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A theorem on uniqueness of the complete norm topology for complete normed 
nonassociative algebras is proved. This theorem contains the well-known one by 
Johnson for associative Banach algebras and the recent analogous result by Aupetit 
for Banach-Jordan algebras. Q 1985 Academic Press. IW 

This paper contains an unexpected theorem of uniqueness of the complete 
algebra norm topology in general nonassociative algebras which implies the 
Johnson associative result [lo]. The proof of this theorem consists of an 
ingenuous adaptation of the recent Aupetit proof [2] that the separating ideal 
for a homomorphism from a Banach (associative) algebra onto another one 
lies in the Jacobson radical. We summarize this adaptation: first we observe 
that the Aupetit proof remains true for a larger class of noncomplete normed 
associative algebras, the class of full subalgebras of Banach algebras. Then 
to each nonassociative algebra A we associate an associative algebra, called 
the full multiplication algebra of A (definition in Section l), in such a way 
that when A is a complete normed nonassociative algebra then its full 
multiplication algebra is a full subalgebra of a suitable Banach algebra. 
Isomorphisms between nonassociative algebras induce isomorphisms between 
their corresponding full multiplication algebras. Thus in the complete 
normed case the above-mentioned extension of the Aupetit result can be 
applied to the induced isomorphism between the full multiplication algebras, 
giving nontrivial information which yields almost directly to our theorem. 

Up to now the problem of uniqueness of the complete algebra norm 
topology in general nonassociative algebras has not been solved. Also we 
think that it has not been formally posed because for nonassociative algebras 
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there is no concept of radical with the same algebraic relevance as that of 
Jacobson in the associative case (only for the finite-dimensional case is there 
a satisfactory concept of a general nonassociative radical; see [ 1,9] and our 
Remark 1.6 below) and such that one could expect a complete normed 
nonassociative algebra with zero radical to have unique complete algebra 
norm topology. The proof of our theorem leads in a natural way to a suitable 
definition of radical for any nonassociative algebra A which we call the 
weak radical of A (Definition l.S(iii)). The theorem states that a complete 
normed nonassociative algebra with zero weak radical has unique complete 
algebra norm topology. In the associative case the weak radical is contained 
in the Jacobson radical so Johnson’s theorem follows immediately. Since we 
do not know whether or not the two radicals agree it may be that even in the 
associative case our theorem is stronger than that of Johnson. We think that 
this is the main problem which remains open in this paper. 

There are some known particular results related to the problem of 
uniqueness of the complete algebra norm topology in nonassociative 
algebras. The particularity is due to one or more of the following facts: 

-restriction to some of the most familiar classes of nonassociative 
algebras, 

-the assumption on the general complete normed nonassociative 
algebra that a suitable radical wider than the weak radical is zero, 

-additional analytic requirements. 

Since all of these results are consequences of our theorem we discuss them in 
detail in the corollaries. 

1. THE THEOREM 

If X and Y are normed spaces and F is a linear mapping from X into Y we 
denote by S(F) (the separating subspace for F) the set of those y in Y for 
which there is a sequence {x,} in X such that 0 = lim{x,} and 
y= lim(F(x,)j. When X and Y are normed algebras and F is a 
homomorphism with dense range then S(F) is a two-sided ideal of Y so we 
call it the separating ideal for F. 

As usual if a is an element of an associative normed algebra A the real 
number inf{ I] a” ]I ‘In: n E N} will be called the spectral radius of a and will be 
denoted by r(a). Since the mapping a + r(u) from A into R is upper- 
semicontinuous and for complex A and fixed u and b in A the 
mapping ;1+ r(u + Ib) from C into R is subharmonic (apply the Vesentini 
theorem [30] to the completion of A) it follows that most of the proof of 
Theorem 1 in [2] remains true in the noncomplete case. So we have (see the 
proof of Theorem 1 in [2]): 
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LEMMA 1.1. Let A and B be normed associative complex algebras and F 
be a linear mapping from A onto B such that the inequality r(F(a)) Q r(a) 
holds for all a in A. Then r(b) = 0 for all b in the separating subspace for F. 

For general noncomplete normed associative algebras the spectral radius 
has no algebraic significance. So isomorphisms between normed associative 
algebras may not preserve the spectral radius. However, there is a large class 
of noncomplete normed associative algebras for which the spectral radius 
has the same property as in the complete case; that is, the spectral radius of 
an element in the algebra is the maximum of the moduli of the numbers in 
the spectrum. To make this concrete, consider the following 

DEFINITION 1.2. A subalgebra A of an associative algebra B is called a 
full subalgebra of B if A contains the quasiinverses of its elements that are 
quasiregular in B. 

