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The problem of approximation of an eigenpair of a large n X n matrix A is 
considered. We study algorithms which approximate an eigenpair of A using the 
partial information on A given by b, Ab, , Ajb, j G n, i.e., by Krylov subspaces. 
A new algorithm called the generalized minimal residual (gmr) algorithm is analyzed. 
Its optimal@ for some classes of matrices is proved. We compare the gnu algorithm 
with the widely used Lanczos algorithm for symmetric matrices. The gmr and 
Lanczos algorithms cost essentially the same per step and they have the same stability 
characteristics. Since the gnu algorithm never requires more steps than the Lanczos 
algorithm, and sometimes uses substantially fewer steps, the gmr algorithm seems 
preferable. We indicate how to modify the gmr algorithm in order to approximate p 
eigenpairs of A. We also show some other problems which can be nearly optimally 
solved by gmr-type algorithms. The gnu algorithm for symmetric matrices was 
implemented and some numerical results are described. The detailed implementation, 
more numerical results, and the Fortran subroutine can be found in Kuczyiiski 
(“Implementation of the gmr Algorithm for Large Symmetric Eigenproblems,” Re- 
port, Columbia University, 1985). The Fortran subroutine is also available via 
anonymous ITP as “publgmrval” on COLUMBIA.EDU [128.59.16.1] on the Ar- 
pallet. 0 1986 Academic Press, inc. 

1. INTRODUCDON 

Suppose we wish to find an approximation to an eigenpair of a very large 
matrix A. That is, we wish to compute (x, p), where x is an n X 1 normalized 
vector, /Ix 11 = 1, p is a complex number such that 

IlAx - PXII < E (1.1) 
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for a given positive E. Here I[*/[ denotes the 2-norm, [Ix I[ = [Ix II*. Note that 
if (x, p) satisfies (1.1) and p = (Ax, x) = xHAx then there exists a matrix E, 
I[E~[ < E, such that (A - E)X = px; i.e., the pair (x, p) is the exact eigenpair 
of A - E. For instance, we may take E = xrH + rxH, 11~11 = I/r-II, where 
r = Ax - px. A pair (x, p) satisfying (1.1) is called a residual l -upproxi- 
mation. 

The usual procedure for large sparse matrices is to approximate eigenpairs 
of A from the behavior of A in a given subspace of small dimension. The most 
commonly used method for approximating eigenpairs of symmetric matrices 
is the Lanczos algorithm, which is the RayleighRitz algorithm using Krylov 
subspace. It may be described as follows. At thejth step of this algorithm we 
know information 

N,(A, b) = [b, Ab, . . . , Ajb] 

for a real nonzero vector b. For sparse matrices A the cost of computing 
Nj(A, b) is proportional to nj. This information Nj (A, b) is equivalent to the 
knowledge of thejth Krylov subspace Aj = span(b, Ab, , . . , A’-‘b) and the 
vector Ajb. If vectors b, . . . , Ajb are linearly independent then we construct 
alI n X (j + 1) matrix Qj+l = (41, q2, . . . , qj+d, where 41, q2, . . . , qj+l 
is an orthonormal basis of the subspace Aj+l , the so-called Lanczos basis, 
such that the (j + 1) X j matrix Dj, 

Dj ’ Qj’+lAQj = 

f?j = (0, . . . , 0, l)T, (1.2) 

is tridiagonal. In other words the matrix Qj partially reduces the matrix A to 
the tridiagonal form. The Lanczos algorithm disregards the last codiagonal 
coefficient pj and deals with the resultingj X j tridiagonal matrix Hi. In fact, 
@ is used, but only to judge the accuracy of the approximations. Pairs (Qjgi , 
@),i= 1,2,. . . , j, where (gi , 8i) are all eigenpairs of the matrix Hi, serve 
as approximations of eigenpairs of A. If the codiagonal coefficient @j is equal 
to zero then the pairs (Qjgi, &), i = 1, 2, . . . , j, are the exact eigenpairs 
of A. In general, i.e., for any 8, we have the following formula on the 
(smallest) residual r? of the Lanczos algorithm (see Parlett, 1980, p. 260), 

6 = @&IIAQjgi - @QjgiII = IPjI@$ISjI 5 I&Iv (1.3) 



LARGE EIGENPAIR PROBLEMS 133 

where g{ is thejth (the last) component of the vector gi. This estimate explains 
why for small pj the Lanczos algorithm produces small residual error. How- 
ever, it is not obvious whether the Lanczos algorithm produces the best 
possible result, especially for “large” pj. 

The main problem addressed in our paper is to find an optimal algorithm 
which produces a residual e-approximation, i.e., (x, p) satisfying (1. l), 
regardless of the magnitude of &. By an optimal algorithm we mean the 
algorithm which computes (x, p) using the minimal j, i.e., the minimal 
number of matrix-vector multiplications. 

We define a new algorithm in Section 2. It is called the generalized minimal 
residual algorithm (the gmr algorithm). In Section 3 we prove that the gmr 
algorithm almost optimally uses information Nj (A, b). The gmr algorithm is 
defined for any complex matrix. In the jth step this algorithm constructs the 
pair (XT, pi*) such that llxj*II = 1 and the residual r? = I[Ax~ - @XT II is 
minimal in the jth Krylov subspace, i.e., 

ry = min{llAx - px)I : X E Aj, IIxII = 1, P E C>. 

The gmr algorithm has attractive optimality properties. It uses information in 
an almost optimal way in the following sense. As we mentioned before, the 
matrix A belongs to a given class F. We assume that class F is unitarily 
invariant; i.e., A E F implies that Q *AQ E F for any unitary matrix Q. 
Examples of such classes F include the class of all Hermitian matrices or the 
class of Hermitian matrices with fixed eigenvalues (for some other examples 
see Traub and Woiniakowski (1984)). We show that if the matrix A belongs 
to the unitarily invariant class F then the gmr algorithm is almost strongly 
optimal in F. Roughly speaking, this means that the gmr algorithm minimizes 
the number of matrix-vector multiplications (up to the additive constant not 
greater than 2) in order to find a residual e-approximation over all possible 
algorithms that use Nj (A, b). This holds for any matrix A from F, for any 
nonzero vector b, and for any positive E. The precise meaning of optimality 
can be found in Section 2. We also prove that for the class of symmetric 
matrices F = {A : A = AH) the gmr algorithm is strongly optimal in F; i.e., 
it minimizes the number of steps for any matrix A from F, any vector b, and 
any positive E. 

In Section 4 we compare the gmr algorithm for symmetric matrices with 
the Lanczos algorithm. We prove that the residual rp obtained in the jth step 
of the gmr algorithm is given by 

r? = mh{d[lAx112 - (Ax, x)~ : x E Aj, [[XII = l}, 

while the residual r-k obtained in the jth step of the Lanczos algorithm is given 
by 
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r) = rnin{~/ll Ax 1)’ - (Ax, x)’ : x E Aj, /lx II = 1, 

(A - (AX, X)Z)X I Aj}. 

