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Within the framework of (Unary) Pure Inductive Logic we investigate four possible 
formulations of a probabilistic principle of analogy based on a template considered 
by Paul Bartha in the Stanford Encyclopedia of Philosophy [1] and give some 
characterizations of the probability functions which satisfy them. In addition we 
investigate an alternative interpretation of analogical support, also considered by 
Bartha, based not on the enhancement of probability but on the creation of 
possibility.
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1. Introduction

Paraphrasing his article in the Stanford Encyclopedia of Philosophy, SEP [1], Paul Bartha considers the 
following characterization of an individual analogical argument: with an analogical argument being: It is 

Source (S) Target (T)
P P ∗ [positive analogy]
A ¬A∗ [negative analogy]
¬B B∗

Q
Q∗ (plausibly)

plausible that Q∗ holds in the target domain because of certain known (or accepted) similarities with the 
source domain, despite certain known (or accepted) differences.
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In turn he examines a corresponding candidate analogical inference rule, CAIR for short:

Suppose S and T are the source and target domains. Suppose P1 . . . , Pn (with n ≥ 1) represents the 
positive analogy, A1, . . . , Ar and ¬B1, . . . , ¬Bs represent the (possibly vacuous) negative analogy, and Q
represents the hypothetical analogy. In the absence of reasons for thinking otherwise, infer that Q∗ holds 
in the target domain with degree of support p > 0, where p is an increasing function of n and a decreasing 
function of r and s.

The primary intention of this paper is to formulate, as principles, mathematically more precise versions 
of CAIR within the framework of (Unary) Pure Inductive Logic, PIL for short, where ‘degree of support’ is 
identified with (subjective) probability, and to determine which probability functions satisfy these versions 
in the presence of certain other, widely accepted, symmetry requirements. We should point out that this 
differs somewhat from the ‘Applied Inductive Logic’ framework in which Bartha considers and dismisses 
CAIR, even as a non-starter. Following that we shall suggest and investigate within this formal framework 
an alternative interpretation of analogical support based on the creation of possibility, also considered by 
Bartha as what he terms ‘the modal conception’, see [1, Section 2.3].

This (Unary) Pure Inductive Logic framework is explained in, for example, [19,20]. In short we work in a 
first order predicate language Lq with finitely many predicate, i.e. unary relation, symbols R1, R2, . . . , Rq, 
countably many constants a1, a2, a3, . . . , which are intended to name all the elements of the universe, and 
no function symbols nor equality. Let SLq and QFSLq denote, respectively, the sentences and quantifier free 
sentences of this language.

A probability function on Lq is a function w : SLq → [0, 1] such that for all θ, φ, ∃x ψ(x) ∈ SLq:

(P1) If |= θ then w(θ) = 1
(P2) If |= ¬(θ ∧ φ) then w(θ ∨ φ) = w(θ) + w(φ)
(P3) w(∃x ψ(x)) = limm→∞ w(

∨m
i=1 ψ(ai)),

this last condition reflecting the intention that the constants ai exhaust the universe.
The primary goal of PIL, as we would present it, is to investigate which such probability functions are 

logical or rational in the sense of corresponding to the subjective probabilities assigned by a rational agent 
in the absence of any further knowledge or intended interpretation of the constant and predicate symbols.

Whilst we have no precise definition of what we mean by ‘logical’ or ‘rational’ here, indeed such a 
clarification is essentially equivalent to the above goal, we do at least seem to have some intuitions about 
what constitutes being rational, or perhaps more usually what constitutes being irrational. For example in 
the circumstances of such zero knowledge it would seem to be irrational to treat any one constant differently 
from any other. Precisely then a rational probability function w should satisfy:

The Principle of Constant Exchangeability, Ex
A probability function w on SLq satisfies Constant Exchangeability if, for any permutation σ of 1, 2, . . .

and θ(a1, . . . , an) ∈ SLq,

w(θ(aσ(1), . . . , aσ(n))) = w(θ(a1, . . . , an)). (1)

This principle is so widely assumed in this context that we shall henceforth take it, without further 
mention, that all probability functions we discuss satisfy it.

Similarly there would seem to be no rational reason to give two predicates different properties, nor 
even between a predicate and its negation. This leads to imposing two further requirements on a rational 
probability function to satisfy:



24 E. Howarth et al. / Journal of Applied Logic 14 (2016) 22–45
The Principle of Predicate Exchangeability, Px
If Ri, Rj are predicate symbols of Lq then for θ ∈ SL, w(θ) = w(θ′) where θ′ is the result of transposing 

Ri, Rj throughout θ.

The Strong Negation Principle, SN
For θ ∈ SLq, w(θ) = w(θ′) where θ′ is the result of replacing each occurrence of the predicate symbol R

in θ by ¬R.

In what follows we shall restrict our attention to probability functions w satisfying these three principles 
Ex, Px, SN.

There is a further principle which we will need subsequently and whose rationality may be argued for 
as follows. Suppose that on the basis of some considerations we have made the probability function wLq

our rational choice of probability function on Lq and the probability function wLr our rational choice of 
probability function on Lr where r ≥ q. Then since SLq ⊆ SLr it would seem perverse if wLr did not agree 
with wLq on SLq, since it would mean that what we considered a rationally justified value for the probability 
of θ ∈ SLq depended on the presence or absence of relation symbols in the language which were not even 
mentioned in θ.

Given our earlier argument for the rationality of Px + SN this leads to the following ‘meta-rationality’ 
principle which it is desirable for a probability function wLq on Lq to satisfy, though unlike Ex, Px and SN 
we will not actually assume it as the default:

Unary Language Invariance with Strong Negation,3 ULi + SN
A probability function w on Lq satisfies Unary Language Invariance with SN if there is a family of 

probability functions wLr , one on each language Lr where r ∈ N
+ = {1, 2, 3, . . .}, satisfying Ex + Px + SN

and such that w = wLq and whenever r ≤ s then wLs agrees with wLr on SLr.

Whilst the rationality of observing symmetries and language invariance as expressed by the above prin-
ciples seems to us hard to question, the rationality of arguments by analogy appears much less forceful. 
Nevertheless in the real world we often are somewhat influenced by analogies, for clear accounts of such 
within mathematics see [22,23], and there have been several attempts, starting with Rudolf Carnap, to 
capture facets of analogy as a rational or logical principle within the framework of Inductive Logic, see 
for example [3], Carnap and Stegmüller [4] and later Festa [5], Hesse [9,10], Maher [15,16], di Maio [17], 
Romeijn [24], Skyrms [25].

In each of the next four sections we will add to this list of ‘Principles of Analogy’ by proposing inter-
pretations, or variants, of CAIR within the framework of PIL and, in Theorems 1, 2, 3, 4, investigating 
the probability functions that satisfy them (in the presence of our standing assumptions Ex, Px, SN). Sub-
sequently we will broaden the remit by proposing a principle of analogy (Dolly’s Principle) based on the 
idea of analogy as a source of possibility (the modal conception as Bartha terms it) rather than increase 
of probability. Since mathematical results in these sections contain on occasions technicalities that some 
readers may wish to simply accept we shall now spend a little time introducing the terms that appear in 
their statements in order that they become directly accessible. A general overview of these results will then 
be given in the final section.

An atom of Lq is a formula of the form

Rε1
1 ∧Rε2

2 ∧ . . . ∧Rεq
q

3 ULi alone, see [20], only requires each of the probability functions wLr to satisfy Ex + Px.
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where ε1, ε2, . . . , εq ∈ {0, 1} and R1
i = Ri, R0

i = ¬Ri. So there are 2q atoms for Lq, which we denote 
α1(x), α2(x), . . . , α2q (x), corresponding to the 2q different choices for the �ε. Notice that because we only 
have unary relation symbols in the language, knowing which atom a constant satisfies tells us all there is 
to know about that constant.