Trivial examples of full subalgebras are the left, right, and two-sided 
ideals. It is clear that if A is a full subalgebra of an associative complex 
algebra B and a is an element in A then the spectrums of a relative to A and 
B agree. So if B is a Banach algebra and the full subalgebra A is considered 
as a normed algebra with the restriction of the norm of B, then for any a in 
A the number r(a) is the maximum of the moduli of the numbers in the 
spectrum of a (relative to A). 

PROPOSITION 1.3. Let A and B be full subalgebras of suitable complex 
Banach algebras and F be a homomorphism from A onto B. Then the 
separating ideal for F is contained in the Jacobson radical of B. 

ProoJ: Since F is a homomorphism, for each a in A we have 
sp(B, F(a)) c sp(A, a) and using that A is a full subalgebra of a Banach 
algebra we obtain 

r(F(a)) < sup{]il] : 1 E sp(B, F(a))} < sup{lAj: A E sp(A, a)} = r(a). 

So we can apply our Lemma 1.1 to obtain that p(b) = 0 for all b in S(F). 
Now using that B is a full subalgebra of a Banach algebra it follows that 
sp(B, b) = {0}, which implies that b has a quasiinverse in B. Thus S(F) is a 
quasiinvertible ideal of B so it is contained in the Jacobson radical of B. 

The following corollary is not needed in what follows but it seems to be of 
interest in its own right because it is an associative extension of Johnson’s 
theorem and one of the few results on automatic closeability of partially 
defined operators between Banach algebras (see [20] for a related result). 
For it we use the customary terminology for partially defined linear 
operators between Banach spaces. Thus a partially defined homomorphism 
between Banach algebras will be a partially defined linear operator (say $) 
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whose domain (Dam(4)) is a subalgebra of the first algebra and such that 
$(ub) = #(a) ((b) for all a, b in Dam($). 

COROLLARY 1.4. Let 4 be a partially defined homomorphism between 
complex Banach algebras A and B. Assume that the domain of 4 is a fill 
subalgebra of A, that the range of 4 is B, and that B has zero Jacobson 
radical. Then 4 is closeable. 

Proof Straightforward from Proposition 1.3. 

Notation. For a vector space X we denote by L(X) the associative 
algebra of all linear mappings from X into X. 

For an element a in a nonassociative algebra A we denote by L, (resp.: 
R,) the element in L(A) defined by L,(x) = ax (resp.: R,(x) = xa) for all x 
in A and we denote by L, and R, the sets L, = {L,: a E A}, 
R,= (R,:aEA}. 

DEFINITIONS 1.5. (i)S ince the intersection of full subalgebras of an 
associative algebra A is another full subalgebra of A it follows that for any 
nonempty subset S of A there is a smallest full subalgebra of A which 
contains S. This subalgebra will be called the full subalgebra of A generated 
by S. 

(ii) Now let A be a nonassociative algebra. The full subalgebra of 
L(A) generated by L, U R, will be called the full multiplication algebra of A 
and will be denoted by IW(A). 

(iii) Consider the set W(A) of those elements a in A for which L, and 
R, belong to the Jacobson radical of FM(A). W(A) is a subspace of A so it 
contains a largest subspace invariant under the algebra of operators FM(A). 
This last subspace, which is clearly a two-sided ideal of A, will be called the 
weak radical of A and denoted by w-Rad(A). 

Remark 1.6. Albert gave a concept of radical for finite-dimensional 
nonassociative algebras and proved that such an algebra has zero radical if 
and only if it is either the zero algebra or a direct sum of ideals which are 
simple algebras (see [ 1; 9, pp. 1090-10911). In the finite-dimensional case, 
our weak radical is close to the Albert radical. In fact from Albert’s 
definition it can be easily shown that the weak radical of any tinite- 
dimensional nonassociative algebra is contained in the Albert radical. On the 
other hand, there is a finite-dimensional nonassociative algebra A whose 
Albert radical is an associative field [ 1, Sect. 61. If e denotes the unit of this 
field then e & w-Rad(A) since for every a in w-Rad(A) there is a b in w- 
Rad(A) such that a + b - ba = 0 (see the proof of Proposition 2.3 below). 
This shows that the inclusion of the weak radical in the Albert radical may 
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be strict. For our pathological algebra A we have in fact that w-Rad(A) = (0) 
because w-Rad(A) is a proper ideal of a field. 