We see that $ and r: are defined by similar formulas. The difference is only 
in the set over which the minimum is taken. The set which appears for the 
Lanczos algorithm is, in general, a proper subset of the set which appears for 
the gmr algorithm. This may look like a small difference between these two 
algorithms. We show that this small difference causes completely different 
results. It is easy to see that $ I rj”. Moreover rp = r) and rf = rk = 0. 
What can happen to the residuals ry and rj” forj E [2, n - l]? We construct 
an example of the 12 X n matrix A, the n X 1 vector b, and E > 0 such that 
the gmr algorithm computes a residual e-approximation in the second step, 
while the Lanczos algorithm needs exactly n steps to solve the problem. We 
also construct a matrix A such that the residual error rt of the Lanczos 
algorithm not only increases but the ratio $+,/r) can be arbitrary large; i.e., 
for any positive constants Mr, Mz, . . . , Mnm2 there exists an n X n matrix 
A such that 

rf+,/rj” = Mj, j = 1,2, . . . ) n - 2. 

This is a serious drawback of the Lanczos algorithm. The gmr algorithm does 
not have this defect since the sequence of residuals rj” of the gnu algorithm 
is nonincreasing for any matrix A. 

We next discuss the properties of the gnu algorithm for symmetric matri- 
ces. We prove that the gmr algorithm reduces the residuals at least in every 
second step. More precisely, we show that for any symmetric matrix A if 
ry > 0, then 

In Section 5 we analyze the speed of convergence of two algorithms. For 
the gmr algorithm we prove that for every real symmetric matrix A we have 

This estimate is sharp since for every j < n there exists a real symmetric 
matrix A such that 

t-7 L IIA Il/2j. 

For the Lanczos algorithm we easily conclude that for every real symmetric 
matrix A we have 
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This estimate is sharp since for every j C n there exists a real symmetric 
matrix A such that 

In Section 6 we prove that information Nj (A, b) is too weak for finding a 
residual E-approximation for nonsymmetric matrices. More precisely, we 
construct a nonsymmetric real matrix A for which the gmr algorithm produces 
residuals r-7 equal to the first one, i.e., 

r$l = r-z-* = . . . = rP > 0. 

Thus there exists a matrix for which in order to find any approximation of an 
eigenpair with the residual error smaller than ry the gmr algorithm must 
perform exactly n steps. Since the gmr algorithm is strongly optimal in the 
subclass of all nonsymmetric matrices we conclude that information Nj(A, b) 
is too weak for the nonsymmetric case. 

Section 7 contains the generalization of the gmr algorithm to the problem 
of finding approximations to p eigenpairs of a symmetric matrix, p Z 1. We 
prove that also in this case the gnu algorithm (called in this case the p-gmr 
algorithm) is almost strongly optimal for unitarily invariant classes of matri- 
ces. More precisely, the p-gmr algorithm minimizes the number of steps up 
to a constant not greater than p + 1 over all possible algorithms. Here by a 
residual E- approximation we mean p pairs (x1, pl), . . . , (xP, pP) satisfying 

We also study some related problems in infinite-dimensional Hilbert spaces 
which may be almost optimally solved by the gmr-type algorithms. 

This paper deals mainly with theoretical properties of the gmr algorithm. 
In the last section we report a few numerical tests of the gmr algorithm for 

the symmetric eigenproblem. A sketch of the implementation of the gmr 
algorithm for this problem is described in Kuczyliski (1983). The Fortran 
subroutine of the gmr algorithm and extensive numerical tests may be found 
in Kuczyliski (1985). 

We end this introduction with a comment on Krylov information. In a 
recent paper, Chou (1985) studies more general information 

Nj(A, b) = [by Az~, . a . , Azj] 

where b # 0 and zi depends on previously computed information, i.e., 
Zi = zi(b, Az~ , . . . , Azi-1) for i = 1, 2, . . . , j. Chou asks how to find zi 
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in order to minimize matrix-vector multiplications which are required for an 
a-approximation. On the basis of the result of Nemirovsky and Yudin (1983, 
p. 262), he proves that there exists no choice of zi for which one can find an 
e-approximation performing less than half of the steps needed by the gmr 
algorithm using the Krylov information. Thus the Krylov information is 
almost optimal. 

2. BASIC DEFINITIONS 

Let F be a class of n X n matrices. For a given c > 0 and any matrix A 
from F we want to find a vector x E @” (or P), /1x(] = 1, and a number 
p E @ (or 08) satisfying (1. l), i.e., 

[IAx - pxI[ < Q. 

Here 

(IXI/ = (f: lXi[z)1’2 forx = (Xl, X2, . . . , Xn)T. 
i=l 

Adapting terminology and notation from Traub and Woiniakowski 
(1980, 1984) we formalize the concept of partial information as follows: 

Let S, be a unit sphere in C” (or R”) and let a vector b belong to S,. Then 
we define information Nj(A, b) as 

Nj(A, b) = [by Ab, . e . 7 A’b], VA EF,Vb ES,,j=O, 1,2,. . . . 

By an algorithm we mean a sequence @ = {@j}j”=o of any mappings 

@j: Nj(F, Sn) + S, X @ (or S, X R), (xi, pi) = @j(Nj(A, b)). 

Let V(Nj(A, b)) be the set of all matrices which have the same information 
as the matrix A, i.e., 

V(Nj(A, b)) = {A :A E F, Nj(A, b) = Nj(A, b)}. 

Define the index of the algorithm Q, as 

k(@, A, b) = min{j: IJAx~ - piXiI[ < E, VA E V(Nj(A, b)), 

(xj, L+> = @j&M, b))I* 

If this set is empty then k(@, A, b) = +w. Of course, k(@, A, b) depends 
also on E, n, and the subclass E Since E, n, and F are fixed, this is not listed 
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as the arguments of the index. The index k(@, A, b) shows how many steps 
one has to perform to find an e-approximation of an eigenpair by the algorithm 
Q = (3) for all matrices which share the same information. 

DEFINITION 2.1. The algorithm a* is strongly optimal in F iff 

k(@*, A, b) = mJn k(@, A, b), V(A, b) E F x S,, 

and is almost strongly optimal in F iff there exists a constant c of order unity 
such that 

k(@*, A, b) I rnfi k(@, A, b) + c, V(A, b) E F X S,,. 

In other words a strongly optimal algorithm performs the smallest number 
of steps to calculate an a-approximation of the eigenpair for each matrix from 
the class F. An almost strongly optimal algorithm will perform only a few 
steps more than a strongly optimal one. 

We now define the generalized minimal residual algorithm (gmr). The 
optimality of this algorithm will be proved in Section 3. 

DEFINITION 2.2. Forj = 0 we know &(A, b) = b. Set 

WY W(A b)) = Cd, ~$1 = (b, 0). 

For j > 1 we know Nj(A, b) = [b, Ab, . . . , Ajb]. Let 

Ej = {(x, p) : x E Aj, ll~ll = 1, p E @ (or R)}, 

where Aj = span (b, Ab, . . . , Aj-lb). Definej + 1 numbers ct , CT, . . . , 
cj!t, E C (or R) and p* E C (or R) by 

I)(A - p*Z)(c,*b + c:Ab + * . . + c$Aj-‘b)jI = m&$A - ,oZ)xII, 
.I 

where I is the n X n identity matrix. Note that c? and p* depend only on 
b, Ab, . . . , Ajb, i.e., on Nj(A, b). Thejth step of the generalized minimal 
residual algorithm is given by 

@18” (Nj(A, b)) = (~7, Pr) = (c,*b + c:Ab + . * * + cF,A’-‘b, P*). 