Similarly for (distinct) constants4 b1, b2, . . . , bn the state description that holds for them, that is the 
sentence

n∧
i=1

αhi
(bi),

tells us all there is to know about these constants. By a theorem of Gaifman, see [6] or [20, Theorem 7.1], 
a probability function is uniquely determined by its values on state descriptions.

Let D2q be the set of vectors
{
〈x1, x2, . . . , x2q 〉 ∈ R

2q |xi ≥ 0,
∑
i

xi = 1
}
.

For �c ∈ D2q the probability function w�c on Lq is defined by

w�c

(
n∧

i=1
αhi

(bi)
)

=
n∏

i=1
chi

.

In other words w�c treats the αhi
(bi) as stochastically independent with individual probabilities chi

, i =
1, . . . , n. This probability function satisfies Ex but not Px nor SN except under special circumstances. For 
future reference we recall (see [20, Chapter 8]) that the w�c are characterized by satisfying the

The Constant Irrelevance Principle
If θ, φ ∈ QFSL have no constant symbols in common then

w(θ ∧ φ) = w(θ) · w(φ).

We remark that the principle implies that w(θ ∧ φ) = w(θ) · w(φ) even when θ, φ ∈ SL (not necessarily 
quantifier free), see [20, Chapter 8].

The functions w�c are fundamental since any probability function satisfying Ex can be expressed from 
them as an integral over D2q :

De Finetti’s Representation Theorem. Let w be a probability function on SLq satisfying Ex. Then there is 
a normalized and countably additive measure μ on the Borel subsets of D2q such that

w

(
n∧

i=1
αhi

(bi)
)

=
∫

D2q

2q∏
j=1

x
mj

j dμ(�x)

=
∫

D2q

w�x

(
n∧

i=1
αhi

(bi)
)

dμ(�x), (2)

where for j = 1, 2, . . . , 2q, mj = |{i | hi = j}|, the number of times that j occurs amongst h1, h2, . . . , hn.

4 We may on occasions use b1, b2, b3 etc. for constants from {a1, a2, a3, . . .}, rather than ai1 , ai2 , ai3 , etc., in order to avoid 
multiple subscripts.
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De Finetti’s Theorem finds numerous important, and slick, applications in PIL; for example Humburg’s 
proof (see [14], or [20, Chapter 11]) of a result of Gaifman [7], that we shall need later, that Ex implies

The (Extended) Principle of Instantial Relevance
For θ(a1, a2, . . . , an), φ(a1) ∈ SL,

w(φ(an+2) |φ(an+1) ∧ θ(a1, a2, . . . , an)) ≥ w(φ(an+2) | θ(a1, a2, . . . , an)). (3)

A second important family of probability functions on Lq are the cLq

λ , 0 ≤ λ ≤ ∞, of Carnap’s Continuum 
of Inductive Methods which, for λ > 0, are specified by

c
Lq

λ (αj(bn+1) |
n∧

i=1
αhi

(ai)) = mj + λ2−q

n + λ

where (again) mj = |{i | hi = j}| and for λ = 0 by

c
Lq

0

(
n∧

i=1
αhi

(bi)
)

=
{

2−q if h1 = h2 = . . . = hn,

0 otherwise.

These cLq

λ satisfy Ex + Px + SN and even ULi with SN, the corresponding language invariant family being 
obtained by fixing the λ and letting the q range over N

+.
Given that convex sums of probability functions are again probability functions and that probability 

functions are determined by their values on state descriptions it is easy to check that

cLq
∞ = w〈2−q,2−q,...,2−q〉

c
Lq

0 = 2−q(w〈1,0,0,...,0〉 + w〈0,1,0,...,0〉 + . . . + w〈0,...,0,0,1〉).

To simplify the notation in what follows we shall omit the superscript Lq in cLq

λ when q is clear from the 
context.

Notice that any permutation of predicates, or transposition of Rj, ¬Rj , generates a permutation of the 
atoms αi. We shall say that a permutation σ of atoms is licensed by Px + SN if it can be formed as a 
composition of such permutations. Notice that if w satisfies Px + SN then for such a σ,

w

(
n∧

i=1
αhi

(aki
)
)

= w

(
n∧

i=1
σ(αhi

)(aki
)
)
. (4)

Furthermore, since by Ex the left (and right) hand side is the same for any choice of distinct constants we 
shall, to simplify the notation, sometimes omit the instantiating constants and denote it simply as

w

(
n∧

i=1
αhi

)

or even

w(αm1
1 αm2

2 . . . αm2q
2q )

where mj is the number of times that j appears in h1, h2, . . . , hn.
For future reference note that Atom Exchangeability is the assertion that (4) holds for any permutation 

σ of the set of atoms, not just those licensed by Px + SN.
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2. The general analogy principle

The first question we might feel obliged to address vis-a-vis CAIR is what exactly the forms of the 
Q, P, A, B are and what exactly is being treated analogously in the relationship between Q and Q∗ etc. – 
what we shall refer to as the carrier of the analogy. The four versions we shall consider are really centered
around possible answers to these questions within the framework of Unary5 PIL. In our first attempt at a 
formulation the Q, P are just quantifier free sentences and it is the constants which are the carriers:

The General Analogy Principle, GAP
For �a = 〈a3, a4, . . . , ak〉 and ψ(a1, �a), φ(a1, �a) ∈ QFSL,

w(φ(a2,�a) |ψ(a1,�a) ∧ ψ(a2,�a) ∧ φ(a1,�a)) ≥ w(φ(a2,�a) |φ(a1,�a)). (5)

In this principle then ψ(a1, �a) ∧ ψ(a2, �a) provides ‘evidence’ that a1, a2 are similar and hence should 
enhance (or at least not decrease) the probability that a2 should again be similar to a1 in satisfying φ(x, �a)
given that a1 does.

A few comments are in order here. Firstly we shall identify (5) with

w(φ(a2,�a) ∧ ψ(a1,�a) ∧ ψ(a2,�a) ∧ φ(a1,�a)) · w(φ(a1,�a))

≥ w(ψ(a1,�a) ∧ ψ(a2,�a) ∧ φ(a1,�a)) · w(φ(a2,�a) ∧ φ(a1,�a)),

a convenience which satisfactorily allows us to dispense with the problem of conditioning on sentences with 
probability zero.6

Secondly, in this formulation we have taken as vacuous the negative analogies A1, . . . , Ar and 
¬B1, . . . , ¬Bs. In particular then the monotonicity element of Bartha’s representation has been reduced 
to a single inequality.7 Thirdly, notice that by Ex the choice of constants a1, a2 . . . , ak is not relevant since 
it implies the same principle for any distinct choice of constants. Finally, within this formulation we are 
restricting φ(a1, �a), ψ(a1, �a) to be quantifier free, again for reasons which will shortly become clear.

As we now show GAP fails to satisfactorily capture our (presumably viable) intuitions about analogy.

Theorem 1. Let w be a probability function on the unary language Lq satisfying Px + SN.8 Then

(A) If q = 1 then w satisfies GAP just if w = c0.
(B) If q ≥ 2 then w satisfies GAP just if w = c0, even dropping the additional constants �a.

