ZO-2 and (E) a single slice midplane image showing apicolateral localisation of ZO-1α+ exclusively within the TE lineage.
(F) Bright field picture and (G) single slice confocal image of a freshly isolated ICM fixed and stained negative for ZO-2. (H) Bright field image of a re-cavitated
isolated ICM after 20 h of in vitro culture and (I) after differential labelling to visualise inner (blue) and outer (red) cells. (K) 3D projection of confocal slices taken from
a re-cavitated cultured ICM fixed and stained showing the belt-like distribution of ZO-2 as an intact blastocyst.
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organelle and cytoskeletal systems along the apico-basal axis
involving Rho-GTPases [21–24]. Like other examples of de
novo cell polarity in developmental model organisms, the initia-
tion of polarity appears to be mediated by the Par (partitioning
defective) complex proteins comprising Par-3, Par-6, atypical
protein kinase C (aPKC) and cdc42 [25,26]. These may localise
to the cell membrane via JAM-1 (junction adhesion molecule-1
or JAM-A) to regulate local cytoskeletal organization and cell
asymmetry [27,28]. All of these proteins localise to the apical
domain of blastomeres undergoing compaction and inhibition of
normal aPKC and Par-3 functioning results in loss of control of
asymmetric cell divisions in later cleavage [8,29,30]. However,
targeted deletion of the mouse Par-3 gene results in mid-
gestation lethality [31] that may indicate redundancy amongst
Par genes in epithelial polarity during earlier development.

The requirement for compaction for subsequent normal
epithelial differentiation including TJ formation by the blasto-
cyst stage has been demonstrated in E-cadherin and α-catenin
null mutants [32–35] and by E-cadherin RNA interference
[36]. Interestingly, genetic replacement of E-cadherin with N-
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cadherin is insufficient for TE formation and TJ protein
assembly during later cleavage, indicating a specific role for
E-cadherin [37].

4. Tight junction assembly from compaction to blastocoel
formation

Once the 8-cell embryo undergoes compaction, proteins
recognised as TJ constituents then assemble at the apicolateral
contact region between blastomeres. This assembly process
occurs in a stepwise sequence over the 24 h period between
compaction and blastocoel cavitation and can be broken down
into phases of assembly during 8-cell, 16-cell and early 32-cell
cycles [15,38], summarised in Fig. 2. For review on TJ con-
stituents, see [39] and other papers in the current BBA
Biomembranes series. Immediately upon compaction, the
peripheral membrane scaffold protein, ZO-1, assembles togeth-
er with the rab-GTPase, rab13 [40–42]. ZO-1 occurs as two
principal isoforms either with or without the C-terminal α exon
[43]; it is exclusively the ZO-1α minus form that assembles at
compaction. JAM-1 also occurs at this domain during the 8-cell
stage prior to and after its localisation at the apical microvillous
pole [8]. During the 16-cell stage, the peripheral membrane
proteins, cingulin and ZO-2, assemble at the apicolateral contact
site for the first time [15,44] (Sheth et al., 2007 in preparation).
These first two stages in TJ biogenesis are clearly dependent
upon E-cadherin adhesion which, if inhibited, causes randomi-
Fig. 2. Schematic overview of the major endogenous events associated with TJ b
differentiation into the trophectoderm epithelium. Top: embryo stages; lower: apicola
respect to cell cycle. See text for further explanation and references of the maturatio
sation of membrane assembly and, in the case of cingulin
protein, increases turnover time [15,40,44]. Lastly, during the
32-cell stage, ZO-1α+ and the transmembrane proteins occludin
and claudin-1/3 assemble [38,41,45]. It is only after the final
assembly phase that the embryo generates a permeability seal
between TE cells and the nascent blastocoel cavity thus forms
[42] indicating this phase as being critical in the biogenesis
process (Fig. 2).