Obviously, the index k(Qm, A, b) 5 n for any A, b. 
The definition of the gmr algorithm is a simple generalization of a well- 

known minimal residual (mr) algorithm for solving linear systems Ax = b. 
Knowing information Nj(A, b) the XIX algorithm finds an Xi, Xj E Aj, such 
that 11 AXj - bl( = minX,jllAx - bll; see, e.g., Traub and Wotniakowski 
(1984). 
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3. OPTIMALITYOFTHEGENERALIZEDMINIMAL RESIDUAL ALWRITHM 

We now prove almost strong optimal@ of the gmr algorithm for classes of 
matrices which are unitarily invariant. We recall this concept from Traub and 
Woiniakowski (1984). 

DEFINITION 3.1. The class F is said to be unitarily (orthogonally) invari- 
ant iff 

A EFjQHAQ EF, VQ unitary (orthogonal). 

We are ready to formulate the main theorem of this paper. 

THEOREM 3.1. Zf F is unitarily (orthogonally) invariant then the gmr 
algorithm is almost strongly optimal in F, i.e., 

k(@m, A, b) = m> k(G), A, b) + a, 

where a E (0, 1, 2). 

V(A, b) E F X S,, 

Proof. For simplicity we present the proof only for the complex case. The 
proof for the real case can be found in Kuczydski (1983). 

Let @ = {@j} be an arbitrary algorithm with a finite index k = 
k(@, A, b) < +w. This means that /I& - pkxkII < E, VA E V(Nk(A, b)), 
where (Xi, pi) = @j(Nj(A, b)). Recall that Aj = SP~II (b, Ab, . . . , Ai-‘b) 
and Ej = {(x, p) : x E Aj, ll~ll = 1, p E C}. Obviously A,+* C Aj+z, Vj. 
Let us consider two cases. 

Case I. Ak+, = At+2, i.e., Ek+, = Ek+z. 

In this case Ak+, is an invariant subspace of the matrix A and since the field 
C is algebraically closed A k+l contains at least one eigenvector of A. Hence 
the gmr algorithm using information Nk+l(A, b) produces an exact eigenpair 
tx k,, pf+J of the matrix A, 

0 = bW+, - P~*+&+I tl 5 /IA-G - ~kxkll- 
Case II. Ak+2 + AR+2, i.e., Ek+, + E~+z. 

ht xk = z1 + z2, where z1 E Ak+r and z2 E Akl+l. There exists a V&Or 5 

such that 5 E Ak+2 and .$ E Akl+l and II 611 = 1. We now prove that there exist 
a complex number c, I c I = 1, and a unitary matrix Q such that 

Qu = u, vu E ,&+I, and Qzz = +2 tk 

Indeed, if vectors z2 and ,$ are linearly dependent then z2 = c,ll z2 115, where 
( cl 1 = 1 and it is easy to verify that the number c = -cl and the matrix 
Q = I - 25tH satisfy the conditions as claimed. 
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Let zr and LJ be linearly independent. Let 

139 

b29 5) c = 1 1 (z2, 5) 1 if h 5) i+ 0, 
1 otherwise. 

Since 11 z2 )I > 1 c (z2, 5) 1 then the number 

I aI2 = acz2, z2) - :I, z211~z2, 511 

is well defined. It is easy to check that the matrix 

Q = I - 2wwu, 

where w = a(z2 - cIIz2115), II w II = 1, is unitary and 

Qu = u, Vu E Ak+,, and QZZ = cllak? 

as claimed. 
Let x = Q”AQ. Since Qu = u = Q”u, Vu E AL+~, then A’b = A’b for 

i = 0, 1, . . . , k. Due to unitary invariance of the class F we conclude that 
A E F and A E V(Nk(A, b)). We have 

II& - ~11 = IIQ~AQX~ - ,4 = IIAQ~ + z2) - ,QQ(Z~ + z2)II 

= IIAh + Qz2) - P&I + Qz2)II = /AZ - ,wlI, 

where z = z1 + Qz2. Note that z E Ak+2 and llzll = 1. Since the gnu algo- 
rithm at the (k + 2)nd step produces (~k*,~, P:+~), which is the best approxi- 
mation in the set Ek+2, we have 

This proves that the residual of the algorithm @ at the kth step is no smaller 
than the residual of the gmr algorithm at the (k + 2)nd step. Since this holds 
for any algorithm @ we conclude 

k(@, A, b) + 2 2 k(@m, A, b), WI’, V(A, b) E F x S,. 

On the other hand 

m$r k(@, A, 6) I k(@fl, A, b), V(A, b) E F x S,. 
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Hence 

k(@v, A, b) = m$ k(@, A, b) + a, 

wherea=O, 1,2. n 

Theorem 3.1 states a very strong optimality property of the gnu algorithm. 
Neglecting the term a, we see that the gmr algorithm minimizes the number 
of steps for every matrix A from the class F. Note that this result holds for any 
unitarily invariant class F, for any E, for any size n of the matrix A, and for 
any normalized vector b. 

Usually k(Qw, A, b) is large, especially for large n and small E. Therefore 
the presence of the term a in Theorem 3.1 is not a limitation in practice. 
Nevertheless it may be shown that for some unitarily invariant classes the 
term a may be equal to zero or to one. Thus, Theorem 3.1 is best possible 
for a = 0, 1. We do not know whether u = 2 is necessary in Theorem 3.1. 
We begin with a class F = 4 for which a = 0. Let 

Using the notation of the proof of Theorem 3.1 we formulate and prove the 
following lemma. 

LEMMA 3.1. Let j be any positive integer less than n and let M be any real 
number. Let Cp be any algorithm, (xj, pj) = @j (Nj (A, b)). Zf there exists u 

matrix A from F, and a vector b from & such that xj $5 Aj then there exists 
u matrix A E V(Nj(A, b))for which ([Axj - Rxj[I > M. 

Proof. For every real 7 we construct a matrix A, such that 

6) 4 E V(Nj(A, b)), 
(4 11 (A, - /+Z)xjll?,m 03. 

ht Xj = ~1 + ~2, where ~1 E Aj and 0 # y2 E Af . Let us define 

A,, = A + qy2y7. 

Since A,, = A: then A, E fi. It is easy to show inductively that A&b = A’b, 
i=O, 1.. . . , j, for every n. Thus A,, E V(Nj(A, b)). We have 

II (4 - Pjl)+I12 = II (A + VYZY? - piZ)xj II2 = 11 (A - Pjz)xj + qJW%j(I 

= II (A - pil)XjI12 + 2~11~2 I12((A - Pjzhj, ~2) + 77211y2 II6 s m- 

Taking sufficiently large q we obtain 
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Hence Lemma 3.1 is proved. n 

Lemma 3.1 states that if an algorithm @ at the jth step produces a vector 
Xj which does not belong to the subspace Aj then the residuals 11 Axj - Rxj II 
for A E V(Nj (A, b)) are unbounded. 

We now prove the following theorem. 

THEOREM 3.2. The gmr algorithm is strongly optimal in the class FI , i.e., 

k(@-, A, b) = rnp k(@, A, b), V(A, b) E F, x S,,. 