Proof. (A): That c0 (on L1) satisfies GAP will be shown in part (B) below.
If w = νc∞ + (1 − ν)c0 with 0 < ν ≤ 1 then one can check that for φ(a1, �a), ψ(a1, �a) being respectively((

R1(a1) ∧ (R1(a3) ∨R1(a4))
)
∨
(
¬R1(a1) ∧ (R1(a3) ∨ ¬R1(a4))

))
∧R1(a5) ∧ ¬R1(a6),((

R1(a1) ∧ (¬R1(a3) ∨R1(a4))
)
∨
(
¬R1(a1) ∧ (¬R1(a3) ∨ ¬R1(a4))

))
∧R1(a5) ∧ ¬R1(a6),

we have

w(φ(a2,�a) |ψ(a1,�a) ∧ ψ(a2,�a) ∧ φ(a1,�a)) = 2/3 < 5/6 = w(φ(a2,�a) |φ(a1,�a)),

which provides the required counter-example.

5 Several of our results apply also to Polyadic Inductive Logic, see [19,20] for further details, but for simplicity we shall limit 
ourselves here to the purely unary.
6 More generally we shall identify (a/b) ≥ (c/d) with ad ≥ bc.
7 Subsequent results will somewhat vindicate this decision.
8 Recall the standing assumption that all probability functions considered satisfy Ex.
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So now suppose that w is not of the form νc∞ + (1 − ν)c0 for any 0 ≤ ν ≤ 1. Then the de Finetti prior 
of w must have a support point 〈c, 1 − c〉 with 0 < c < 1/2. (In other words every open set containing this 
point has non-zero measure.)

Let φ(a1) = R1(a1). Then by the Extended Principle of Instantial Relevance, (3), and SN,

w(φ(a2) |φ(a1)) ≥ w(R1(a1)) = 1/2. (6)

Let

ψ(a3, a4, . . . , ak) = R
[mc]
1 (¬R1)[m(1−c)]

where as usual [mc] is the integer part of mc and k = [mc] + [m(1 − c)] + 2. Then

w(φ(a2) |φ(a1) ∧ ψ(�a)) = w(R[mc+2]
1 (¬R1)[m(1−c)])

w(R[mc+1]
1 (¬R1)[m(1−c)])

≈ c

for large m (see for example [20, Chapter 12]). Comparing with (6) we have the required counter-
example.

(B): Here we shall show the result even without the �a being present. We first need to introduce another 
probability function, �, on Lq. For αi an atom of Lq let αc

i be that atom of Lq which disagrees with αi on 
every Rj(x), in other words, for j = 1, 2, . . . , q,

αi(x) |= Rj(x) ⇐⇒ αc
i (x) |= ¬Rj(x).

Now let �e1, �e2, . . . , �e2q−1 run through all vectors in D2q which have zeros at all coordinates except for two, 
say the ith and jth, with αc

i = αj , and in those places the entry is 1/2. Set

� = 21−q
2q−1∑
i=1

w�ei .

We now show that in the case of a unary language L with q ≥ 2 predicates and a probability function w on 
L satisfying Ex, Px and SN and not of the form λ� + (1 − λ)c0 for some 0 < λ ≤ 1 there are φ(a1), ψ(a1)
for which (5) fails.9

To this end let G ⊂ {1, 2, . . . , 2q}, |G| = 2q−1 and let x = w(αiαi) and yij = w(αiαj). Notice that x
is independent of i since for any atoms αi, αj there is a permutation σ of atoms licensed by SN such that 
σ(αi) = αj .

Since |G| = 2q−1 and

∑
i∈G

∑
i
=j∈G

yij =
∑
i
=j

i,j∈G

yij

we can find i ∈ G, say i = 1 (so 1 ∈ G), such that

2q−1
∑

1
=j∈G

y1j ≤
∑
i
=j

i,j∈G

yij . (7)

9 Since probability functions satisfying Px + SN on a language L continue to satisfy these principles when restricted to smaller 
languages it would actually suffice here to prove this part for q = 2. However, overall, that does not seem to be any simpler.
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Let

φ(a1) =
∨
i∈G

αi(a1),

ψ(a1) = α1(a1) ∨
∨
i/∈G

αi(a1).

Notice that

w(α1(a1)) = 2−q = x +
∑

1
=j∈G

y1j +
∑
j /∈G

y1j . (8)

Then with the above abbreviations,

w(φ(a1)) = 2q−12−q,

w(φ(a1) ∧ φ(a2)) = 2q−1x +
∑
i,j∈G
i
=j

yij ,

w(ψ(a1) ∧ ψ(a2) ∧ φ(a1)) = x +
∑
j /∈G

y1j ,

w(ψ(a1) ∧ ψ(a2) ∧ φ(a1) ∧ φ(a2)) = x,

and the inequality (5) becomes

x

x +
∑

j /∈G y1j
≥

2q−1x +
∑

i,j∈G
i
=j

yij

2q−12−q
.

Multiplying out gives

2q−12−qx ≥

⎛
⎝x +

∑
j /∈G

y1j

⎞
⎠

⎛
⎜⎜⎝2q−1x +

∑
i,j∈G
i
=j

yij

⎞
⎟⎟⎠

= 2q−1x2 + x

⎛
⎜⎜⎝ ∑

i,j∈G
i
=j

yij + 2q−1
∑
j /∈G

y1j

⎞
⎟⎟⎠ +

∑
j /∈G

y1j ·
∑
i,j∈G
i
=j

yij

= 2q−1x2 + x

⎛
⎜⎜⎝ ∑

i,j∈G
i
=j

yij + 2q−1(2−q − x−
∑

1
=j∈G

y1j)

⎞
⎟⎟⎠

+
∑
j /∈G

y1j ·
∑
i,j∈G
i
=j

yij by (8).

Canceling out terms now gives

0 ≥ x

⎛
⎜⎜⎝ ∑

i,j∈G

yij − 2q−1
∑

1
=j∈G

y1j

⎞
⎟⎟⎠ +

∑
j /∈G

y1j ·
∑
i,j∈G

yij . (9)
i
=j i
=j
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By (7) this right hand side is at least 0. We now show that for a suitable initial choice of G it must be 
strictly positive.

Since w is not of the form λ�+ (1 − λ)c0 for some 0 < λ ≤ 1 there must be i �= j such that w(αiαj) > 0
and αj �= αc

i , say αi, αj differ on r predicates where 1 ≤ r < q. Let αk(x) |= R1(x). Then there is 
a permutation σ licensed by SN such that σ(αi) = αk, σ(αj) differs from αk on r predicates10 and by 
Px + SN, w(αkσ(αj)) = w(αiαj) > 0. Suppose that σ(αj) |= R1(x). Then because 1 ≤ r < q we can 
find a permutation τ licensed by SN + Px such that αk = τ(αk) and τσ(αj) |= ¬R1(x), and of course 
w(αkτσ(αj)) > 0. Similarly if σ(αj) |= ¬R1(x) we can find an atom αs differing from αk on r predicates 
such that αs |= R1(x) and w(αkαs) > 0.

In this case then we can take G to be the set of those atoms αi such that αi |= R1(x) and obtain the 
required contradiction to (9). So GAP does not hold.

Turning now to the case where w = λ� + (1 − λ)c0 for some 0 < λ ≤ 1 and q ≥ 2 let αi, αj , αc
i , α

c
j be 

distinct atoms and take

φ(a1) = αi(a1) ∨ αj(a1) ∨ αc
j(a1), ψ(a1) = αi(a1) ∨ αc

i (a1).