Analysis of TJ gene and protein expression during cleavage
has shown that the temporal assembly programme is dynamic
and transcription becomes upregulated between the 4–8 cell
stage [46,47] although mRNAs of most constituents are
detectable throughout cleavage [41,42,45]. An important
exception is ZO-1α+ which initiates de novo transcription and
translation immediately prior to the time of first assembly [41].
Critically, this transcriptional event appears regulatory for
functional activity of the TJ since newly synthesised ZO-1α+

co-localises with occludin, expressed at mRNA and protein
levels from early cleavage, at perinuclear Golgi sites before
assembling together for the first time at the junction site [45]. In
structural terms, this late event also appears pivotal in the
generation of discrete zonula adherens and TJ belt domains
within the apicolateral junctional complex. Prior to ZO-1α+

assembly, all junctional proteins, whether belonging conven-
tionally to adherens or TJ entities, co-localise in a single junc-
tional domain with an ultrastructure typical of the zonula
adherens. After this assembly step, tight and adherens junction
iogenesis in mouse blastomeres over the 8- to 32-cell stages as they undergo
teral regions of cell contact and the changing pattern of proteins assembled with
n of the TJ domain.
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proteins separate into distinct but closely aligned domains and
the two junction types with classical morphology are evident
ultrastructurally, coinciding with the onset of the paracellular
seal [42].

The TJ biogenesis programme has clear implications for
epithelial differentiation in the embryo since inhibition of
individual constituent membrane assembly associates with the
inhibition or slowing of morphogenesis, particularly the process
of blastocoel cavitation [8,45,48]. We next consider other
mechanisms by which TJ biogenesis may be regulated in the
embryo mediated via exogenous cues.

5. Control of de novo tight junction formation during
blastocyst morphogenesis

Timing of expression and membrane assembly of the
different TJ components are highly regulated by exogenous as
well as intrinsic mechanisms during blastocyst biogenesis. It has
been broadly accepted that exogenous mechanisms such as cell
contact patterns dictate cellular restriction of TJ formation
exclusively to the outer TE cells of the blastocyst. In cell lines
and tissues, re-establishment of TJ after disruption appears to be
regulated at transcriptional, post-transcriptional or post-transla-
tional level, dependent upon protein and insult experienced
[49–51]. However, as indicated above, most TJ mRNAs are
detectable throughout preimplantation development and, hence,
TJ protein presence and membrane assembly are likely to be
subject to post-transcriptional and post-translational control
mechanisms. Understanding these mechanisms will be of
crucial importance in understanding how epithelial morpho-
genesis occurs.

6. Cell contact patterns and TJ biogenesis

Exogenous cell contact patterns regulate the spatial restric-
tion of epithelial differentiation and junction maturation within
the blastocyst [15,52–54]. Within the outer TE lineage, asym-
metric cell contacts induce epithelial differentiation stepwise
throughout cleavage whilst differentiation is suppressed by the
symmetric contacts of the enclosed ICM lineage [15,55,56].
The fact that cell contact patterns induce signal transduction
pathways is widely acknowledged but remains poorly under-
stood [57]. Although it is known that very complex signalling
via extracellular matrix/integrins integrates cell morphology
and signal transduction in three-dimensional aspects, the intra-
cellular signalling pathways affected are not well characterized
[58,59]. Moreover, in the early embryo, it remains elusive
which mechanisms are involved as the first epithelial TE
develops independent of extracellular matrix/integrin compo-
nents although many are beginning to be present in the pre-
implantation embryo [60,61].

Provision of a contact-free cell surface alone changes the
gene expression programme and cellular organization in the
embryo [15,52,62]. The plasticity and asynchrony of the
stepwise epithelial differentiation process have made it difficult
to investigate underlying pathways regulating such mechanisms
during normal embryo development more closely and may have
contributed to some controversy [63–67]. Fortunately, such a
spatial control mechanism is reversible since provision of
contact asymmetry to the ICM by immunosurgical isolation
from the early blastocyst permits upregulation of TJ membrane
assembly following a similar sequence as in the whole embryo
but accelerated to less than one cell cycle and reformation of a
blastocoel [56,68–73]. Thus, and because isolated ICMs retain
their developmental potential [70,74], the ICM-model is an
ideal tool suited to investigate cell contact-mediated develop-
mental mechanisms. For example, the ICM-model has been
utilized to establish the role of post-translational modification of
gp330, a component of the endocytotic machinery, or of ezrin
phosphorylation in microvillous formation during polarity de-
velopment [72,75] as well as re-expression of TJ proteins
[15,38]. Most recently, the model has been utilized to determine
the role of signalling via specific isoforms of the PKC family
during TJ biogenesis [56,73].