The following lemma is included only in order to make possible the 
extension of the main theorem to the case of real algebras. As in the 
associative case (see [ 5, Definition 13.11) any nonassociative real algebra A 
can be considered as a real subalgebra of a nonassociative complex algebra 
A, which satislies A, = A 0 iA and is called the complexification of A. For 
associative A, Rad(A) will denote the Jacobson radical of A. 

LEMMA 1.7. Let A be a nonassociative real algebra. Then w- 
Rad(A,) n A c w-Rad(A). 

Prooj The real algebra L(A) can and will be identified in an obvious 
way with the full real subalgebra of L(A,), whose elements are the linear 
operators on A, which leave A invariant. For a E A the multiplication 
operators by a on A are then identified with the multiplication operators 
by a on A, so the symbols L,, R, have an unambiguous meaning. 

FW4,)nW) is clearly a full subalgebra of L(A) which contains L, U R, 
so we have (1) FM(A) c FM(A ,) n L(A). In fact FM(A) is a full real 
subalgebra of FM(A,). It follows that Rad(FM(A,)) nFM(A) is a quasi- 
invertible ideal of FM(A). Therefore Rad(FM(A c)) n FM(A) c Rad(FM(A)). 
This inclusion together with the definition of the weak radical gives w- 
Rad(A,) n A c W(A). It remains to show that the subspace w-Rad(A,) f’A 
of A is invariant under FM(A). This is a consequence of the fact that 
w-Rad(A c) is invariant under FM(A c) and the inclusion (1). 

Remark 1.8. For any Banach space X let BL(X) be the Banach algebra 
of all continuous linear mappings from X into X. By the Banach 
isomorphism theorem BL(X) is a full subalgebra of L(X). So if A is a 
complete normed nonassociative algebra we have in view of the obvious 
inclusion L, U R, c BL(A) that FM(A)cBL(A). 

PROPOSITION 1.9. Let A and B be complete normed nonassociative 
algebras and T be an isomorphism from A onto B. Then the separating ideal 
for T is included in the weak radical of B. 

Prooj Assume first that A and B are complex algebras. Consider the 
isomorphism G + TGT-' from L(A) onto L(B). Since T is onto and 
TL, T-' =LTcaf , TR,T-' =RTca, for all a in A, our isomorphism maps 
L, U R, onto L, U R,, so FM(A) onto FM(B). FM(A) and FM(B) are full 
subalgebras of the Banach algebras BL(A) and BL(B), respectively (see the 
previous remark) and the mapping i6 G + TGT- ’ is an isomorphism from 
FM(A) onto FM(B), so Proposition 1.3 applies and gives S(F) c 
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Rad(FM(B)). For b in S(T) we have easily that L, and R, belong to S(n, 
so to Rad(FM(B)). Thus S(T) c W(B) and the proof will be concluded by 
showing that S(T) is invariant under FM(B). To this end let H E FM(B) and 
let G E EV(A) be such that F(G) = H. If (a,} is a sequence in A with 
{a,{ -+ 0 and {?‘(a,)} + b we have { G(a,)} + 0 and { T(G(a,)/ = 
{H(T(a,))} + H(b) so H(b) E S(T) as required. 

Now assume that A and B are real algebras. Then as in the associative 
case (5, Proposition 13.31 A, and B, are in a natural way complete normed 
nonassociative complex algebras. Also T is extended to an isomorphism f 
from A, onto B,. Applying the complex case of our proof we obtain 
S(f) c w-Rad(B,). But clearly S(T) c S(f) n B so S(T) c w-Rad(B) by the 
previous lemma. 

Now our main result follows from the closed graph theorem: 

THEOREM 1.10. Let A be a complete normed nonassociative algebra and 
assume that the weak radical of A is zero. Then A has a unique complete 
algebra norm topology. 

2. THE COROLLARIES 

In this section we show that the weak radical of a nonassociative algebra 
is contained in various other previously defined radicals. Thus from our 
main theorem we obtain particular results on uniqueness of norm topology in 
nonassociative algebras. In this way most of the known theorems about the 
topic appear and other new results are obtained. 