Then

w(φ(a1)) = λ�(φ(a1)) + (1 − λ)c0(φ(a1)) = 3λ2−q + 3(1 − λ)2−q

= 3 · 2−q,

w(φ(a1) ∧ φ(a2)) = λ�(φ(a1) ∧ φ(a2)) + (1 − λ)c0(φ(a1) ∧ φ(a2))

= 5λ2−q−1 + 3(1 − λ)2−q

= (3 − λ/2)2−q,

w(ψ(a1) ∧ ψ(a2) ∧ φ(a1)) = λ�(ψ(a1) ∧ ψ(a2) ∧ φ(a1))

+ (1 − λ)c0(ψ(a1) ∧ ψ(a2) ∧ φ(a1))

= λ2−q + (1 − λ)2−q = 2−q,

w(ψ(a1) ∧ ψ(a2) ∧ φ(a1) ∧ φ(a2)) = λ�(ψ(a1) ∧ ψ(a2) ∧ φ(a1) ∧ φ(a2))

+ (1 − λ)c0(ψ(a1) ∧ ψ(a2) ∧ φ(a1) ∧ φ(a2))

= λ2−q−1 + (1 − λ)2−q = (1 − λ/2)2−q,

and the inequality (5) becomes

3(1 − λ/2) ≥ 3 − λ/2,

which fails since λ > 0, and gives the required counter-example.
To complete case (B) we now show that GAP holds for c0 on Lq for any q. Indeed we shall show that it 

holds even in the case where φ, ψ are sentences rather than just quantifier free. To this end notice (or see 
for example [8] where a similar result is derived) that for the unary language Lq, any sentence mentioning 
constants a1, . . . , an is logically equivalent to a sentence in the form

s∨
i=1

⎛
⎝ n∧

j=1
αki,j

(aj) ∧
2q∧

m=1
(∃xαm(x)) εi,m

⎞
⎠ (10)

where the εi,m ∈ {0, 1} and as usual ψε is ψ if ε = 1 and ¬ψ if ε = 0.

10 The permutations licensed by Px + SN are precisely those that preserve Hamming distance, see [11, Theorem 2].
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Noticing that

c0(αiαj) =
{

2−q if i = j

0 otherwise

we can see that for each of the disjuncts in (10) either

c0
(
αki,1(a1) ↔ (

n∧
j=1

αki,j
(aj) ∧

2q∧
m=1

(∃xαm(x)) εi,m)
)

= 1

or

c0
(
⊥ ↔ (

n∧
j=1

αki,j
(aj) ∧

2q∧
m=1

(∃xαm(x)) εi,m)
)

= 1.

From this it follows that there are S, T ⊆ {1, 2, . . . , 2q} such that

c0(φ(a1,�a) ↔
∨
j∈S

αj(a1)) = 1,

c0(ψ(a1,�a) ↔
∨
j∈T

αj(a1)) = 1.

Hence

c0(φ(a1,�a)) = c0(φ(a1,�a) ∧ φ(a2,�a)) = 2−q|S|

c0(ψ(a1,�a) ∧ ψ(a2,�a) ∧ φ(a1,�a)) = c0(ψ(a1,�a) ∧ ψ(a2,�a) ∧ φ(a1,�a) ∧ φ(a2,�a))

= 2−q|S ∩ T |

and the inequality (5) follows immediately. �
It is perhaps worth remarking here that in the case of q = 1 the extra constants a3, a4, . . . , am employed in 

forming the counter-example to GAP cannot be dispensed with. In fact when q = 1 and the extra constants 
are absent GAP trivially holds for any w (and even continues to hold when φ, ψ may contain quantifiers 
provided w not of the form λc0 + (1 − λ)w′, with 0 < λ < 1 and w′ �= c0, see [18]).

3. The equivalence analogy principle, EAP

GAP bears a superficial resemblance to the following analogy principle suggested by [2, Section 3] (though 
as far as we can tell Peirce viewed this as an abduction rather than an analogy principle):

The Equivalence Analogy Principle, EAP
For �a = 〈a3, a4, . . . , ak〉 and ψ(a1, �a), φ(a1, �a) ∈ QFSL,

w(φ(a1,�a) ↔ φ(a2,�a) |ψ(a1,�a) ∧ ψ(a2,�a)) ≥ w(φ(a1,�a) ↔ φ(a2,�a)). (11)

As with GAP it is the constants which are the carriers of the analogy and presumably, judging from their 
similarity, EAP’s justification is based on the same intuitions, so one might have expected that they would 
again have the same solutions, or more aptly lack of solutions. This is indeed almost the case provided we 
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allow the additional constants �a in EAP. However dropping these constants gives a somewhat different, but 
still very restricted, set of solutions, in contrast to any supposedly similar intuitions.

To start with we shall give a characterization of the probability functions satisfying EAP, in the presence 
of our customary additional default assumptions of Px + SN.

Theorem 2. Let w be a probability function on the unary language Lq satisfying Px + SN. Then w satisfies 
EAP just if w = c

Lq

0 .

Proof. Suppose that w �= c
Lq

0 satisfies EAP. Without loss of generality we may assume that w(α1α2) > 0. 
Using de Finetti’s representation theorem (and the fact that for �c ∈ D2q we have w�c(α1(¬α1)) ≤ 1

4 ), we can 
see that

w(α1) > w(α2
1(¬α1)) ≥ w(α2

1α
2
2) > 0. (12)

Let

ψ(a3) = α1(a3), φ(a1, a3) = α1(a1) ∧ ψ(a3).

Notice that ψ does not actually depend on a1 so ψ(a1, �a) = ψ(a2, �a) = ψ(a3).
Then

w((φ(a1, a3) ↔ φ(a2, a3)) ∧ ψ(a1,�a) ∧ ψ(a2,�a))

= w((α1(a1) ↔ α1(a2)) ∧ α1(a3))

= w(α1(a3)) − w(¬(α1(a1) ↔ α1(a2)) ∧ α1(a3))

= w(α1(a3)) − 2w(α1(a1) ∧ ¬α1(a2) ∧ α1(a3)).

Similarly

w(φ(a1, a3) ↔ φ(a2, a3)) = 1 − 2w(α1(a1) ∧ ¬α1(a2) ∧ α1(a3)).

Thus for EAP to hold we must have

w(α1(a3))(1 − 2w(α1(a1) ∧ ¬α1(a2) ∧ α1(a3))) ≤ w(α1(a3)) − 2w(α1(a1) ∧ ¬α1(a2) ∧ α1(a3)),

equivalently

w(α1(a1) ∧ ¬α1(a2) ∧ α1(a3)) ≤ w(α1(a3)) · w(α1(a1) ∧ ¬α1(a2) ∧ α1(a3)),

which by (12) fails and gives the required contradiction. Notice that we only needed the single extra constant 
a3 to derive this contradiction.

To complete the proof we need to show that w = c
Lq

0 satisfies EAP.
To this end let φ(a1, �a) ∈ QFSL (where as usual �a = 〈a3, a4, . . . , ak〉) and 1 ≤ j ≤ 2q. Since for this 

probability function w

w(αj(a1) → αj(am)) = 1,

for any m, if

αj(x) ∧
k∧

αj(ai) |= φ(x,�a)

i=3
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then

w(αj(a1) ∧ φ(a1,�a) ∧ φ(a2,�a)) = 2−q, w(αj(a1) ∧ ¬φ(a1,�a) ∧ ¬φ(a2,�a)) = 0,

while if

αj(x) ∧
k∧

i=3
αj(ai) |= ¬φ(x,�a)

then

w(αj(a1) ∧ φ(a1,�a) ∧ φ(a2,�a)) = 0, w(αj(a1) ∧ ¬φ(a1,�a) ∧ ¬φ(a2,�a)) = 2−q.

In either case,

w(αj(a1) ∧ (φ(a1,�a) ↔ φ(a2,�a)))

= w(αj(a1) ∧ φ(a1,�a) ∧ φ(a2,�a)) + w(αj(a1) ∧ ¬φ(a1,�a) ∧ ¬φ(a2,�a)) = 2−q

and summing over 1 ≤ j ≤ 2q gives

w(φ(a1,�a) ↔ φ(a2,�a)) = w(φ(a1,�a) ∧ φ(a2,�a)) + w(¬φ(a1,�a) ∧ ¬φ(a2,�a)) = 1.