7. Protein kinase C signalling and TJ biogenesis

Since transcripts for TJ constituents are mostly detectable
well in advance of membrane assembly and within both TE and
ICM lineages, transcriptional regulation is unlikely to be a
limiting endogenous mechanism [15]. Similarly, (post)transla-
tional mechanisms are held responsible within non-develop-
mental epithelial models comprising already differentiated
cultured cells, such as Madin–Darby canine kidney (MDCK)
cells. Here, signalling systems involving heterotrimeric G-pro-
teins, intracellular calcium levels and protein kinase Cs (PKCs),
control assembly, maintenance and function of TJs [76–78].
Detailed exploration of these pathways is very complex as each
of these signalling systems consists of a large number of sub-
groups and other overlapping players involved. Amongst the
G-proteins, for example, rab13 has been identified in the mouse
embryo and contributes to adherens and TJ specification and
segregation [42]. Other members of the family or related
proteins are present in the embryo but their detailed roles in TJ
biogenesis have not yet been identified [79–83]. Furthermore,
all of the 10 PKC isoforms identified so far are present in the
embryo [63,84,85]. PKCs are classified according to structure
and activation requirements [86–88] into conventional PKCs
(cPKCs; α, βI, βII, and γ), novel PKCs (nPKCs; δ, ɛ, η and θ),
and atypical PKCs (aPKCs; ι/λ and ζ). The biological function
of PKCs is dependent upon the availability of various PKC
isoforms and co-factors such as calcium, phospholipids or
phorbol esters within the same cell as well as localisation to
specific intracellular compartments mediated by specific
anchoring proteins [89,90].The dynamic expression and locali-
sation profiles of specific PKC isozymes during mouse
preimplantation embryo development are now well character-
ized although not without controversy, suggesting involvement
in key developmental transitions including epithelial differen-
tiation [8,63,84,85].

Whilst some TJ proteins in certain cellular contexts may be
direct phosphorylation targets of PKCs (e.g. occludin, ZO-2
[91,92]), others or in different contexts, for example claudin-1,
ZO-1 or occludin, may be regulated directly or indirectly by
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PKC affecting TJ RNA expression levels [93,94]. During de
novo TJ biogenesis in embryo development, post-translational
changes are seen in occludin and may be important in gaining
competence to assemble on TE membranes and could be PKC-
mediated [45]. In support to this idea, we have shown that
specific PKC isoforms co-localise at least partially with the ZO-
1α+ isoform [56,63]. This may suggest some direct interaction
either at the cell membrane during membrane assembly or
within the cytoplasm to coordinate the assembly process.
More indirect effects, for example involving internalization of
Na+/K+-ATPase in response to PKC modulation [63] may also
contribute. In addition, broad chemical activators of PKC are
able to stimulate TJ formation using the ICM-model but the use
of chemical inhibitors also suggested the presence of a more
complex network utilizing different PKC isoforms [56]. The use
of PKC isotype-specific peptide modulators [89,95] confirmed
that several PKC isoforms and, dependent upon the respective
TJ protein, in different combinations appear to contribute to
regulate TJ formation in the ICM-model: ZO-2 membrane as-
sembly required PKCδ and ζ activity whilst ZO-1α+ assembly
only needed PKCζ activity [73]. However, in systems that
represent an established epithelial phenotype, involvement of
certain PKC isotypes, particularly aPKCs, is evident for both
ZO-2 and ZO-1 [39,96]. In MDCK cells the capacity of ZO-2 to
function at the junctional complex is determined by the phos-
phorylation state of different sites and whilst an overall increase
in ZO-2 phosphorylation mediated by aPKCs caused TJ degra-
dation, cPKCs and nPKCs were thought to promote TJ re-
assembly. Translocation of ZO-1 during toxin-induced TJ
membrane disassembly in colon epithelium was triggered by
cPKCs α/β signalling [97] but, in MDCK cells, ZO-1 may also
be a direct target for PKCζ [98]. Overexpression of dominant-
negative aPKCs could disrupt ZO-1 membrane assembly in
MDCK-II cells suggesting a stimulative role for aPKC in TJ
assembly [99] whereas, in a mouse mammary epithelial cell line
(HC11), a specific aPKCζII has been identified which is in-
hibitory for ZO-1 assembly [100]. Nevertheless, it should be
noted that, in the blastocyst-model, pre-assembled TJ protein
was relatively insensitive to PKC modulating agents, possibly
reflecting enhanced stabilization by cytoskeletal anchorage but
not excluding potential permeability changes.