Proof. Let @ = {@j} be any algorithm. If Xj E Aj then from the 
definition of the gmr algorithm it follows that 

II (A - pil>xjII = II@ - pil)+II 1 II (A - /JTZ)X,F II = II (A - p,fZ)~f )I, 

VA E V(Nj(A, b)), 

and Theorem 3.2 follows immediately. If Xj JZ Aj then Theorem 3.2 follows 
from Lemma 3.1.a 

Thus in the class F,, a = 0 in Theorem 3.1. 
We note that Theorem 3.2 remains true when we replace the class F, by the 

class {A : A = AH > 0) or by {A : A = AH < 0). Then in the proof of 
Lemma 3.1 we choose positive TJ or negative q, respectively. 

An example of the class F for which a = 1 in Theorem 3.1 is presented 
in Kuczyriski ( 1983). 

An example which shows that the assumption of unitary invariance of the 
class F in Theorem 3.1 is essential can also be found in Kuczynski (1983). 

We illustrate Theorem 3.1 by rather a surprising example. 
Let FZ be the class defined as 

where Ai, i = 1, . . . , n, are arbitrary but fixed numbers from @. Observe 
that all matrices from J$ share the same eigenvalues. Since FZ is unitarily 
invariant, Theorem 3.1 states that the gmr algorithm is almost strongly opti- 
mal in F2. Thus even if we know all eigenvalues of the matrix the gmr 
algorithm is still almost best possible. This shows that knowledge of all 
eigenvalues makes the problem of approximating an eigenpair no easier. 
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4. COMPARISON WITH THE LANCZOS ALGORITHM 

In this section we compare the gmr algorithm with the Lanczos algorithm 
(L algorithm). We show that the L algorithm can increase the residual error 
arbitrarily for (n - 1) steps, while the residuals obtained from the gmr algo- 
rithm are always nonincreasing. We restrict ourselves in this section to the 
real symmetric case. 

Let us briefly describe the jth step of the L algorithm. For a detailed 
analysis of the L algorithm see Parlett ( 1980). Knowing information Nj (A, b) , 
where A is a real symmetric matrix and b is a real vector with 11 bll = 1, 
perform the following steps. 

1. Find an orthonormal basis 41, q2, . . . , qj of the subspace Aj; let 
Qj = (41, q2, . . . 7 qj) be the n X j matrix. 

2. Form the j X j matrix Hj = QTAQj; compute eigenpairs of Hj; 

Hjgj = eigi, (gi, g,> = 4,m, i, m = 1, 2, . . . ,j. 

3. Compute the Ritz vectors Zi = Qjgi and the residual 

rj” = min IIAZi - &i 11. 
1SiSj 

4. Define 

Zj = {(Zi, ei), i = 1, 2, . . . , j : \lAzi - @ziII = rj”}; 

the jth step of the L algorithm is defined by 

where (Xi, pj) is an arbitrary element from the set Zj. 

We compare rk with the residual ry produced by the jth step of the gmr 
algorithm. 

Let 

(4.1) 

and 

f? = p$Ax - ~(1, 
x* I 

where ej = {(x, p) : x E 5, IIxII = 1, p E [w}, and Aj = SPCUI (b, Ab, 
. . . , Al-lb) is a subspace over the real field. The following lemma holds. 
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LEMMA 4.1. If A is a real symmetric matrix and b is a real normalized 
vector then the minimum in (4.1) is attained for a real vector x for 
p = (Ax, x) and 

r-j” = f? = min{[llAx11’ - (AX, x)‘]~‘* : x E z&v [/XII = 1). 

For the proof see Kuczyriski (1983). 
A similar relation holds for the L algorithm. Since the residual vector 

Axj - Rxj of the L algorithm is orthogonal to the subspace Aj, we C~II easily 
find that 

r) = min{[llAx(1’ - (AX, x)‘]“* : x E 5, llxll = 1, 

(A - (AX, X)Z)X I Aj}. 

Of course r? I $-I and ry 5 t-i. It is known (see Parlett, 1980) that 
r-p = r\. We see that r? and r> are defined by similar formulas. The differ- 
ence is only in the set over which the minimum is taken. The set which 
appears for the L algorithm is, in general, a proper subset of the set which 
appears for the gmr algorithm. This may look like a small difference between 
these two algorithms. The following theorem shows that this small difference 
causes completely different results. 

THEOREM 4.1. For any sequence M,, M2, . . . , Mne2 of positive num- 
bers there exist a real symmetric matrix A and a real vector b such that 

rk+,/rj” = Mj, j=l,2 ,..., n-2. 

Proof. Let 

A= 
, 

pi > 0 and b = (190,. . . 9 O)T. Take an aribtrary positive /$. Then 

L- 
rl - PI. 

(4.2) 

Consider now the second step of the L algorithm. Since A, = span (b, Ab) 
then it is not difficult to calculate that this algorithm yields the two eigenpairs 
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(Zl, 6) = ( & (1, 1, 0, . . . 9 O)T, Pi) 

and 

(z2, 6) = & (-1, 1, 0, . . . , OK -P,). 

For both these cases 1IAZi - eiziII = h/V’?. If we choose p2 in such a way 
that pZ = fi M, /3, we obtain 

rk = M,rfi. 

Assume inductively that pi, p2, . . . , pi-i, pj f 0, are already defined such 
that 

r-j” = Mj-IrjL-1, for j = 2, 3, 

Since Ai = span (ei, e2, . . . , ei) then 

Hi = QTAQi = 

,i- 1. 

Pi-1 . 

0 
1 

-1 

I,et (gj, ej) = ((gf , . . . , gj)‘, 0j), j = 1, 2, . . . , i, be all eigenpairs of 
Hi, gj E [w’, llgjll = 1. S ince the last component of any eigenvector of Hi is 
nonzero (pi # 0), then 

Ki z minIgj( > 0. 
1 <jr3 

%‘lCe rf = Ki& then we choose a number pi such that pi = Mi-1 rkl/ Ki, 

which gives 

r” = Mi-lrL\. 

By induction we obtain that 

rj- = Mi-lrkl, fori = 2,3,. . . , n - 1. n 

Theorem 4.1 states that it may occur that the residual error r: not only 
increases but the ratio rk+,/rf can be arbitrary large for i = 1, 2, . . . , 
n - 2. On the contrary, the gmr algorithm does not increase the residuals, 
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rp 5 rfi,, i = 2, 3, . . . IZ. This is a serious drawback of the Lanczos algo- 
rithm. It should be noted that the norm of A from the proof of Theorem 4.1 
is large for large Mj. We have performed a number of tests for matrices of 
norm bounded by one. For such matrices, numerical tests confirmed that in 
many cases the ratio rki/rL was larger than one for some i. Sometimes the 
ratio r!+i/rk was very large, up to 150 for random matrices and up to 24,000 
for the tridiagonal matrix with zero diagonal and pi = l/20 for 
i = 1, 11, 21, . . . , 9 1 and pi = $ for the remaining i from 2 to 100. 

To explain the poor behavior of the L algorithm observe that although the 
coefficients (~1, . . . , ai, pi, . . . , pi-19 pi of (1.2) are known, the L algo- 
rithm does not use the number pi at the ith step. It is worth mentioning that 
even in the (i + 1)st step, when the L algorithm uses all numbers pl, . . . , 
Piandai,. . . , ai, ai+i it may happen that rk+i % r-k. This proves that the 
L algorithm does not exploit information in an optimal way. 