DEFINITIONS 2.1. (i) The following extension of the Jacobson radical 
has been used in order to find a structure theory for some particular classes 
of nonassociative algebras (see [ 12, 13 I). C onsider a maximal modular left 
ideal M of a nonassociative algebra A (definition as in the associative case 
[5, Definition 9.11) and let P be the largest two-sided ideal of A contained in 
M. Two-sided ideals P obtained in this way are called primitive ideals of A. 
Notice that this definition of primitive ideal agrees with the usual one in the 
associative case (see [5, Definition 24.11, Proposition 24.12(i)]). The radical 
of A is defined as the intersection of all primitive ideals of A and is denoted 
by Rad(A) (with the usual convention that Rad(A) =A if there are no 
primitive ideals of A). 

(ii) The strong radical of a nonassociative algebraA is defined as the 
intersection of all maximal modular two-sided ideals of A and is denoted by 
s-Rad(A). 

(iii) The annihilator of a nonassociative algebra A is defined as the set 
(a E A: L, = R, = 0) and is denoted by An(A). 
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(iv) The concept of Jacobson radical for associative algebras and the 
McCrimmon radical [ 161 for Jordan algebras can be unified if we consider 
the class of noncommutative Jordan algebras (definition in [24, p. 1411) 
which includes alternative (in particular, associative) and Jordan algebras. 
For a and b in a noncommutative Jordan algebra define the quasiproduct 
a o b by a o b = a + b - ab. If for a in A there is a b in A such that the 
equalities a o b = b o a = 0 and (a o a) o b = b 0 (a o a) = a are verified, a is 
said to be a quasiinvertible element of A. A subset of A is said to be quasiin- 
vertible if all of its elements are quasiinvertible. The McCrimmon radical of 
A is defined as the largest quasiinvertible two-sided ideal of A and is denoted 
by M-Rad(A). Its existence was proved in [ 161 for commutative A. For an 
arbitrary noncommutative Jordan algebra A the existence of the McCrimmon 
radical may be obtained as follows: the algebra A + (the same vector space 
as that of A with product a o b = f(ab + ba)) is a Jordan algebra with the 
same quasiinvertible subsets as those of A [ 15, Theorem 2.21 so, clearly, the 
largest two-sided ideal of A contained in the McCrimmon radical of A ’ is 
the desired McCrimmon radical of A. The specialization of the concept of 
the McCrimmon radical to alternative algebras is due to Smiley [28]. Also 
for an alternative algebra A the equalities Rad(A) = M-Rad(A) = M- 
Rad(A+) are true [33, 181. 

LEMMA 2.2. Let A be a nonassociative uigebra and Q be a two-sided 
ideal of A. Assume that for any q in Q there is an a in A such that 
q + a - uq = 0. Then Q is contained in the radical of A. 

Proof: Suppose, to the contrary, that M is a maximal modular left ideal 
of A such that Q is not included in M. Then Q + M = A by the maximality 
of M. Choose q E Q, m E M such that q + M is a right modular unit for h4. 
Then q is also a right modular unit for M. Let a be in A such that 
q + a -uq=O. We have q= aq -u E M, a contradiction (see [5, 
Proposition 9.2(ii)]). 

PROPOSITION 2.3. For any nonassociative algebra A we have that 
An(A) c w-Rad(A) c Rad(A) c s-Rad(A). Also if A is a noncommutative 
Jordan algebra then w-Rad(a) c M-Rad(A) c Rad(A). 

ProojI The inclusion An(A) c W(A) is clear. So to conclude An(A) c w- 
Rad(A) it is enough to prove that An(A) is invariant under F&I(A). But the 
set P = rhzhL(A): F(An(A)) = {O}} is a left ideal (so a full subalgebra) of 
L(A) contains L, V R, . Therefore FM(A)c P, that is, 
;W;GW, = lOI, which is more than the invariance of An(A) under 

By definition of the weak radical, if q is an element in w-Rad(A) then R, 
has a quasiinverse (say T) in FM(A). Write a = T(q) - q. Then q + a - uq = 
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T(q) - T(q) q + q2 = (T + R, -R, T)(q) = 0. Now the inclusion w-Rad(A) c 
Rad(A) follows from Lemma 2.2. 

It is easy to see that maximal modular two-sided ideals are primitive 
ideals so Rad(A) c s-Rad(A). 