Since for θ, ξ ∈ SLq, w(θ ∧ ξ) = w(ξ) whenever w(θ) = 1, it follows that (11) holds with equality. �
Note that the solution cLq

0 to (11) actually satisfies the stronger condition ULi + SN.
It is clear that in the proof of Theorem 2 the additional constants �a are playing an important role, and 

indeed that is the case. In particular, see [13], for q ≥ 2 the probability functions cLq

λ satisfy the weaker 
version of EAP without the additional constants �a, when, in fact exactly when,11

c
Lq

λ (α1α2) ≤ 2−q(2q − 1)−2, (13)

equivalently when

λ ≤ 2q

22q − 3 · 2q + 1 . (14)

Consequently the only λ for which this principle can hold for all q is λ = 0.
Condition (14) is interesting because, to our knowledge, there are currently no other ‘rational principles’ 

considered in Inductive Logic which differentiate between the λ in the open range (0, ∞). In this case the 
often preferred value for λ of 2q (which corresponds to the uniform de Finetti prior for cLq

λ ) lies above the 
bound given in (14) (for q ≥ 2) so that with that somewhat popular choice this weaker version of EAP fails.

Returning again to the superficial similarity between GAP and EAP one might initially have felt that

w(φ(a1,�a) ↔ φ(a2,�a) |ψ(a1,�a) ∧ ψ(a2,�a)) ≥ w(φ(a1,�a) ↔ φ(a1,�a)), (15)

w(φ(a2,�a) |φ(a1,�a) ∧ ψ(a1,�a) ∧ ψ(a2,�a)) ≥ w(φ(a2,�a) |φ(a1,�a)), (16)

11 There is a particular worst case here which occurs when φ(a1) = α1(a1) and ψ(a1) = ¬α2(a1). Indeed this worst case and 
the bound given in (13) actually applies to any probability function satisfying Atom Exchangeability – for details of this and an 
investigation into variations on EAP and the underlying symmetry assumptions see [13].
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were essentially expressing the same sentiment. The above discussion however show that (15) can hold whilst 
(16) fails. Conversely by taking q = 2, φ(a1, �a) = α1(a1), ψ(a1, �a) = ¬α2(a1) and λ > 4/5 it can be checked 
that in this case (16) holds but (15) fails for cL2

λ .
We remark that although Theorems 1 and 2 are proved here for a unary language L it can be shown 

that when the additional constants �a are allowed they hold too, with the standard extension of c0 (as 
u〈0,1,0,0,...〉,L, see [20, Chapter 29]), for not purely unary languages.12

4. The constant analogy principle

The previous two attempts to capture even a part13 of Bartha’s representation of analogy can at best 
be said to tell us what is not possible in the presence of Px + SN. Perhaps there may be more probability 
functions satisfying these analogy principles if we dropped Px and/or SN, but given the obvious strong 
attraction of Px and SN on grounds of symmetry compared with the apparently hazy intuitions which 
begat GAP and EAP this would hardly seem a worthwhile investigation in the context.

An alternative, which also seems closer to Bartha’s intention, is to restrict the P, Q, A, B etc. to having 
the particularly simple form of just R(a), i.e. a unary relation applied to a constant. This yields two further 
principles depending on whether we take the carrier of the analogy to be the constants or the relations.14 In 
this section we take the analogy to be between the properties of two constants, the known positive analogies 
being instances where a predicate agreed on these two constants and a negative analogy when it disagreed. 
Precisely, for

φ(x) =
n∧

i=1
Rεi

i (x), ψ(x) =
n∧

i=1
Rδi

i (x),

we define the ‘distance’ between φ and ψ to be

�φ− ψ� =
n∑

i=1
|εi − δi|

and propose:

The Constant Analogy Principle, CAP
For φ(x) =

∧n
i=1 R

εi
i (x) and ψ(x) =

∧n
i=1 R

δi
i (x),

w(Rn+1(a2) |Rn+1(a1) ∧ ψ(a2) ∧ φ(a1)) (17)

is a decreasing (not necessarily strictly) function of �φ − ψ�.

12 In more detail suppose that L is a polyadic language and w 
= c0 is a probability function on L satisfying Px + SN. Then there 
must be some relation symbol P of L and �a, �b such that w(P (�a) ∧ ¬P (�b)) > 0. By considering w(P (�a) ↔ ¬P (�d)) where �d are 
new constants (not occurring in �a and �b) and using Ex we can see that we must have w(P (�c1) ∧ ¬P (�c2)) > 0 where the �c1, �c2 are 
disjoint. Now define the probability function v on L1 by

v
( n∧
i=1

R
εi

1 (ai)
)

= w
( n∧
i=1

P
εi (�ci)

)

where �ci are disjoint blocks of constants. Since w satisfies SN and Ex so does v. Let φ, ψ ∈ QFSL1 provide counter-examples 
required for Theorems 1 and 2 for v and let φ∗, ψ∗ be the result of replacing each R1(ai) in φ, ψ respectively by P (�ci). Then these 
provide the counter-examples required for Theorems 1 and 2 for w.

In the other direction to show that cL0 is a solution notice that if L has q relation symbols P1, . . . , Pq then for θ ∈ QFSL, 
cL0 (θ) = c

Lq

0 (θ′) where θ′ is the result of replacing each Pi(aj1 , aj2 , . . . , ajr
) from L by Ri(aj1 ).

13 Since negative analogies do not figure.
14 It is also possible to consider a formalization in which it applies to sentences as carriers, see the Counterpart Principle of [12], 
[20, Chapter 22].
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Given that in this principle no particular emphasis is being placed on the number of predicates 
R1, R2, . . . , Rn that we have at our disposal it seems natural to assume not just Px + SN but rather 
ULi + SN. In that case we have the following somewhat satisfying result.

Theorem 3. Let the probability function w on Lq satisfy ULi + SN. Then w satisfies CAP.

Proof. Since w is part of a ULi family wLr for r ∈ N
+ we may take the union of all these probability functions 

to produce a probability function defined on sentences of the language L =
⋃∞

r=1 Lr and extending w. To 
avoid introducing any additional notation, and because it will not cause any confusion, we will also use w
to denote this probability function.

Let β1, β2, . . . , β2n+1 denote the atoms of Ln+1, say

βk(a1) = Rn+1(a1) ∧ φ(a1),

βj(a2) = Rn+1(a2) ∧ ψ(a2),

βr(a2) = ¬Rn+1(a2) ∧ ψ(a2),

where φ, ψ are as in the definition of CAP. Then

w(Rn+1(a2) |Rn+1(a1) ∧ ψ(a2) ∧ φ(a1))

= w(βk(a1) ∧ βj(a2))
w(βk(a1) ∧ βj(a2)) + w(βk(a1) ∧ βr(a2))

. (18)

By using the permutations of atoms licensed by Px + SN we may suppose here that

βk(a1) =
n+1∧
i=1

Ri(a1),

βj(a2) = Rn+1(a2) ∧
m∧
i=1

Ri(a2) ∧
n∧

i=m+1
¬Ri(a2),

βr(a2) = ¬Rn+1(a2) ∧
m∧
i=1

Ri(a2) ∧
n∧

i=m+1
¬Ri(a2),

where n −m = �φ − ψ�. From this it is clear that (17) is purely a function of �φ − ψ� (and n).
It only remains to show that it is a decreasing function of �φ − ψ�. Assume for the moment that the

w(βg(a1) ∧ βh(a2))

are all non-zero. Then by dividing top and bottom by its numerator we see that (17) will be a decreasing 
function of �φ − ψ� just if

w(βk(a1) ∧ βr(a2))
w(βk(a1) ∧ βj(a2))

(19)

is an increasing function of �φ − ψ�.
To this end define a function u on the state descriptions of the language L1 (whose atoms are just 