From Theorem 4.1 one can easily construct an example of A such that the 
gmr algorithm finds an e-approximation at the second step and the L algo- 
rithm needs exactly n steps. Indeed, choose a number p2 such that 
fi pi C p2 < 2p, in (4.2). Then from the proof of Theorem 4.1 we see that 

Define p3, . . . , /3”-, in (4.2) in such a way that 

r$<dj<-*- <rf;_,. 

Consider now the gnu algorithm for this matrix. Then rp = pi. It is easy to 
calculate that in the second step of the gmr algorithm we get 

r4 = min [(-2p,& + p1~2)2 + (plcl - 2pl~,~f)2 + p$$J1/2 
c;+c;=1 

= min [p: + c$(P$ - 4c:p:)]‘12. 
c:+c;=1 

Since p2 < 2/3, then r: c PI = r?. Taking l from (r-7, r?) we get the 
desired result. 

Observe that if we take pZ > 2/3i in (4.2) then r-p = r?. This shows that 
the residuals produced by the gmr algorithm do not necessarily decrease at 
every step. The following theorem is shown in Kuczyliski (1983). 

TIEOREM 4.2. Let A be a real symmetric matrix and b a real unit vector. 
ZfrG#Othenr$$2<rP,fori= 1,2,. . . ,n- 1. 

This means that the residuals of the gmr algorithm decrease at least in every 
second step. We do not know if there exists a matrix for which the residuals 
are of the form 
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ry = 7-7 > r: = ry > rP = r-8 > i-7 = * - - . 

Some numerical tests suggest that such a matrix exists; see Section 8. 

5. CONVERGENCEOFTHE gmr ANDLAN~ZOS ALGOIUTHMS FOR REAL 
SYMMETRICMATRICES 

In this section we want to establish how fast the sequences of residuals of 
the gmr and Lanczos algorithms decrease for the real symmetric case. In the 
rest of this section we denote r? = rF(A, b) and rf = rk(A, b) to stress that 
the residuals come from the matrix A and vector b. For the gmr algorithm we 
have 

THEOREM 5.1. For every real symmetric matrix A and every real unit 
vector b, 

For every j, j < n, there exist a real symmetric matrix A and a real unit 
vector b such that 

$(A, b) 2 $lA]l. 

Proof. The proof is rather long and complicated. It consists of a series of 
lemmas. First of all, observe that 

$(A, b) = I cIrF(A/c, b), t/c E l-4, c # 0. 

Taking c = I/A II we can assume without loss of generality that /A II = 1. Let 

F = {A : A = A*, A real, 11~11 = 1). 

We prove that 

f(j) = w; ($(A, b))2 I jm2. 
LE.&, 

Since A is symmetric there exist (Oi, Ai), i = 1, . . . , n, such that 

AUi = hiui, (vi7 Urn> = h,m. 

Let 
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b=AC;tJi and ict=l. 
i=l i=l 

Then it is easy to see that 

X E Aj iff x = w(A)b = 2 ciw(hi)q, 
i=l 

where w E Wj-1 and WI-1 denotes the class of all real polynomials of degree 
not greater than j - 1. Let 

0, = 
{ 

(Y = ((Y1, . . * 9 a,) 1 (Yi 1 092 (Yi = 1 . 
i=l I 

Define a set Wj-I(a, A), where A = (Al, . . . , A,), as follows: 

Wj-l(a, A) = E WI-1 : i aiw*(Ai) = 1 . 
i=l 

Hence 

($(A, b))* = ($fJlA” - P-II2 = nii i Cf(Ai - P)"W*(Ai), 
** I WEWj-l(C2,h) +I 

where c* = (CT, . . . , cz) and 

f(j) = sup 
&E[-1, I] 

$t i Cf(Ai - p)*W*(Ai). 
c=q w~~j-,(c2,~) +I 

Without loss of generality we may assume that all ci are not equal to zero and 
all Ai are distinct. The eigenvalues Ai and coefficients Ci generate an inner 
product in the subspace W,,-,: 

(h(t), g(f)> = i c?h(Ai)g(Ai)* 
i=l 

Consider two linear functionals 

Z(h) = $ C:h(Ai) 
i=l 

and 
i=l 
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whereyi, i = 1, 2, . . . , j + 1, are all zeros of the orthogonal polynomial 
Pi+, of degree j + 1 in the inner product (* , *) and oi are the corresponding 
Christoffel numbers 

n 

O!i = 2 

= ( cm 
Pj+l(Am) 

Pj+*(Yi)(kn - Yi) 1 
2 (or a;’ = 2 Pi(yi)), 

m=l m=O 

i= 1,2,. . . ,j+ 1. 

It may be proved (see Szego, 1939, p. 47) that 

Z(h) = f(h), Vh E Wzj+, . 

Let (Y = ((~1, . . . 3 CI!j+l) andy = (J’l, . . . , yj+l). Then we have 

f(j) = A,;;y 1l 2; i C’(Ai - p)‘W2(hi) 

‘c2& lVEWj-*(C2,h) i=l 
n 

j+l 
I sup 

y;E[-l, 11 
2: C W(Yi - P>2w2(Yi), 

&S+, WEWj-1(&Y) i=’ 

where yi = yi(A1, . . . , A,, ~1, , . . ) c,), oi = ai(Al, . . . 3 A,, Clr . * . 9 
cJ > 0, for i = 1, 2, . . . , j + 1. On the other hand, having ai and yi for 
i=l,2,... ,j+ 1,sincen ?j+ l,wemaydefineci=G,Ai=yi 
fori = 1,2, . . . ,j+ landci=Ai=Ofori=j+2 ,..., n.Thuswe 
get the opposite inequality. Thus 

f(j) = sup 
.ViE[-13 11 

$2 2 cWi(yi - p)“W2(yi). 

&o,+l WEWj-l(asY) i=l 

Define the function g(j, p, a, y) 

g(j, f-b a, Y) = ,E@ay, & ai(Yi - P)2w2(Yi). 
I ’ I=1 

It is easy to see that 

and 

f(j) = sup tin g(j, p, a, Y) 
YjE[--I, I] PER 

uEQj+ I 

($(A, b))’ = ~2; s(j, P, a, Y). 

We now prove the following lemma concerning the function g (j, p, a, y). 
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LEMMA 5.1. Let 
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Then minPEn g(j, p, (Y, y) s $#. 

Proof. Let 8j = yP - ys. Define a nonzero polynomial w of degree not 
greater than j - 1 in the following way: 

W(Yi) = 0, i= 1,2,... ,j+ l,i#p,ifq 

apw2(yp) + (uqW2(Yq) = 1. 

Since CX,, , CX~, w *( yP), and w *( y4) are positive then such a polynomial exists. 
For this polynomial we have 

2; g(j, P, a, Y> 5 $g bp(Yp - P)‘W’(Yp) + q(y, - P)‘W’(Y*)l 

= ap”qw*(yp)w*(y,)sj2 I as;. 

The last inequality follows immediately by taking p = i( yP + yq). n 

From Lemma 5.1 it follows that 

Thus the first part of the proof of Theorem 5.1 is complete. In order to prove 
the second part we need some other lemmas concerning the function g(j, p, 
a, Y). 