8. Sodium pump and TJ formation

Coincident with the maturation of the apicolateral junctional
complex during TE differentiation, the Na+/K+-ATPase pump
becomes localised to the basolateral membrane and drives
vectorial transport for blastocoel formation and exchange of
ions, amino acids, energy substrates and other metabolites
[101]. We cannot exclude that some of the effects observed with
PKC inhibition on TJ biogenesis are due to internalization of the
Na+/K+-ATPase [63]. It has been reported that structural organi-
zation and vectorial ion transport via adherens junctions and
Na+/K+-ATPase together are required to establish cell polarisa-
tion and TJ and desmosome formation in epithelial Madin–
Darby canine kidney cells (MDCK cells; [102]). Similarly, in
the early embryo, Na+/K+-ATPase activity, especially β1, is
required for TJ assembly [103,104]. Biological activity and
function of Na+/K+-ATPase may also be regulated by PKC in
various cellular systems, with the α1 subunit as the potential
target (reviewed in [105]).

9. Gap junctions

The role of gap junctional intercellular communication
(GJIC) remains controversial in early development since phar-
macological inhibition and a series of connexin (Cx) knockouts,
the subunits of gap junctions, show no early lethality whilst
antibody-mediated inhibition did perturb compaction and
blastocyst development [106,107]. However, GJIC is considered
critical in growth and differentiation within developmental
models [108]. Some evidence suggests that GJIC could be
involved in TJ assembly control, thus regulating formation and
maintenance of cell lineage divergence. Initiation of GJIC
coincides with the initiation of TJ membrane assembly at
compaction [109] and gap junction components were found to
interact with ZO-1 and other TJ proteins [110–112]. Most
importantly, in Cx knockout hepatocytes, newly expressed GJIC
induced functional TJ formation, a process preventable by a
chemical inhibitor of GJIC [113]. PKC signalling appears to be
involved in these processes since membrane assembly and
internalization of Cxs depend upon PKC- and PKA-mediated
phosphorylation [114,115] and broad chemical PKC activators
such as phorbol esters affect GJIC [116]. In contrast, recent
evidence suggesting that the presence of intact ZO-1 plaques is
critical for GJIC function and PKC-driven Cx43 localisation
may place TJs upstream of PKC signalling and GJIC at least in
some epithelial cell types [117]. However, we did not find any
evidence to support the notion that GJIC may be involved in
regulating de novo TJ biogenesis in the early embryo [63,73].
On the other hand, cell contact asymmetry in isolated ICMs may
provoke a spontaneous decrease in GJIC which could be due to
PKC-mediated phosphorylation of Cxs similar to previous
reports in liver cells or fibroblasts [73,118,119], thus indicating
that GJIC, like TJ membrane assembly, may be affected by cell
contact disturbance and PKC signalling, possibly even involving
TJ disturbance as the trigger [117].

10. Cellular energy status and biosynthesis

It is well established that an elevated intracellular AMP–ATP
ratio stimulates AMPK activity, connecting sensing of the
cellular energy status with biosynthetic processes controlled via
mTor [120]. Intriguingly, recent evidence from epithelial cell
lines has suggested a link between mechanisms sensing the
cellular energy status (AMPK) and TJ membrane assembly:
activation of AMPK, which coincided with Ca-induced TJ
assembly, promoted ZO-1 membrane assembly and AMPK
inhibition disrupted TJ membrane assembly, an effect that could
be ameliorated by the mTor inhibitor rapamycin [121,122].
Such control processes may be bi-directional since depletion of
specific cell junction complexes allows upregulation of
rapamycin-sensitive mTor activity, indicating a mechanism
how cell junctions may contribute to the control of biosynthetic
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processes within the cytoplasm and nucleus [123]. In addition,
ATP-depletion may also trigger TJ disassembly involving
aPKC–PAR complex signalling, via reduction of Rac-GTPase
activity and reducing the phosphorylation status of ZO-1 and
Par-3 [124]. Taken together, such evidence suggests close
interlinked relationships between mechanisms sensing and
regulating cellular biosynthetic processes, signalling events
and the function and assembly of junctional complexes.