R1, ¬R1) by

u(¬Rs
1 R

t−s
1 ) = 2tw

(
t∧
Ri(a1) ∧

s∧
¬Ri(a2) ∧

t∧
Ri(a2)

)
.

i=1 i=1 i=s+1
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Notice that by Px the particular choice of distinct predicate symbols R1, . . . , Rt here is irrelevant. Using 
the fact that w satisfies ULi + SN it can be checked that u is, or at least extends to, a probability function 
which satisfies Ex. With this definition the condition (19) becomes the requirement that

u((¬R1)m+1Rn−m
1 )

u((¬R1)m Rn+1−m
1 )

(20)

is an increasing function of m. This will follow once we show that

u((¬R1)m+1Rn−m
1 )

u((¬R1)m Rn+1−m
1 )

≥ u((¬R1)mRn−m+1
1 )

u((¬R1)m−1 Rn+2−m
1 )

. (21)

Since u satisfies Ex we know by de Finetti’s Theorem that for some countably additive measure μ on the 
Borel subsets of [0, 1] that

u =
∫

w〈x,1−x〉 dμ(x). (22)

Using this and writing h(x) = (1 − x)m−1xn−m, (21) becomes∫
(1 − x)2 h(x) dμ(x)∫
x(1 − x)h(x) dμ(x)

≥
∫
x(1 − x)h(x) dμ(x)∫

x2 h(x) dμ(x)
.

But multiplying out this reduces to
∫

h(x) dμ(x) ·
∫

x2 h(x) dμ(x) ≥
(∫

xh(x) dμ(x)
)2

which holds by Hölder’s Inequality.
Returning now to our earlier assumption that the w(βg(a1) ∧ βh(a2)) are all non-zero, if this fails then 

defining u as above we should have

u(Rk
1(¬R1)j) = 0

for some j, k. However by considering again (22) this can only happen if

u = νw〈1,0〉 + (1 − ν)w〈0,1〉

for some 0 ≤ ν ≤ 1, in which case the original requirement on (18) holds trivially. �
Not all probability functions satisfying just Px + SN satisfy CAP. For example when n + 1 = 3 and we 

order the βj as (in the obvious shorthand)

R1
1R

1
2R

1
3, R1

1R
1
2R

0
3, R1

1R
0
2R

1
3, R1

1R
0
2R

0
3,

R0
1R

1
2R

1
3, R0

1R
1
2R

0
3, R0

1R
0
2R

1
3, R0

1R
0
2R

0
3,

b = 1/10, a = 1/5 and w is

(12)−1(w〈a,b,b,a,b,b,b,b〉 + w〈a,b,b,b,b,a,b,b〉 + w〈a,b,b,b,b,b,a,b〉

+ w〈b,a,a,b,b,b,b,b〉 + w〈b,a,b,b,a,b,b,b〉 + w〈b,a,b,b,b,b,b,a〉

+ w〈b,b,a,b,a,b,b,b〉 + w〈b,b,a,b,b,b,b,a〉 + w〈b,b,b,b,a,b,b,a〉

+ w〈b,b,b,a,b,b,a,b〉 + w〈b,b,b,a,b,a,b,b〉 + w〈b,b,b,b,b,a,a,b〉
)
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then it can be checked that

w(β1(a1) ∧ β8(a2))
w(β1(a1) ∧ β4(a2))

<
w(β1(a1) ∧ β7(a2))
w(β1(a1) ∧ β3(a2))

,

contrary to the requirement on (19), despite w satisfying Px + SN (but not ULi + SN of course).
From Theorem 3 it follows that all the cLq

λ satisfy CAP. Indeed it is quite straightforward to show, 
appealing to de Finetti’s Theorem again, that any probability function satisfying Atom Exchangeability 
will satisfy CAP, whether or not it satisfies ULi + SN.

Satisfying as Theorem 3 may be however it does raise a slightly uncomfortable issue. Firstly the intuition 
behind it seems no different from that which initially prompted us to propose GAP. Given the failure of that 
principle can we really claim that Theorem 3 in some way justifies our intuition? Is it not more reasonable 
to conclude that this theorem is grounded not on ‘analogy’ but on some different basis? And indeed a 
study at the proof shows that the key step is an application of a provable version of the Strong Principle 
of Instantial Relevance, see [20, Chapter 21] or [21], in which case we could be said to be simply appealing 
to our intuitions about relevance.15 Putting it another way then it could be said that the ‘analogy’ within 
CAP is really just reducible to ‘relevance’, raising for a moment the question whether, within the context 
of PIL, analogy is anything more than a special case of relevance.

5. The predicate analogy principle

In contrast to the three previous sections we now consider an interpretation of Bartha’s representation in 
which we take the predicates of the language to be the carriers of the analogy. That is we take the analogy 
to be between the properties of two predicates, the known positive analogies being instances where these 
predicates agreed on a constant and a negative analogy when they disagreed. Precisely, for

φ =
n∧

i=1
Rεi

1 (ai), ψ =
n∧

i=1
Rδi

2 (ai),

define the ‘distance’ between φ and ψ to be

�φ− ψ� =
n∑

i=1
|εi − δi|

and set:

The Predicate Analogy Principle, PAP
For φ(�a) =

∧n
i=1 R

εi
1 (ai) and ψ(�a) =

∧n
i=1 R

δi
2 (ai),

w(R2(an+1) |R1(an+1) ∧ ψ(�a) ∧ φ(�a)) (23)

is a decreasing function of �φ − ψ� (for fixed n).

Notice that since only two predicate symbols appear in (23) it is natural to first study this principle when 
q = 2.16 Setting

α1(x) = R1(x) ∧R2(x), α2(x) = R1(x) ∧ ¬R2(x),

α3(x) = ¬R1(x) ∧R2(x), α4(x) = ¬R1(x) ∧ ¬R2(x),

15 Or ultimately symmetry since Ex implies SPIR for L1.
16 The characterization for q > 2 (with Px+SN) just requires the restriction to SL2 to have the form we shall shortly be describing.
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this condition (23) is equivalent to17

w(α2(an+1) ∧ φ(�a) ∧ ψ(�a))
w(α1(an+1) ∧ φ(�a) ∧ ψ(�a)) ,

being an increasing function of �φ − ψ�, a fact that we shall use repeatedly in what follows.
One family of probability functions on L2 satisfying Px + SN and PAP are the

u(b) = 2−1(w〈b,1/2−b,1/2−b,b〉 + w〈1/2−b,b,b,1/2−b〉)

where 0 ≤ b ≤ 1/2. Clearly the u(b) satisfy Px + SN. To see that they also satisfy PAP notice that for φ, ψ
as in the statement of PAP and m = �φ − ψ�,

u(b)(α2(an+1) ∧ ψ(�a) ∧ φ(�a))
u(b)(α1(an+1) ∧ ψ(�a) ∧ φ(�a))

= (1/2 − b)m+1bn−m + bm+1(1/2 − b)n−m

(1/2 − b)mbn−m+1 + bm(1/2 − b)n−m+1

and this right hand side, when defined, is increasing in m (for fixed n ≥ m).
A second family of probability functions on L2 satisfying PAP + Px + SN, in this case rather trivially, 

are those of the form

v(d) = 4−1(w〈d,0,0,1−d〉 + w〈1−d,0,0,d〉 + w〈0,d,1−d,0〉 + w〈0,1−d,d,0〉)

where 0 ≤ d ≤ 1. Trivially because any φ(�a) ∧ψ(�a) containing atoms both from {α1, α4} and from {α2, α3}
gets probability zero.