LEMMA5.2. Forarbitrarya, >Oandy,,m= 1,2,. . . ,j+ 1, 

Proof. It is easy to see that the function g(j, p, (Y, y) is a polynomial of 
the second degree with respect to p. So it reaches its minimum when 

j+l 

&in = 2 aiyiW2(Yi)* 

i=l 

Thus we have 
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Applying the Lagrange identity 

(~u:)(~b:)-(~aibir=i~,(aib.-(2.61)2 

i<m 

to the last expression with ai = V& yiw ( yi) and bi = V& w ( yi) we obtain 

1 j+l 

$;g(i,p,~,Y)=- mln 2wEw,: ( y) ,C W%(Yi - Y*)2~2(Yi)w2(Ym) 
, Ia, r,m=l 

1 j+l 
=- min 2 (y,W’(Ym) 

2 wEWj-l(KY) m=, ( 
‘ j j &i(Yi - Ym)*W*(Yi) 
i=l ) 

1 j+l 
L- min 2 13n~j+l 

C W(Yi - Ym)2w2(Yi) 

w~~j-,(a,y) i=l 

The second inequality of Lemma 5.2 is obvious and thus the proof of the 
lemma is complete. n 

We now need the following lemmas. 

LEMMA 5.3 (Paszkowski, 1982). For arbitrary (Yi > 0 and any distinct 
yi und for any m, 1 5 m 5 j + 1 the function g( j, y,,,, a, y) is equal to the 
smallest positive zero of the function 

Bm(E.L) = ‘2 %[(Yi - Ym)* - PI ‘fi (Yp - Yi)* 

-1 

i=l [ 
. 

p=l I 
p#i 

Proof. Recall that 

g(j, ym, a, Y) = wt@;a y) $ %(Yi - Ym)2w2(Yi). 
I ’ 1=1 
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Since w E Wj-1 its jth divided difference vanishes, w[ y,, ~2, . . . , 
yj+l] = 0. ThUS 

j+l j+l 

C W(Yi)ln (Yp - Yi) = 0 
i=l p=l 

p#i 
j+l 

(5.1) 

C cYiW’(yi) = 1. (5.2) 
i=l 

We seek a minimum IX{:: ai ( yi - Y~)~w’( yi) under constraints (5.1) and 
(5.2). Let w ( yi) = Wi. The Lagrange function of this problem is 

j+l 

L(W*, WZ, * * . 9 Wj+l9 A9 p) = C ai(Yi - Ym)‘Wf 
+I 

+ 2A 2 Wilfj ( yp - yi) - /,.&(fi C&W’ - 1) * 

i=l p=l i=l 
p#i 

5 = 2O!i( yi - y,)‘Wi - 2h ‘fi ( yp - yi) - 2/A’YiWi = 0. 
I I’ p=l 

p#i 

Hence 

I 

j+l 

wi(ai(Yi - Ym)2 - pai) = A n (Yp - Yi), 
p=l 
p#i 

and 
‘+l 

Wi = A /h (Yp - Yi)%[(Yi - Ym)2 - PI- 
p=l 
p#i 

From (5.1) it follows that 

A 2 1 
I’ 

‘G (Yp - Yi)2W[(Yi - Yrr~)~ - p] = 0. 
i=l p=l 

p#i 

From (5.2) it follows that 

j+l 

I 

j+l 

A2 2 1 fl (Yp - Yi)2ai[(Yi - Yrt~)~ - ~1’ = 1. 
i=l p=l 

p#i 

Hence our minimum is equal to 



152 JACEK KUCZYbKI 

j+l 
C ai(Yi - Ym.)*Wf 
i=l 

= 2 ai(yi - ym)2pl’ii( Yp - Yi)‘d[(Yi - Ym)* - PI’ 
i=l p=l 

p#i 
j+l 

= h2C [(Yi - Ym12 - CL + PI 
I’ 

‘f-i (Yp - Yi)*%[(Yi - Ym)’ - CL]* 
i=l p=l 

pfi 
j+l 

I 

j+l 

= h2 n 1 n (Yp - Yi)*@[(Yi - Ym)* - PI 
i=l p=l 

p#i 
j+l 

= h2 2 P 
i=l I 

j+l 
C (Yp - Yi)*@[(Yi - Ym)* - PI* = CL. 

p=l 
p#i 

Thus our minimum is equal to the smallest p which satisfies the equation 
j+l j+l 
2 [W[(Yi - Ym)* - PI n (Yp - Yi)*l-’ = 0. . 
i+l p=l 

p#i 

LEMMA 5.4. Let p,,, be the smallest positive zero of the function B, and 
let p * = mini smcj+l pm; then 

b* 5 n&j! s(j, PI P, Y) 5 lJ*. 

The proof follows from Lemmas 5.2 and 5.4. Since ($(A, b))* = 
min6n g(j, p, (Y, y) then Lemma 5.4 gives an upper and a lower bound on 
$(A, b). 

We are now ready to complete the proof of Theorem 5.1. This part of the 
proof has been suggested by J. Domsta (1983). 

Letyi, i = 1, 2, . . . , j + 1, be equidistant points distributed uniformly 
in the interval [-1, 11, i.e., 

yi = -1 + (i - 1)2/j, i= 1,2,. . . ,j+ 1. 

Let Cui, i = 1, 2, . . . ,j+ 1,bedefinedas 

C 
ai = j+l 

mt, (Ym - Yi)* ’ 

i= 1,2,. . . ,j+ 1, 

mfi 

where the constant c is chosen in such a way that Z-j:; ai = 1. Let A and b 
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be the matrix and vector which generate yi and cam at the jth step, i = 1, . . . , 
j + 1. Then from Lemma 54 we have 

where CL,,, is the smallest positive zero of the function 

j+l 

c l 
i=l Wj*)(i - ml* - cL’ 

Let m be any integer 1 I m I j + 1. Then b is the smallest positive zero 
of the function (pm where 

%W = -j$ + m$: 4(i - mt2 - j*p + iz, 4(i - rnt* - j*p.’ 

Itiseasytoverifythat(p,(1/2j*) < Oforanyj, 1 I m C-j + 1,sinceboth 
sums are partial sums of the convergent series 2>=, (1/(4i* - 4))) which is 
bounded by 1. Since the functions (pm are increasing in the interval (0, 1/2j*] 
for all m, 1 5 m 5 j + 1, then we conclude that p,,, > 1/2j* for m, 
1 Irn Ij+ l.Thismeansthat 

which completes the proof of Theorem 5.1. n 

We believe that the second part of Theorem 5.1 can be generalized. 
Numerical experiments suggest 

Conjecture 5.1. There exist a real symmetric matrix A, a real unit vector 
b, and a constant c of order unity such that 

$(A, b) 5 ;lIAl(, Vj < n. 

We now analyze the speed of convergence of the Lanczos algorithm. 

THEOREM 5.2. For every real symmetric matrix A and every real unit 
vector b, 
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For every j, j < n, there exist a real symmetric matrix A and a real unit 
vector b such that 

Proof The first part easily follows from (1.3) since 1 pj 1 I )I A 11 and the 
minimal element of the last components of normalized eigenvectors of a 
symmetric matrix of size j is at most l/q. 

To prove the second part we ocnstruct a matrix A and a unit vector b. Let 

Y be a j X j symmetric tridiagonal unreduced matrix such that (( Y II = 1 and 
each eigenvector of Y has the last component equal to l/e. Define 

A= 

/ 0 
Y * 0 

\ 

0 
1 

0 . . . 01 0 o...o 

0 
0 - 0 

\ 0 / 

b = (1, 0, . . . , O)T. 

