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Abstract-The solution of the Yang transport equation of the multiple scattering theory of 
charged particles is discussed. The method of Lie groups is utilized for the purpose of the con- 

struction of the solution of this equation. The fundamental solution of the Yang equation is provided 
as the closed form expression valid in the neighborhood of the center of coordinates. @ 2001 Elsevier 

Science Ltd. All rights reserved. 
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1. INTRODUCTION AND NOTATION 

This paper is devoted to the derivation of the approximate solution of the equation describing 

the distribution of scattering charged particles under the small angle approximation. We con- 

struct the fundamental solution for the three-dimensional Yang equation [1,2] using the method 

of Lie groups approach [3] to the analysis of partial differential equations. The probabilistic in- 

sight into properties of the solution of this equation allows us to find first the relevant group of 

transformations and then to calculate formulas for its fundamental solution. 

We use the coordinate system with axes Ox, Oy, OZ where Ox, Oy lie in a horizontal plane 

and OZ points down and is perpendicular to the plane Oxy. A beam of charged particles 

moving in the direction Oz enters the medium at the point 0. We denote by t the actual 

path length of a particle’s evolution in 3d space, by ? = (x, y, Z) particle’s position and by 

Q = (sin 0 coscp, sin 8 coscp, case) the unit vector in the direction of the velocity of a particle. 

The description of the particle’s direction of motion in the plane perpendicular to OZ axis can 

then be represented approximately as (f&, 0,) = (6 cos (p, 8 cos ‘p) and the distribution of particles 

by the position (x, y, Z) and the direction (&, 0,) of the velocity is described by the function 
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f(t, 2, y, Z, I!&, 0,) that satisfies the following equation: 

(1) 

Let us notice that equation (1) describes the diffusional, small angle approximation of the process 
of multiple scattering of charged particles [1,2] and that it shows also strong affinity to semicon- 
tinuous Boltzman equation of nonlinear kinetic theory [4,5]. Introducing instead of variables 
(t, IC, y, z, OZ, 0,) new variables (t, 5, y, B,, 8,, E) where E = (t - z) is the excess path length and 
denoting the new function by the same letter f(t, 2, y, OZ, B,, e), we will come to the following 3d 
Yang equation [1,2]: 

(2) 

with initial condition 

fltco = s(x:)s(Y)s(e,)6(e,)s(~), f LO = 0. (3) 

Let us replace D by 1 and denote by u(t, Z, y,&, Oy,e) the solution of equations (2),(3). The 
solution of (2),(3) with arbitrary D will be then 

f (t, 2, Y, &, f&, e) = D3u (Dt, Dx, DY, &, e,, DE). (4) 

Suppose that we are interested only in the particles’ positions and directions of the par- 
ticles’ velocities. In this case, the evolution of density distribution function is described by 
v(t, x, y, B,, 0,) = &O” u(t, x, y, &, 8,, E) de that satisfies the following Fermi equation: 

au -= 
at -ezg -e$+$$+$), (5) 

with the initial condition 

v]~=~ = s(x)s(y)s(e,)6(0,). 

Equations (5),(6) h ave the following solution: 

(6) 

V(o-,Y,es,ey) = &exp 
2t2 (e: f 6;) + 6.(x2 + Y2) - 6t (xe, + ye,) 

- 
t3 (7) 

In the future, we will need the function V(x,y,&, 0,) = v(l,x, y, f3,, 0,) that is given by the 
following formula: 

The function V(x, y, Oz, 0,) is the joint probability density distribution in variables (x, y, f3,, ,9,) 
for all particles with path length 1. 

2. 3D YANG EQUATION AND ITS SOLUTION 

Now we return back to the 3d Yang equation for the function u(t, x, y, Ox, 8,, E), 

au 
- = -e,g - eug - a (0; + ei) g + 1 a2u 
at 2(Z@+$)9 (9) 
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with initial condition 

‘IlIt= = s(x)s(Y)b(e,)s(ey)s(E), uI,=o = 0, (10) 

where x, y, ox, 8, are not restricted, but E 2 0 because it denotes excess path length. Eqna- 

tions (9),(10) admit the following group of similarity transformations: 

t* = y2t, x* = y3x, e* = re, E* = y4c, u* = y-‘2u. (11) 

From this, we derive the identity for u(t, x, 8, E), 

u (t, x, y, h, e,, 4 = 7% (7% 7% Y~Y, 7h 7e,, Y%) , 

and replacing y by t-‘12, we obtain 

u (t, x, y, e,, e,, E) = t-Q 1, t-3/2x, t-3/29, t-lj2e,, t-1/2ez, t-2E 
( > 

= t-97 t-3/22, t-3/2y, t-1/2e,, t-1/2e,, t-2c 
( > 

, 

where V(x, y, 8,, B,, E) = ~(1, x,y, &, &, E). The function V(x, y, &, B,, E) is the probability dis- 

tribution function of x, y, B,, BV, E for all particles with path length equal to 1. Substituting the 

previous expression for function u(t, x, y, OS, 8,, E) into 3d Yang equation, we will get the following 

equation for function U(x, y, &, e,, E): 