Now let A be a noncommutative Jordan algebra. The inclusion M- 
Rad(A) c Rad(A) follows immediately from Lemma 2.2. As above for q in 
w-Rad(A), R, has a quasiinverse T in FM(A) and if we write a = T(q) - q 
the equality (1) q 0 a = 0 is obtained. From (l), using that A is a flexible 
algebra (that is, (xy) x = x(ux) f or all x, y in A), we obtain 
(IA -R& 0 4) = q ou-(qou)q=O so (2) uoq=O since IA-R, is an 
invertible operator on A (in fact IA - T is its inverse). From (2), the flex- 
ibility of A, and the fact that R, commutes with L,, we obtain 

VA - R,Mq o 4) o a - 4) = 0 so (3) rp(q o 4) 0 a = q. Also from (1), the flex- 
ibility of A, and the commutation of R, with R,, the equality (4) 
a o (q o q) = q is obtained in an analogous way. From (l), (2), (3), and (4) it 
follows that q is quasiinvertible in A so w-Rad(A) is a quasiinvertible two- 
sided ideal of A and so w-Rad(A) c M-Rad(A). 

Remarks 2.4. (i) The weakest result obtained from the above 
proposition and our main theorem is that complete normed nonassociative 
algebras with zero strong radical have a unique complete algebra norm 
topology. This is considered as known by some people. The Rickart 
proof [22] for the associative case has been adapted to the case of Jordan 
algebras (see [4, 141). Although we do not know a published proof for 
general nonassociative algebras, an easy proof can be given (without using 
the main result of this paper) by reducing as usual to the unital simple case 
and then by showing that the separating ideal for two complete algebra 
norms II II, and II /I2 on the unital simple algebra A does not contain the unit 
of A. This follows from the fact that 

1 =r(IA)~r(ZA-L,)+r(L,)~/IIA -Lallz+llL~lllr 

where IA denotes the identity operator on A, a is an arbitrary element in A, 
and the spctral radius r(a) is evaluated unambiguously either in BL(A, 11 11,) 
or in WA, II II21 b ecause both algebras are full subalgebras of L(A). 

(ii) Another consequence of Proposition 2.3 and our main theorem is 
that complete normed nonussociutive algebras with zero radical have a 
unique complete algebra norm topology. This is, we think, a new result and 
we do not know a proof essentially different from the one given here. 
Although it can be considered formally as a general nonassociative extension 
of Johnson’s theorem, it is of much less relevance in the general 
nonassociative context than in the special associative case. For if A is a 
nonassociative anticommutative algebra (in praticular a Lie algebra) we have 
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easily that Rad(A) = A so the result is vacuous in this case. Also for Jordan 
algebras another, better natural extension of Johnson’s result is known (see 
the following remark). The uniqueness of norm topology for a complete 
normed generalized accessible algebra A (see [ 131 for the definition) with 
zero radical can be seen by reducing as usual to the primitive case. Then A is 
either commutative or associative or is an algebra of octonions over its 
center (see [ 13, Theorem 1; 121). In the first case the result follows from the 
above remark (note that for commutative A the equality Rad(A) = s-Rad(A) 
is true); in the second, from Johnson’s theorem; and in the last, from the 
finite dimension of A because the center of A is a normed associative 
division algebra. 

(iii) From Proposition 2.3 and Theorem 1.10 it follows also that 
complete normed noncommutative Jordan algebras with zero McCrimmon 
radical have a unique complete algebra norm topology. This result is essen- 
tially the theorem of uniqueness of norm topology for complete normed 
Jordan algebras given by Aupetit [Z, Theorem 21. The wider extent of our 
result is purely formal. For, if a complete normed noncommutative Jordan 
algebra A has zero McCrimmon radical, then A ’ is a complete normed 
Jordan algebra which has also zero McCrimmon radical (the inclusion M- 
Rad(A) c M-Rad(A +) for every noncommutative Jordan algebra A is in fact 
an equality in the complete normed case 161) so Aupetit’s theorem is 
applicable and A + has a unique complete algebra norm topology. Since 
every complete algebra norm on A is clearly a complete algebra norm on 
A ‘, the uniqueness of the complete algebra norm topology on A follows 
immediately. In [21] the problem of uniqueness of norm topology for 
complete normed Jordan algebras with zero Topping radical (definition in 
121, Sect. 3 1) is attacked, successfully in some particular cases. It must be 
noted that the Topping radical agrees with the McCrimmon radical as a 
consequence of the results in [S]. 

(iv) The concept of full subalgebra for associative algebras is extended 
in an obvious way to the noncommutative Jordan context. Also the natural 
extension of Proposition 1.3 and Corollary 1.4, replacing Banach algebras by 
complete normed noncommutative Jordan algebras and the Jacobson radical 
by the McCrimmon radical, is valid. 