11. Hierarchy of mechanisms

The diversity of control mechanisms that may influence TJ
biogenesis within the embryo reviewed above and represented
diagrammatically in Fig. 3, require a hierarchy for functional
integration. Recently, we have shown that signs of active PKC
signalling and de novo TJ membrane assembly in the ICM-
model were dependent upon complete loss of cell contact
symmetry but remained suppressed by partial remnants of outer
cells. This suggested a functional hierarchy placing cell contact
patterns upstream of the function of protein kinases which, in
turn, may be partially responsible for biochemical modifications
of TJ proteins and, hence, regulation of TJ membrane assembly
[56,63,73]. During de novo TJ biogenesis, GJIC did not appear
to have a crucial role, but more subtle effects of TJ function or
permeability cannot be excluded. Similarly, indirect effects via
Fig. 3. Schematic overview of some mechanisms identified to contribute to the contro
development (see text for details). (1) Asymmetric cell contact patterns, possibly i
systems, are the major regulator permitting TJ formation. (2) Intracellular polarity com
involving atypical PKCs (aPKC) and calcium, possibly utilizing the calcium-sensit
assembly is dependent upon PKC signalling (at least the novel PKCδ and aPKCζ)
sensitive to PKC signalling and its β1 subunit participates in permitting correct TJ me
appear to contribute to TJ biogenesis but may itself be regulated by cell contact patte
participate in TJ membrane assembly regulation, possibly following through to cellu
turnover are also linked to the quality of TJ membrane assembly but hierarchical de
Na+/K+-ATPase perturbation may have remained undetected.
On the other hand, cell contact patterns may further sustain the
change in cellular phenotype by downregulating the transcrip-
tion factor Oct-4 involved in ICM and germline pluripotency
[125], thereby further promoting an epithelial phenotype possibly
involving TJ function [126,127]. This idea may be supported by
the observed upregulation of Oct-4 and downregulation of H19
expression during blastocyst formation in response to a functional
inhibitor of occludin [48].

12. Tight junction biogenesis in other mammalian species

The sequence and establishment of junction biogenesis in the
early embryo appears to be well preserved across mammalian
species from rodents [15,38] to livestock [128–133] up to
human [134–137]. Mechanisms regulating junction biogenesis
have been mostly explored using the rodent model, due to the
scarcity of material from other species. However, assisted re-
productive technologies including in vitro culture can severely
impair junction biogenesis in livestock [130,132] or human
[135–137] often without inhibiting morphological blastocyst
differentiation. Such compromised junctional sealing may be
brought about by reduced expression levels or mislocalisation
of TJ proteins [130,138,139] or indirectly involving perturbed
GJIC or Na+/K+-ATPase function [140–142]. Intriguingly, in
l of tight junction (TJ) biogenesis in the trophectoderm layer during early embryo
nvolving signalling via extracellular matrix, membrane receptors and polarity
plexes and adherens junctions (AJ) are critical for TJ assembly and maturation,

ive conventional PKC (cPKC) as intermediates. (3) In addition, TJ membrane
. (4) Similarly, membrane localisation of the α1 subunit of Na+/K+-ATPase is
mbrane assembly. (5) Gap junction intercellular communication (GJIC) does not
rns. (6) Cellular energy status involving the ATP/ADP ratio sensor AMPK does
lar biosynthetic activity controlled by mTOR. (7) Amino acid transport and/or
tails and mechanisms remain unclear.
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the human, we recently established, for the first time, a con-
nection between impaired junction biogenesis and embryo
amino acid turnover [137]. Such connections are most likely to
be indirect interlinking several pathways although there is evi-
dence that individual amino acids or small polypeptides (e.g.
poly-L-arginine) can trigger internalization of TJ proteins via
PKC-dependent (de)phosphorylation [143]. For example, since
Na+/K+-ATPase is one of the main energy consumers in the
human [144], deficits in TJ membrane assembly could be a
consequence of limited capacity to meet the increasing energy
demands during blastocoel formation when Na+/K+-ATPase
activity increases, hence involving AMPK (possibly mTOR) and
Na+/K+-ATPase-driven mechanisms [103,122]. Alternatively,
amino acid transporter function or localisation may be perturbed
due to deficient TJ fence function and could allow for
disturbances in balancing amino acid distribution within the
blastocyst [145]. Correct TJ biogenesis is acknowledged to be
critical for many processes, from spatial organization of cellular
architecture including membrane domains, signalling networks
up to cell cycle progression and regulation of downstream
transcription [146–149] (discussed in Chapters 13, 14, 16, 19).
Thus, TE deficiency in the form of suboptimal junction assembly
could not only be a consequence but a cause of disturbed
differentiation of the first epithelium in development as has been
implied in the mouse [48].