(gg+$) + (3x - 20,) CjJ + (39 - 28,) g 

+ (46 - e2 - 8;) g + ezg + egg + 12~ = 0, 

(12) 

with initial condition 

UI,d.l = 0, 
J 

U(x,y,8,,8,,E)dxdyde,deydE = 1. (13) 

From the physical interpretation of the function U(x, y,13~,0~,~), we can obtain the relation 

between the function U(x, y, &, Oy, E) and previously found function V(x, y, &$, O,), 

Jrn uhotda,,+~ = w,Y,e,,e,). (14) 
0 

Let us introduce a new unknown function L(x, y, &, 8,, E) by the formula 

u (x, Y, b, ey, 4 = v (2, Y, b, 0,) L (2, Y, e,, e,, 4 . (15) 

The function L(x, y, 8,, h$,, E) has the following physical interpretation: it is conditional probabil- 

ity distribution of E given x, y, 8,, 8,. Therefore, L satisfies the conditions 

Jrn L(X, Y, ez, e,, 6) de = 1, L(x,y,k,f+) ICC0 = 0. (16) 
0 

Substituting U(x, y, 8,, 8,, 6) in its representation (15) into equation (12), we come to the following 

equation for L(x, y, e,, ev, E): 

$j + G$j + (32 - ae,) g + (3~ - 28,) g (122 - 78,) g 
z Y I 

+ (12~ - 78,) g + (46 - e; - e;) $ + 4~ = 0 
Y 

(17) 

that should be solved with additional conditions (16). 
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Condition (16) means that the area under the curve L = L(z, y, 8,, 8,, E) = Lz,y,er,o,, (E) is equal 
to 1. Let us construct a curve L = L(~,y,8~,f+,,~) from the curve L = L(O,O,O,O,e) = LO(c) 

by the following geometric transformations. For 3d Yang equation, these transformations can be 

written-as 

(e, Lo) -+ (e + A, Lo) 7 (6, Lo) --+ (k ?) > (18) 

and they have a meaning of translation and hyperbolic rotation, both preserving the area under 

a curve. Heuristic motivation for using these two transformations is the following. The minimal 

possible value of E is equal to (t - dm). If probabilistic model were exact, then the 

surface E = t - dw would be separating the points in (t, z, y, 8,, B,, E) space where the 
function zl(t, Z, y, 8,, 8,, E) is equal to 0 from the points where this function is greater than 0. 

This however, is inconsistent with similarity transformation (11). It is easy to see that if a point 

(t, 2, y, &., 8,, E) satisfies the equation E = t - dv, then the point (t*, x*, y*, 0;, t9;, E*) 
given by (11) does not satisfy this equation. This is because Yang equation.is only a small angle 

approximation to the exact equation. Under the assumption of small angle approximation (i.e., 

assuming that (s/t) and (y/t) are small), the equation E = t - dw can be rewritten as 

The last equality gives for minimal possible excess path length formula E = (x2 + y2)/(2t) that 

is consistent with similarity transformation (11). Returning back to the function Lz,y,~,,~, (E) 

that describes conditional probability distribution of the projected excess path length for t = 1, 
we see that we should expect that Lz,y,g,,e, (E) is not equal to 0 only when E > (x2 + y2)/2. 

So position of the support of the function Lz,y,~s,e,,(~) (by support, we mean the values of E 

for which i&,,e,,e, (E) # 0) depends on 2, y, eZ, 8, and we should include a translation in the 

transformation of LO(E). The second transformation in (18) is chosen for similar reasons, Again, 

in exact probabilistic model, the function ~(t,z, y, eZ,ey, E) can have nonzero values only for 

(t - dt2 - (x2 + y2)) 5 E 5 t, so not only the position but also the size of support of the 

function ~&,e, ,eu (E) changes with (z, y, ox, f?,) and the second transformation achieves exactly 

this change. The Yang equation is only a small angle approximation to the exact equation and 

the above described properties of support of Lz,y,e,,e, (E) will not be satisfied for the exact model, 

nevertheless, it is important to include these properties explicitly in the construction of the 

approximate solution. Analytically, all this means is that we are trying to find L(z, y, 8,, &, E) 

in the following form: 

L(Z, Y, eZ, ey, 4 = b(z, Y, OX, 4) . LOW, Y, eZ, 4)e - +, Y, e,, e,)), (20) 

with conditions for a(z, y, B,, 0,) and b(z, y, &, e,), 

a(O,O, 0,O) = 0, b(O,O, 0,O) = 1. 