The strongest result which we can obtain from Proposition 2.3 and our 
main theorem is vacuous in the case of anticommutative algebras. In fact 
every anticommutative algebra A is a noncommutative Jordan algebra 
satisfying that M-Rad(A) = A. In the rest of this section some other results 
are obtained which cover the anticommutative case. The first one follows 
from the next proposition. Following [24, p. 151, a nonassociative algebra A 
is said to be simple if there are a and b in A with ab # 0 and {O} and A are 
the only two-sided ideals of A. 
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PROPOSITION 2.5. Every simple nonassociative algebra has zero weak 
radical. 

Proof: Let A be a simple algebra. Since every subspace of A invariant 
under FM(A) is a two-sided ideal of A it follows that FM(A) is an 
irreducible algebra of operators on A so, in particular, FM(A) has zero 
Jacobson radical. Thus we have W(A) = An(A). But An(A) is a two-sided 
ideal of A which cannot agree with A so W(A) = (0) and w-Rad(A) = (0). 

In what follows we consider complete norrned complex algebras A with an 
algebra involution such that, for any selfadjoint element a in A, L, and R, 
are hermitian elements in the unital Banach complex algebra BL(A) 
(definition in [5, Definition 10.121). Such an algebra will be called an 
algebra with hermitian multiplication. Associative examples of algebras with 
hermitian multiplication are the C*-algebras and the associative H*-algebras 
[5, Definition 34.61. Nonassociative examples are, among others, the 
nonassociative generalizations of the above-mentioned ones. These are the 
noncommutative Jordan C*-algebras [ 191 (which include the Jordan C*- 
algebras of Kaplansky [32]) and the nonassociative H*-algebras [6, 71 
(which include Jordan H*-algebras [31] and Lie H*-algebras [26]), respec- 
tively. Notice that, in a very precise sense, noncommutative Jordan C*- 
algebras are the widest nonassociative generalization of associative C*- 
algebras [23]. Many other examples of nonassociative algebras with 
hermitian multiplication may be obtained from associative algebras, since if 
A is associative with hermitian multiplication, then A ’ and A - (the algebra 
with the same vector space as A and product (a, b)- i(ab - ba)) are 
algebras with hermitian multiplication. An interesting independent example is 
the Lie algebra of all derivations on a C*-algebra (see Remark 2.8(iii) 
below). 

LEMMA 2.6. The weak radical of a complex algebra with algebra 
involution is a selfadjoint subset. 

Proof For F in L(A) define F* EL(A) by (1) F*(a)= (F(a*))* for all 
a in A. Then F--f F* is a semilineal automorphism of L(A) which leaves 
FM(A) invariant (because Lz =R,, and R,* =L,,) so also leaves 
Rad(FM(A)) invariant. Thus clearly W(A) is a selfadjoint subset of A. Also 
from (1) it follows that if X is a subsapce of A invariant under FM(A) then 
so is X*. Now it is clear that w-Rad(A) is a selfadjoint subset of A. 

PROPOSITION 2.7. Let A be an algebra with hermitian multiplication. 
Then w-Rad(A) = An(A). 

ProoJ Using the inclusion An(A) c w-Rad(A) (Proposition 2.3) and the 
previous lemma it is enough to prove that every selfadjoint element in w- 
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Rad(A) lies in An(A). Let a be a selfadjoint element in w-Rad(A). Then, for 
all complex numbers z, zL,, is quasiinvertible in FM(A), so also in X(A) 
(recall the inclusion FM(A) cBL(A) in Remark 1.8). Thus sp(BL(A), 
L,) = {0} and r(L,) = 0. Since L, is hermitian in BL(A), a theorem by 
Sinclair (see [5, Theorem 11.171) gives L, = 0. Analogously R, = 0 and a 
belongs to An(A). 

Remarks 2.8. (i) From Proposition 2.7 and our main theorem it follows 
that an algebra with hermitian multiplication and zero annihilator has a 
unique complete algebra norm topology. This result contains known facts for 
noncommutative Jordan C*-algebras [ 19, Proposition 2.31 and 
nonassociative H*-algebras with zero annihilator [6] (see also [3]). 

(ii) Let A be an associative algebra with hermitian multiplication and 
zero center (for example, the C*-algebra of all compact operators on an 
infinite-dimensional complex Hilbert space). Then A- is a Lie algebra with 
hermitian multiplication and zero annihilator. So A - has a unique complete 
algebra norm topology. 