Since the matrix Y is unreduced then at the jth step of the Lanczos algorithm 
we obtain j first columns of the matrix A. From (1.3) we have 

$(A, b) = -!- 
vy 

From Parlett (1980, p. 69) we have 

IIAI( I 1 + rt(A, b) = 1 + -$. 

Thus 

$(A, b) = 1 > r Ml _ 1 
G-G’ 1 + l/V$ - +7I’A”, 

which completes the proof the the theorem. n 

Let us stress that since the residuals of the Lanczos algorithm do not 
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necessarily decrease, it might happen that $(A, b) 2 lIA II/(* + l), but 
r&i 4 [IA Il/(m + l), for some i, i < j. However, as numerical experi- 
ments suggest, the following conjecture holds: 

Conjecture 5.2. There exist a real symmetric matrix A, a real unit vector 
b, and a constant c of order unity such that 

rjL(A b) 2 $AiI, Vj < n. 

6. CONVERGENCEOFTHE gmr ALG~~FoR REALNONSYMMFTRK 
MATRICES 

We prove that the decrease of the residual of the gmr algorithm cannot be 
guaranteed for the nonsymmetric case. We assume that the matrix A is real 
and, in general, nonsymmetric. We deal with information Nj (A, b) with a real 
vector b. Here we consider complex algorithms. 

THEOREM 6.1. There exist a real nonsymmetric matrix A and a unit 
starting vector b for which 

rl G = ry = . . . = rzml = 1. 

The proof is rather long and may be found in Kuczydski (1983). 
Observe that in the class of all real nonsymmetric matrices the gmr algo- 

rithm is also strongly optimal. The proof is, in fact, the same as the proof of 
Theorem 3.2; we need only replace y2 by Re y2 or Im y2 in the proof of Lemma 
3.1. Since for some matrices this algorithm does not decrease the residual 
error until the nth step, we conclude that for the nonsymmetric case the 
information Nj(A, b) may be too weak. For nonsymmetric matrices we sug- 
gest using information not only about the matrix A, but also about AT. We 
intend to study this problem in the future. 

7. GENERALIZATIONS OFTHE~~~ALGORITHM 

In this section we deal with some other problems which can be solved by 
gmr-type algorithms. 

(i) First we consider the problem of finding p, p I 1, eigenpairs of a 
normal matrix. That is, let F be any class of n X n normal matrices. For a 
given E > 0 and any matrix A from F find p numbers pi, . . . , pP and p 
orthonormal vectors x1, . . . , X, such that 

2 /lAXi - piJill < c2. (7.1) 
i=l 
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Let Nj(A, b) = [by Ab, . . . 9 Ajb], for b E S,. For simplicity assume that 
b is chosen such that dim AP = p, where Aj = span(b, . . . , Aj-‘b). We 
define the p-gnu algorithm as follows. At the jth step the p -gmr algorithm 
finds p pairs (# , $J, . . . , (2;) pj,) for which (24, &) = 8i.m and 

2 [IA-t{ - b{2{II 5 2 JIAXi - piXiI( forallx,, . . . ,x, EAj, 
i=l i=l 

xiotthonormal,andforallpr,. . . ,pp E @.AsinSection2letk(@,A, b) 
denote the minimal number of steps to solve (7.1) using the algorithm a. 
Then we have 

THEOREM 7.1. If F is unitarily invariant then the p-gmr algorithm is 
almost strongly optimal in F, i.e., 

k(@pz”, A, b) I min k(@, A, b) + p + 1, @ 

for (A, b) E F X S,. 

The proof is quite similar to the proof of Theorem 3.1. The unitary matrix 
Q from the proof of Theorem 3.1 is defined here as a product QPQPVl . . . Q, 
of suitable chosen unitary matrices Ql. 

For p = 1 Theorem 7.1 coincides with Theorem 3.1. 
One can generalize the error criterion (7.1) for approximating p eigenpairs . 

That is, one wants to find (xl, pr), . . . , (xP, pP) for which (Xi, x,,,) = $,, 
aMf(llAxl - ,wlI, . . . , (IAxp - p,,xP I() < E, where f is an arbitrary but 
fixed function f : R P + R. The jth step of the p-gmr algorithm is then 
modified to find p orthonormal vectors 24, . . . , Zj, and p numbers 64, . . . , 
/?‘, such that 

f(ljAij - /5’;$:‘11), . . . , //A$, - ,$$,[I) 

‘f(lbb - plxlh . . . 3 /Ax, - ppxp II> 

forallxr, . . . , X, E Aj,xiOrthonO~d, andforallpr, . . . , pP E @. (For 
simplicity we assume that such vectors and such numbers exist .) Theorem 7.1 
then remains true for any functionf. Forf(z,, . . . , zp) = (EL, zF)‘/’ we get 
(7.1). Forf(z,, . . . , Zp) = maX15isp Zi the orthonormal xi and pi, i = 1, 
. . . , p, satisfy maxlSisp [(AXi - pixiI( < E. 

(ii) Let H be a Hilbert space and letfbe any operator, not necessarily 
linear, from H to H. Let F be any subclass of operatorsf: H -+ H. For a given 
E > 0 and any operatorf E F we want to find an element Y such that 

(7.2) 
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Let {Aj}>l be the sequence of subspaces of H such that for every positive 
integer j 

dimAj = j, 
Aj C Aj+l, 

f&I C Aj+s, where s 1 0. 

The information operator Nj is given by Nj(f) = fj: Aj --* H, J(X) = f(x), 
Vx E Aj. That is, we know the restriction of the operator f to the subspace 
Aja 

By an algorithm we now mean a sequence Cp = {@i} of arbitrary mappings 
@i: N,(F) 4 H, xi = @i(Ni(f)). 

Let V(Nj (f)) be the set of all operators f from F which share the same 
information as f, i . e . , 

V(Nj(f)) = {.f : .f E F, N.(f) = NjC.f>>* 

By the index of the algorithm we mean 

k(@, f) = min{j : IIf (1 - ini IIj%) II < C vf E V(iv.i(f))l* 

If this set is empty then k(@, f) = +m. 
For simplicity assume that 

The gnu* algorithm for the problem (7.2) is defined by 

X* = @I"" Wj(f)), where XT E Bj. 

We have 

THEOREM 7.2. IfF is unitarily invariant, i.e., f E F 3 Q”fQ E F, for 
unitary Q, then the gmr* algorithm is almost strongly optimal in F, i.e., 

k(w=‘, f) 5 m&l k(@, f) + s + 1, IIf E F. 

The proof is similar to the proof of Theorem 3.1. 
We illustrate Theorem 7.2 by two examples showing that the problems 

studied in Traub and Wo%niakowski (1984) and here are special cases of 
Theorem 7.2. 