In (20), LO is a function of one variable. Finding derivatives of L(z, y, 8,, 0,, E) from (20) and 
replacing the combination b(~, y, 0,, ey)E - a(~, y, &, 0,) by a new variable that we again denote 
by E, we will get the following equation for the function LO: 

(AE~+BE+C)L;+(DE+E)L~+FL~=O, (21) 

where A, B, C, D, E, F are given by the following formulas: 

A=;(($)‘+($))‘)> (22) 

(23) 

(24) 
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2+~+(3x-2ez)~ 
f 

+ (39 - 28,) 2 + 2 (12x - 78,) $ + 2 (12y - 78,) ; + 4b, 
x Y 

+ (3y - 28,) b 
(aab 8a) 

;- - dy + (12x - 78,) b 
(a ““, J 

bdB - $ 

+ (12x - 78,) b i& - &) + b2 (4% - e: - 8;) , 

F = $Y$ + g + (32 - 28,) 2 + (3y - 28,) $ 
z Y 

+ (122 - 78,) $- + (12y - 78,) g + 4b. 
2 Y 

937 

(25) 

(26) 

(27) 

Coefficients A, D, F are not independent, but satisfy a simple relation D = F + 2A, therefore, 

equation (21) can be rewritten in the following form: 

( (Ac2 + BE + C) Lb + (FE + E - B) Lo)’ = 0. (28) 

Since Lo and Lb should decrease exponentially as E --+ co, so 

(AE~+BE+C)L;+(FE+E-B)L~=O. (29) 

The function LO depends only on E. Thus, it is possible to solve this equation only if it does not 

depend on x,6&y,& Let us try to choose the functions a(x, y,&,&,), b(x,y,&,8,) in such a 
way that the above equation does not depend on x, y, Bz, &,. From the property that L, y 0 e (E) > ,r> y 
is not equal to 0 only when E > (x2 + y2)/2, we find that a(x, y, &, 0,) should be chosen as 

a(x,y,ez,ey) = $+,y,e,,ey) (~2+~2). (30) 

For such a(x, y, &, e,), formulae for B, C, E become simpler (only these formulae contain a(x, e)), 

B=C=O, (31) 

E = - ((x - e,)2 + (y - eu)2) b2 (32) 

Now equation (29) for Lo takes the following form: 

Ac2 Lb + (Fe + E) Lo = 0. (33) 

This equation can be solved if expressions E/A, F/A are constants, that is if they do not depend 
on x, y, Bz, 0,. Let us start with equation E/A = Cl. Substituting expressions (26) and (22) for, E 

and A in E/A = Cl and solving for b, we get formula 

b(x,Y,ed,) = 
-16C1 

((x - e,)2 + (Y - ey)2 + c2 (2,~))~’ 
(34) 
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We can also satisfy the equation F/A = const. (though only approximately in the neighborhood 

of the point z = y = 8, = &, = 0). To this end, it is enough to express C&(X, y) in the form 

Cz(2, y) = CX + P (Z2 + y2) . (35) 

Substituting this function into equation F/A = const., equating to zero the terms of degree one 

in both parts of this equation, and taking into account initial condition b(O,O,O,O) = 0, we get 

that cx = fl= 2 and the final expression for b(s, y, 8,, 0,) takes the form 

b (x, Y, &, 4,) = 
[i+(z2fy2)+ ((~-,)2+(y-ey)2)/2]2 

and for a@, y, es, e,), 

a (xc, Y, ez, ed = i (x2 f Y2) b (2, Y, &, 6,). 

With this choice of a and b, we have the following formula for F/A: 

(36) 

(37) 

F 
2 = i + i (2x2 + 2y2 + (Z - e,)2 + (y - er)2) , l (38) 

with E/A = -(l/4). W e now drop the terms of the second order and will continue calculations 

as if F/A = 9/2 exactly. Equation (33) now becomes 

f2L; + ( > 9, - 1 
2 4 

Lo = 0. 

Taking into account that the area under the curve E -+ LO(E) should be equal to 1, equation (39) 

has the unique solution 

LO(E) = l -I/& 
240fi~~i~~ ' (40) 

Before writing the final formula, we will recall all the auxiliary formulas that we need 

L = bLo (bt - a) , 

u = -$exp{-2 (e: +e;> -6(x2 fy2) +6(d, +yey)} .L, 

2L (t, X, y, e,, ev, E) = t-9 (r3i2x, t-3/2y, t-1/2e,, t-1/2e,, t-2c) , 

fw,~,ez,~y,4 = D3u.(Dt,Dx:,Dy,e,,e~,D~). 

Consecutive substitutions of appropriate quantities in these formulas give us the final answer. We 

express it in terms of variables p, $J, t, E (p, T/T, t - E are cylindrical coordinates of the point P that 

represents position of a moving particle) and 8, cp (0, cp are spherical coordinates of 52 that repre- 

sents direction of velocity of a moving particle). The relations between coordinates t, c, p, $I, 8, cp 

and t,x,y,&,b$,,e are 

p2 = x2 + y2, e2 = e: + e;, 

epCoS(cp - +) = xe, + ye,. 

Thus, the final formula for f(t, x, y, 0,, 6$,, E) is 

f(t, 2, Y, h, ev, 4 = .f(t, P, 4 CP - 1~1~4 

= 4 [IIt3 + 3p2/2 + t2e2/2 - tepC0S (‘p - $J)] 7 

5JW (2k - p2)g’2 

X exp 
2t2e2 i- 6p2 - 6tpeCOS(cp - ?,b) 

- 
Dt3 

(41) 

[Dt3 + 3p2/2 + t2e2/2 - tOpcos(cp - T/J)]” 

2Dt3(2te - p2) 
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