In fact the probability functions which satisfy PAP + Px + SN are precisely those whose restriction to 
SL2 is a convex mixture of probability functions from these two families. Precisely:

Theorem 4. Let the probability function w on L2 satisfy Px + SN. Then w satisfies PAP just if either w is 
a convex mixture of the u(b) or w is a convex mixture of the v(d) as above, equivalently, just if there is a 
countably additive measure μ on the Borel subsets of D4 such that for θ ∈ SL2,

w(θ) =
∫
D4

w�x(θ) dμ(�x)

and either μ(A) = 1 where

A = {〈x1, x2, x3, x4〉 ∈ D4 |x1 = x4 and x2 = x3},

or μ(B) = 1 where

B = {〈x1, x2, x3, x4〉 ∈ D4 |x2 = x3 = 0 or x1 = x4 = 0}.

Proof. Suppose that w satisfies PAP + Px + SN. Let �b = 〈b1, b2, b3, b4〉 be a support point of the de Finetti 
prior μ of w. We shall use [20, Lemma 12.1] which tells us that

lim
r→∞

∫
D4

xi

∏4
j=1 x

[rbj ]
j dμ(�x)∫

D4

∏4
j=1 x

[rbj ]
j dμ(�x)

= bi, (24)

where as usual [rb1] is the integer part of rb1 etc.

17 Recall the convention introduced at footnote 6 concerning zero denominators.
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Let

φ1 ∧ ψ1 = α
[rb1]
1 α

[rb2]
2 α

[rb3]
3 α

[rb4]
4 ,

φ2 ∧ ψ2 = α
[rb1]
1 α

[rb3]
2 α

[rb2]
3 α

[rb4]
4 ,

where the φi, ψi only mention the predicate R1, R2 respectively. Note that

w(αi ∧ φ1 ∧ ψ1) =
∫
D4

xi

4∏
j=1

x
[rbj ]
j dμ(�x)

First assume that b1 �= 0. Using (24) we can make

w(α2 ∧ φ1 ∧ ψ1)
w(α1 ∧ φ1 ∧ ψ1)

arbitrarily close to

w�b(α2)
w�b(α1)

= b2
b1

by picking r suitably large. Similarly, since by Px +SN, 〈b1, b3, b2, b4〉 must also be a support point of μ, we 
can make

w(α2 ∧ φ2 ∧ ψ2)
w(α1 ∧ φ2 ∧ ψ2)

arbitrarily close to b3/b1. But since

�φ1 − ψ1� = �φ2 − ψ2�

PAP gives that these two values b2/b1, b3/b1 must be equal. It follows that b2 = b3. If b2 = 0 then we 
already have that 〈b1, b2, b3, b4〉 ∈ B. If b2 �= 0 a similar argument using the support points 〈b2, b1, b4, b3〉, 
〈b2, b4, b1, b3〉 shows that b1 = b4. From this it follows that μ(A ∪B) = 1 for A, B as above.

We claim that it must be the case that μ(A) = 1 or μ(B) = 1. For otherwise we can pick support points 
of μ, 〈b, 1/2 − b, 1/2 − b, b〉 ∈ A −B and, without loss of generality, 〈d, 0, 0, 1 −d〉 ∈ B−A (with 0 < b < 1/2
and d �= 0, 1/2). Then by PAP we must have equality between

∫
A
xk

1x2x
n−k
4 dμ(�x) +

∫
B−A

xk
1x2x

n−k
4 dμ(�x)∫

A
xk+1

1 xn−k
4 dμ(�x) +

∫
B−A

xk+1
1 xn−k

4 dμ(�x)

and ∫
A
xj

1x2x
n−j
4 dμ(�x) +

∫
B−A

xj
1x2x

n−j
4 dμ(�x)∫

A
xj+1

1 xn−j
4 dμ(�x) +

∫
B−A

xj+1
1 xn−j

4 dμ(�x)

for k, j ≤ n. Since for any 〈x1, x2, x3, x4〉 ∈ A we have x1 = x4 it must be the case that∫
A

xk
1x2x

n−k
4 dμ(�x) =

∫
A

xj
1x2x

n−j
4 dμ(�x),

∫
xk+1

1 xn−k
4 dμ(�x) =

∫
xj+1

1 xn−j
4 dμ(�x),
A A
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and by the existence of 〈b, 1/2 − b, 1/2 − b, b〉 these are non-zero. Furthermore,

∫
B−A

xk
1x2x

n−k
4 dμ(�x) = 0 =

∫
B−A

xj
1x2x

n−j
4 dμ(�x)

for n > 0, so it must be the case that

∫
B−A

xk+1
1 xn−k

4 dμ(�x) =
∫

B−A

xj+1
1 xn−j

4 dμ(�x).

Hence

∫
B−A

x
[dm]+2
1 x

[(1−d)m]
4 dμ(�x)∫

B−A
x

[dm]
1 x

[(1−d)m]
4 dμ(�x)

=
∫
B−A

x
[dm]+1
1 x

[(1−d)m]+1
4 dμ(�x)∫

B−A
x

[dm]
1 x

[(1−d)m]
4 dμ(�x)

. (25)

Let

w′ = (μ(B −A))−1
∫

B−A

w�x dμ(�x) .

Using μ(A ∪B) = 1 and d �= 0, 1/2 we can see that 〈d, 0, 0, 1 − d〉 is a support point of w′. Hence it follows 
from [20, Lemma 12.1] that for large m the integrals (25) are close to d2, d(1 − d) respectively, which is 
impossible.

In the other direction let w satisfy Px+SN and μ(A) = 1. Define a probability function v on the language 
L1 with a single predicate symbol R1 by

v

(
m∧
i=1

Rεi
1 (ai)

)
= w

(
m∧
i=1

(α1(ai) ∨ α4(ai))εi
)

= 2mw

(
m∧
i=1

αhi
(ai)

)

for hi ∈ {1, 4} when εi = 1, hi ∈ {2, 3} when εi = 0. Then v satisfies Ex + SN and for m = �φ − ψ�

w(α2 ∧ φ ∧ ψ)
w(α1 ∧ φ ∧ ψ) = v(Rn−m

1 (¬R1)m+1)
v(Rn−m+1

1 (¬R1)m)
,

which we have already met as (20) and shown to be increasing in m under the assumption of Ex.
Finally in the case when μ(B) = 1 it is straightforward to check that PAP holds, trivially in fact. �
Given Ax there are only two probability functions on L2 satisfying this, c0 and c∞. For suppose w satisfies 

PAP and Ax and as usual let

α1(x) = R1(x) ∧R2(x), α2(x) = R1(x) ∧ ¬R2(x),

α3(x) = ¬R1(x) ∧R2(x), α4(x) = ¬R1(x) ∧ ¬R2(x).

Then by PAP

w(R2(a2) |R1(a2) ∧ α2(a1)) = w(R2(a2) |R1(a2) ∧ α3(a1)).
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But that gives that either w(α2(a1) ∧ α1(a2)) = 0 or

w(α2(a1) ∧ α2(a2)) = w(α2(a1) ∧ α3(a2))

and with Ax the only possibilities here are c0 and c∞.

6. Analogy as possibility

In the previous four sections we have looked at formulations of analogical support as enhancement of 
probability. However as Bartha points out in [1] analogy can act to simply engender plausibility, or as we 
shall call it possibility. To give an example, the fact that the commonest bird in the United States in 1814 
(the passenger pigeon) was extinct by 1914 may be used as an argument that ‘by analogy’, the monarch – 
arguably the currently commonest butterfly in the United States, may equally regrettably be extinct a 
century from now. For here it seems that the argument is aimed not so much at raising the probability as 
creating the possibility which we will take to mean producing a non-zero probability.

One explanation why we might see this as in any sense a worthwhile argument to make in a discussion 
on the future of the monarch is that viewed from a certain angle monarchs and passenger pigeons may 
be thought of as the same thing, at least as regards the features that are actually relevant here. Thus the 
realization that it had happened once argues that it could happen again.