(iii) Now let A be an arbitrary associative C*-algebra. Since every 
derivation of A is continuous, the set D of all derivations of A has a natural 
complete normed Lie algebra structure as a closed subalgebra of the 
complete normed Lie algebra (BL(A))-. For F in D let F* be the new 
derivation of A defined by F*(a) = -(F(a*)* for all u in A. It is easy to see 
that the mapping F-+ F* is an algebra involution on the Lie algebra D. Also 
if F = F* then a result by Sinclair [27, Remark 3.51 implies that F is a 
hermitian element in the unital Banach algebra BL(A). Therefore the 
mapping T+ +(FT - TF) from BL(A) into BL(A ) is a hermitian operator on 
BL(A). Now it is easily deduced that the mapping G --f f (FG - GF) from D 
into D is also a hermitian operator on D. But this last operator is just the 
operator L, = -R, on the Lie algebra D. Thus we have proved that D is an 
algebra with hermitian multiplication. Let G be in An(D). Then for any a in 
A we have [G, L, - R,] = 0 since L, - R, belongs to D. So LGCaI - RGCaj = 
[G, L, - R,] = 0 and G(a) belongs to the center of A. Now we have 
IIG~L,l,L,l= [Lcw L,] = 0 and a theorem of Kleinecke (see [5, 
Proposition 18.13 ]) gives r( [G, L,]) = 0. Thus r(L,,,,) = 0, r(G(u)) = 0, and 
G = 0. Hence D has zero annihilator, so a unique complete algebra norm 
topology. It seems that this result is new. 

3. CONTINUITY OF HOMOMORPHISMS ONTO A 
COMPLETE NORMED NONASSOCIATIVE ALGEBRA 

It would be desirable for every homomorphism from a complete normed 
nonassociative algebra A onto a complete normed nonassociative algebra B 
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with zero weak radical to be continuous. But this seems to be difficult 
because it is not clear that homomorphisms from A onto B induce 
homomorphisms from FM(A) onto FM(B). If we replace “weak radical” by 
any one of the radicals introduced in Section 2, the above problem has an 
affirmative answer (see Remark 3.4 below). This will follow from the next 
theorem. The only new analytic ingredient which we need for the proof is the 
following 

LEMMA 3.1. Let X and Y be Banach spaces, T a linear mapping from X 
onto Y, and F (resp.: G) a continuous linear operator on X (resp. : Y). 
Assume that TF = GT. Then r(G) < r(F). 

Prooj By an easy complexification argument we can assume that X and 
Y are complex spaces. Let z be in sp(G) such that /z] = r(G). Then G - zZ, 
lies in the boundary of the set of all invertible elements in BL( Y) so the 
range of G - zZ, is not Y (see [22, p. 2791). Since T(F - zZx) = (G - zZ,) T 
and 7’ is onto it follows that the range of F - zZ~ is not X so z E sp(F). Thus 
r(G) = (z I< r(F) as required. 

DEFINITION 3.2. Let A be a nonassociative algebra and let C be any 
subalgebra of L(A) such that L, U R, c C c FM(A). As in the definition of 
weak radical we can consider the largest C-invariant subspace of A 
consisting of elements a such that L, and R, lie in the Jacobson radical of C. 
This subspace will be called the C-radical of A and denoted by C-Rad(A). 
The ultra-weak radical of A (uw-Rad(A)) is defined as the sum of all the C- 
radicals of A when C runs through the set of all subalgebras of L(A) 
satisfying L, U R, c C c FM(A). Since the weak radical of A is a C-radical 
(take C = FM(A)) it follows that w-Rad(A) c uw-Rad(A). 

THEOREM 3.3. Let T be a homomorphism from a complete normed 
nonassociative algebra A onto a complete normed nonassociative algebra B. 
Assume that the altra-weak radical of B is zero. Then T is continuous. 