13. Tight junction biogenesis in the amphibian early embryo

In contrast to the mammalian embryo, the amphibian early
embryo develops rapidly and the emergence of the first
epithelium by the blastula stage is controlled by expression of
maternal rather than embryonic genes. In addition, the presence
of yolk within the vegetal hemisphere of the egg restricts
cytokinesis, generating asynchrony in cell divisions along the
animal–vegetal axis. The rapidity and maternal control of early
development in this model ensures that the apical domain of
the primary epithelium formed during cleavage is relatively
unchanged from that of the oocyte membrane and becomes
impoverished in typical epithelial basolateral components
(cadherins, Na+/K+-ATPase, integrins) during oocyte matura-
tion by endocytosis [150,151].

When cleavage initiates, cell polarity is established imme-
diately since new membranes forming at contact sites comprise
cadherins (notably XB/U-cadherin and EP-cadherin) and
constitute typical basolateral domains such that adherens
junction formation can occur even at the 2-cell stage [151–
155]. These maternally encoded cadherins form a complex with
catenins and engage in homotypic cell–cell adhesion [156,157].
The old apical membrane and new basolateral membranes of
polarised early blastomeres exhibit a sharp boundary morpho-
logically [153] and such cells actually engage in polarised
transport activity very early since a nascent blastocoel can be
detected even at the 2-cell stage in Xenopus [158]. The early
onset of cell polarity in the Xenopus embryo is consistent with
the early detection of the Par/aPKC protein complex in the
animal hemisphere of the maturing oocyte [159] and its regu-
lation of the polar phenotype [160]. During later cleavage, just
as in the mammalian embryo, the Par/aPKC complex, together
with blastomere cell shape, appears to contribute to the gen-
eration of outer and inner cell populations [161,162].

Early cell polarity in the Xenopus embryo implies that TJ
biogenesis also occurs rapidly and, indeed, the first evidence of
nascent TJ structures can be found in the 2-cell embryo deep
along the basolateral membranes; these structures subsequently
locate at the apical–basolateral membrane boundary [163–167].
TJ biogenesis, although occurring earlier in cleavage than in the
mammalian embryo, does so by distinct assembly stages for
individual proteins such as cingulin, occludin and claudins
[165,167,168]. Occludin, as in the mammalian embryo, appears
to undergo post-translational modifications, notably changes
in phosphorylation state, coincident with assembly [169].
Once assembly is complete, a permeability seal can be detected
around the nascent blastocoel by the late 2-cell stage [164].
Similar to the mammalian embryo, the impact of TJ biogenesis
on Xenopus morphogenesis has been demonstrated. Interest-
ingly, overexpression of Xenopus claudin not only causes loss
of tissue integrity but also randomisation of the left–right body
axis [168].

14. Conclusions

We began by emphasising the contribution that can be made
by early embryos to understanding the mechanisms of epithelial
differentiation and TJ biogenesis because of their authenticity in
a biological context, especially their composition of blastomeres
which gradually undergo differentiation from undifferentiated
precursors, and their relevance for clinical and biotechnological
strategies. In this context, we have outlined the endogenous steps
in cellular differentiation with respect to competence for TJ
formation and identify an important role for delayed ZO-1α+

expression in regulating the timing of TJ formation in the 32-cell
stage mouse embryo. This association between an endogenous
expression programme and TJ formation cannot be readily
identified by the use of epithelial cell lines and so emphasises the
importance of developmental models in cell biology. Interest-
ingly, a reliance upon ZO-1 expression and TJ sealing has also
recently been identified using cell lines [170]. The endogenous
TJ biogenesis programme in the embryo also unfolds after
compaction when epithelial cell polarisation is first evident. This
is also consistent with epithelial cell line research where cell
polarity and TJ formation, especially associated with ZO-1
expression, occur independently [170].

We also show that embryos combine the inherent, tempo-
rally-regulated, developmental programme with exogenous,
spatially-relevant, signalling cues to coordinate TJ formation
with morphogenesis. Deeper understanding of control mechan-
isms linking temporal and spatial inputs will come from
judicious use of gene microarray screens on stage-dependent
embryo samples to identify novel candidates [46,47]. We also
need to understand whether and how TJ biogenesis may be
affected by inherent asymmetry that may reside within the
mammalian oocyte and is reported to contribute to development
of embryonic axes [67]. Lastly, the relationship between mech-
anisms of cell polarity important in epithelial differentiation and
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TJ biogenesis and the stabilization of the resulting epithelial
phenotype controlled by transcription factor families [171]
needs further exploration. These new areas of interface between
developmental and cell biology will maintain a central role for
embryo models in the foreseeable future.
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