The example might seem to correspond to the Extended Principle of Instantial Relevance, (3). Here 
however we shall propose an alternative formulation which is about creating possibility, and also more 
obviously captures this idea of ‘being thought of as the same thing as regards the relevant features’.

Dolly’s Principle, DP
For θ(a1, a2, . . . , am) ∈ SL, if σ : {a1, a2, . . . , am} → {a1, a2, . . . , am} and w(θ(σ(a1), σ(a2), . . . ,

σ(am))) > 0 then w(θ(a1, a2, . . . , am)) > 0.

Notice that by repeated application (and Ex) it is enough that this principle holds for σ(2) = 1, σ(i) = i

for i �= 2.
We shall now show that for the unary language Lq Ex already implies DP. First however we seem to need 

a (useful) lemma which applies even to a possibly polyadic language L.

Lemma 5. Let θ(a1, a2, . . . , am) ≡ φ(a1, a2, . . . , am). Then for σ : {a1, a2, . . . , am} → {a1, a2, . . . , am},

θ(σ(a1), σ(a2), . . . , σ(am)) ≡ φ(σ(a1), σ(a2), . . . , σ(am)).

Proof. Let K be a structure for the language L with the same relation symbols as L but only the constant 
symbols σ(a1), σ(a2), . . . , σ(am) and suppose that

K |= θ(σ(a1), σ(a2), . . . , σ(am)).

Then

K |= θ(σ(a1)K , σ(a2)K , . . . , σ(am)K),

where σ(a1)K is the interpretation of the constant σ(a1) in K etc. Clearly also

J |= θ(σ(a1)K , σ(a2)K , . . . , σ(am)K)
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where J is a structure for L extending K in which aJi = σ(ai)K for i ≤ m. In other words

J |= θ(aJ1 , . . . , aJm),

so

J |= θ(a1, . . . , am)

and by logical equivalence,

J |= φ(a1, . . . , am).

Reversing the above argument with φ in place of θ now gives

K |= φ(σ(a1), . . . , σ(am)),

as required. �
Notice that an immediate corollary of this result is that Super Regularity, i.e. that w(ψ) > 0 whenever 

ψ ∈ SL is consistent, already implies DP (via showing that if θ(a1, . . . , am) is inconsistent then so is 
θ(aσ(1), . . . , aσ(m))).

Theorem 6. For the unary language Lq, Ex implies DP.

Proof. Let θ(a1, . . . , am) ∈ SLq. Then as at (10) θ is logically equivalent to a disjunction of sentences of the 
form

m∧
i=1

αhi
(ai) ∧

2q∧
j=1

(∃xαj(x))εj .

If w(θ(σ(a1), σ(a2), . . . , σ(am)) > 0 then by Lemma 5 this must also hold for the image under σ of this 
representation of θ so for at least one such disjunct we must have

w

⎛
⎝ m∧

i=1
αhi

(σ(ai)) ∧
2q∧
j=1

(∃xαj(x))εj
⎞
⎠ > 0. (26)

The only way this is possible is if hi = hr whenever σ(ai) = σ(ar), otherwise the sentence in (26) would be 
inconsistent so have probability 0. So dropping repeated conjuncts (26) can equivalently be written as

w

⎛
⎝ ∧

ar∈Rg(σ)

αgr(ar) ∧
2q∧
j=1

(∃xαj(x))εj
⎞
⎠ > 0 (27)

where gr = hi for i such that σ(ai) = ar.
From (27), de Finetti’s Theorem and the Constant Irrelevance Principle give

∫ ∏
ar∈Rg(σ)

xgrw�x

⎛
⎝ 2q∧

j=1
(∃xαj(x))εj

⎞
⎠ dμ(�x) > 0. (28)
D2q
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So

∏
ar∈Rg(σ)

xgrw�x

⎛
⎝ 2q∧

j=1
(∃xαj(x))εj

⎞
⎠

must be non-zero for a non-null (with respect to μ) set of �x ∈ D2q and as a result the same must hold for

∏
ar∈Rg(σ)

xsr
grw�x

⎛
⎝ 2q∧

j=1
(∃xαj(x))εj

⎞
⎠

where sr is the number of ai mapped by σ to ar. Hence

∫
D2q

∏
ar∈Rg(σ)

xsr
grw�x

⎛
⎝ 2q∧

j=1
(∃xαj(x))εj

⎞
⎠ dμ(�x) > 0. (29)

But the left hand side of (29) is just what we get if we apply de Finetti’s Theorem to this conjunct in the 
representation of θ(a1, . . . , am), so the required result follows. �

For unary languages then DP adds nothing new, it already follows from the standing assumption Ex. 
However this fact does not carry over to polyadic languages. For example if L is the language with a single 
binary relation symbol R and w is the obvious version of Carnap’s m† (equivalently c∞) on this language 
then

w(∀x (R(a1, x) ↔ R(a2, x))) = 0

whilst

w(∀x (R(a1, x) ↔ R(a1, x))) = 1.

Nevertheless there is still a wide class of polyadic probability functions which do satisfy DP, as we shall 
show in a forthcoming paper.

7. Conclusion

In short we have shown that in the presence of Ex+Px+SN the principles GAP, EAP and PAP place very 
severe demands on a probability function, and must now be considered dead ends, DP makes no demands 
at all whilst CAP is actually satisfied by a naturally attractive class of such probability functions, namely 
those that satisfy the somewhat stronger background condition of ULi + SN.

As far as Bartha’s candidate representation is concerned then we can say that CAP seems to provide 
a viable formulation of it in the context of PIL whereas GAP, EAP and PAP do not. Still this raises the 
uncomfortable question of why they produce such different conclusions when they all appear to be based 
on similar intuitions about analogical support.

Given that CAP follows from ULi + SN it is an interesting question to ask from where in this back-
ground assumption the ‘analogical support’ originates. Inspecting the proof of Theorem 3 we see that the 
key inequality is (21) which derives from simply the assumption Ex via de Finetti’s Theorem. This is ex-
actly similar to the derivation from Ex of the Extended Principle of Instantial Relevance from which we 
might reasonably question whether ‘analogy as enhancement of probability’ is really anything more than 
‘relevance’, an already quite well studied notion (see [20]).
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Throughout this paper we have taken Ex + Px + SN, or ULi + SN, as our background assumptions. 
However the rather widespread acceptance of Johnson’s Sufficientness Postulate (JSP) within Inductive 
Logic might on the contrary be used as an argument for strengthening these to Ax, or ULi+Ax, since these 
are consequences of JSP. Doing so would still give CAP (and DP) as a consequence but would, for q ≥ 2, 
restrict GAP, EAP and PAP down to the single probability function cLq

0 of Carnap’s Continuum.
Combined with previous results in [11,12] a pattern seems to be emerging with so called ‘Analogy Prin-

ciples’, namely that they either hold, almost by chance, for some small family of otherwise (apparently) 
undistinguished probability functions, or they are actually consequences of some already established and 
acceptable principles such as ULi + SN or Ax. In other words, to our knowledge we do not currently have 
any analogy principles which genuinely introduce new concepts without also reducing the field of ‘rational 
probability functions’ down to almost a triviality (and leading to the conclusion that such a version of 
‘reasoning by analogy’ is both very powerful and very dangerous). Of course there are numerous further 
formulations and variations that one might base on CAIR and perhaps some of those might yet endorse 
it in the context of PIL. On the basis of what we have here however the picture of analogical support as 
presented in CAIR seems not to have materialized, an outcome in parallel with Bartha’s own criticisms of 
CAIR within what we would term Applied Inductive Logic.
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