Proof: By the above inclusion B has zero weak radical3 so a unique 
complete algebra norm topology (Theorem 1.10). Thus it is enough to prove 
that Ker(T) is closed. Consider the couples (F, G) with F in FM(A), G in 
FM(B), and TF = GT. Let C (resp.: D) be the set of all G (resp.: F) which 
appear in these couples. It is easy to see that C (resp.: D) is a subalgebra of 
FM(B) (resp.: FM(A)) including L, U R, (resp.: Lp U RA) and that f: F--t G 
is a homomorphism from D onto C satisfying T(L,) = L-r(=) and f(R,) = 
R r(0) for all a in A. Let E be the closure in D of Ker(T) (recall that by 
Remark 1.8, FM(A), so also D, is an algebra of continuous operators on A). 
Then f(E) is a two-sided ideal of C. For any element G in f’(E) there is an F 
in D such that IIF < 1 and TF = GT. Therefore by Lemma 3.1 we have 
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r(G) < r(F) < 1 so F (resp.: G) has a quasiinverse F” (resp.: Go) in E(A) 
(resp.: H.(B)). F” (resp.: Go) lies in FM(A) (resp.: FM(B)) since FM(A) 
(resp.: FM(B)) is a full subalgebra of E(A) (resp.: X(B)). An easy 
calculation shows that TF” = GOT, from which we deduce that Go belongs to 
C. Thus we have proved that f(E) is a quasiinvertible ideal of C so 
f(E) c Rad(C). If a is any element in the closure in A of Ker(T) we have 
easily that L, and R, belong to E so LTfaj (=p(L,)) and R.,,,(=f(R.)) 
belong to p(E). Thus T(Ker(T)) is a subspace of B any element b of which 
satisfies that L, and R, belong to the radical of C. This together with the 
invariance of T(Ker(T)) under C (which is easy to see) shows that 
T(Ker(7’)) c C-Rad(B) c uw-Rad(B)= {O). So Ker(T) is closed in A as 
required. 

Remarks 3.4. (i) Let A be a nonassociative (resp.: noncommutative 
Jordan) algebra. The same argument as that in the proof of Proposition 2.3 
shows that C-Rad(A) c Rad(A) (resp.: C-Rad(A) c M-Rad(A)) for any 
subalgebra C of L(A) such that L, U R, c Cc FM(A). Therefore uw- 
Rad(A) c Rad(A) (resp.: uw-Rad(A) c M-Rad(A)) and, by application of 
the above theorem, homomorphisms from a complete normed nonassociative 
algebra onto a complete normed nonassociative (resp.: noncommutative 
Jordan) algebra with zero radical (resp.: zero McCrimmon radical) are 
continuous. This improves the result by Aupetit in [2, Theorem 21. 

(ii) Also, as in the proof of Proposition 2.5, every simple 
nonassociative algebra has zero ultraweak radical, so homomorphisms from 
a complete normed nonassociative algebra onto a complete normed simple 
nonassociative algebra are continuous. 

We conclude this paper by listing some problems which arise in a natural 
way from our results. 

PROBLEMS 3.5. (i) Does the weak radical of an associative (resp.: 
Jordan) algebra agree with the Jacobson (resp.: McCrimmon) radical? The 
answer is affirmative if the algebra is either associative and commutative or 
finite dimensional. The associative and Jordan cases are related because for 
an associative algebra A we can use our Proposition 2.3 and a result by 
McCrimmon [ 171 to obtain that w-Rad(A) c w-Rad(A +) c M-Rad(A ‘) = 
Rad(A). Thus the Jordan algebra At has weak radical equal to the 
McCrimmon radical when the associative algebra A has weak radical equal 
to the (Jacobson) radical. The weak radical of a noncommutative Jordan 
algebra does not agree in general with the McCrimmon radical as can 
deduced of the results in Section 2. Therefore the unification of a possible 
affirmative answer to the problem of the equality of weak and McCrimmon 
radicals for associative and Jordan algebras should be restricted to a smaller 
class of algebras, as, for example, the generalized standard algebras [25]. 
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(ii) Is every derivation of a complete normed nonassociative algebra 
with zero weak radical continuous? Although every derivation of a Banach 
(associative) semisimple algebra is continuous [ 1 I] it seems to be unknown 
whether or not the separating ideal for a derivation of a Banach algebra lies 
in the Jacobson radical. If the answer to this question were affirmative and 
extensible to derivations of full subalgebras of Banach algebras then an 
argument very similar to that in the proof of Proposition 1.9 would show 
that the separating ideal of any derivation of a complete normed 
nonassociative algebra lies in the weak radical, giving an affirmative answer 
to our problem. Such an affirmative answer would imply that every Jordan 
derivation of a semisimple Banach algebra A is continuous so it is a 
derivation of A [27]. 

(iii) Is the property w-Rad(A) = A (A, a nonassociative algebra) a 
radical property in the precise sense of the word? (see [29, pp. 1 l-121). An 
affirmative answer to this problem would be the beginning of the 
development of a theory of the weak radical which could make easier an 
approach to other problems. If the answer were negative it would be 
desirable to find a radical property Yl for nonassociative algebras such that 
for any nonassociative algebra A the inclusion %(A) c w-Rad(A) is true and 
any complete normed %semisimple nonassociative algebra has a unique 
complete algebra norm topology. 
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