EXAMPLE 7.1. Solution of linear systems. Let H = c” and let 
f(x) = Ax - b, Vx E C”, and A belongs to a given class F of n x n non- 
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singular matrices, b E @“. Then infXEcn I]f(x) (( = 0. Thus our problem is to 
find x E @” such that 

If Aj = span@, Ab, . . . , Ai-‘b) then the gmr* algorithm coincides with the 
minimal residual (mr) algorithm for solving linear systems. Theorem 7.2 
yields its almost strong optimality for unitarily invariant classes of matrices, 
i.e., 

k(F, A, b) 5 min k(@, A, b) + a, a S 2. @ 

It was proved in Traub and Woiniakowski (1984) that a 5 1. 
EXAMPLE 7.2. Finding an eigenpair of a matrix. Let H = @n+’ . Define 

the operatorf forx # 0 byf (x, p) = ((A - &(X/(/X II), 0), where A belongs 
to a subclass F of n X rr matrices, x E Q=” and p E C. Then 

j$” llfk d II = 0. 
EC 

Thus our problem is to find a nonzero x and a number p such that 

Then the gmr* algorithm for Aj = span(b, Ab, . . . , Aj-‘b) coincides with 
the gmr algorithm defined in Section 2. Theorem 7.2 reduces now to Theorem 
3.1. 

8. NUMERICAL l&XJLTS 

In this section we report a few numerical tests of the gmr algorithm for the 
real symmetric eigenproblem. A sketch of the implementation of this algo- 
rithm can be found in Kuczyriski (1983) and we do not repeat it here. The 
Fortran subroutine and extensive numerical tests may be found in Kuczyfiski 
(1985). The Fortran subroutine is also available via anonymous FTP as 
“pub/gmrval” on COLUMBIA.EDU [128.59.16. l] on the Arpanet. Calcu- 
lations were performed on a DEC-20 computer at Columbia University. This 
machine has 8-decimal-digit precision (2-*’ = 0.745 X 10-s). We tested 
symmetric tridiagonal matrices of sizes up to 501 with various coefficients 
with the vector b = (1, 0, . . . , O)T. We were primarily interested in com- 
paring the gmr and Lanczos algorithms. Since the cost of one step of these 
two algorithms is essentially the same we compare the number of steps which 
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are required to find an e-approximation. Numerical experiments confirmed 
the theoretical results of Sections 4 and 5. For all matrices tested and for all 
E, E 1 lo-*, the number of steps needed to find an ~-approximation for the 
gmr algorithm was no greater than the number of steps required by the 
Lanczos algorithm. In other words, for every matrix and for every step, the 
residual of the gmr algorithm was no greater than the corresponding residual 
of the Lanczos algorithm. For many cases, especially for matrices whose 
coefficients were randomly selected from the interval [ - f , i] with the uni- 
form distribution, the differences between the residuals of these two algo- 
rithms were, in general, small. For random matrices, both algorithms reduced 
the residual to the level lo-* after about 20 steps. For two examples the 
number of steps was about 50 and for one example the number was 77 (see 
Table 8.1). High efficiency of both algorithms for random matrices can be 
easily explained. We chose the coefficients randomly from the interval 
[- f , $1. With high probability, the codiagonal contains small elements pj, 
which make the eigenproblem easy to solve since ry I rt 5 &. 

Numerical tests confirmed that the sequence of residuals of the gmr algo- 
rithm is always nonincreasing, while the residuals of the Lanczos algorithm 
do not have this property. Among the 20 matrices reported in Table 8.1, the 
Lanczos algorithm generated nonincreasing residuals for only 1 matrix. For 
one of the tested random matrices we obtained & = 0.145 X 10e6 while 
r& = 0.216 X 10M4. Thus the residual of the 66th step of the Lanczos algo- 
rithm was more than 150 times larger than the residual of the previous step. 

TABLE 8.1 
6 = 10-I e = 10-Z e = 10-j 6 = 10-4 c = 10-5 e = 10-6 e = 10-7 
- - - - - 

LGLGLGLGLGLGLG 

* 44 II 8 8 9 9 10 10 10 10 11 11 
2 2 

2 2 : z 

10 10 11 11 13 13 

1: 164 :t i i :: :: i l 

14 

:z 

15 

13 4 3 9 8 39 36 49 1: 
2 2 9 6 14 14 20 20 24 23 29 29 33 33 

* : : 10 I 29 25 35 35 39 39 44 44 46 46 

1 1 
1 I 

* : 1 1: 1; 30 24 :: :: :; :4 :: :z :7 ii 
* 
* :: :: % ; 1; 1’: 

10 10 12 12 13 13 
11 11 13 13 17 17 

2 2 7 7 9 9 11 11 1: 13 15 15 1 1 : : 13 12 13 13 16 18 18 :‘2 :: 
1 1 

4 4 7 7 1: 

7 9 

11 13 1: :: 

13 

t’7 

16 19 18 

15 16 19 1 1 
:: 3’ 44 z 

3 3 6 9 11 11 14 :4 
: 4 6 1: 10 : :i 10 ; 14 12 14 12 14 14 14 

3 3 11 11 12 12 13 13 14 14 14 14 15 :.Ll 

Total 44 42 134 118 222 209 285 278 343 331 405 400 477 456 

Average 2.2 2.1 6.7 5.9 11.1 10.45 14.25 13.90 17.15 16.55 20.25 20.0 23.85 22.8 
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The residuals of the Lanczos algorithm increased very often; however, the 
ratios rf+r/rk were usually slightly larger than one. 

Table 8.1 exhibits the number of steps used by the Lanczos algorithm (L) 
and by the gmr algorithm (G) to reduce the residual to the level less than E 
for E = lo-‘, i = 1, 2, . . . , 7. It was done for 20 tridiagonal matrices with 
coefficients chosen randomly from the interval [- f , 41 with the uniform 
distribution. The asterisk in the first column indicates a matrix with constant 
(fixed) main diagonal. 

Finally we discuss two nonrandom examples. 

EXAMPLE 8.1. Let A be a tridiagonal matrix of dimension n = 201 with 
diagonal elements ai = 0, i = 1, 2, . . . , n, and codiagonal elements 
pi = 1 m, i = 1, 2, . . . , n - 1 ([(A )I I 1). For this matrix all 
residuals of the Lanczos algorithms (up to 200) were constant and 

r; = 0.035, i = 1,2, . . . , n - 1. 

Thus in order to find an e-approximation with any E less than 0.035 using the 
Lanczos algorithm we have to perform 201 steps, i.e., to solve the full- 
dimensional 201 X 201 eigenproblem. The gmr algorithm started with the 
same residual r? = 0.035 at the first step and slowly decreased the residuals 
at every step. We obtained 

r: = 0.0164, 
r$ = 0.0077, 
rk = 0.0058, 

t-F;,, = 0.0048, 
rSo = 0.0042, 

r% = 0.0120, 
r8 = 0.0071, 

rym = 0.0055, 
r& = 0.0047, 
& = 0.0041, 

r$ = O.OO!W, 
rB = 0.0066, 

r& = 0.0053, 
rfjo = 0.0045, 
rFm = 0.0040, 

r0 = 0.0086, 
t-g = 0.0062, 

r& = 0.0050, 
r& = 0.0044, 
r& 1 0.0039. 

We calculated also the sequences {pi’“} and { py’ } which measure how fast 
the residuals of the Lanczos algorithm and of the gnu decrease in comparison 
to the sequence { 1 /j), They are defined by 

for j = 2, 3, . . . , n - 1. From Theorems 5.1 and 5.2 we know that 
p/(G) 1 1 and pp) L f. (See Table 8.2.) 

We believe that for larger dimension n, sequences (p?‘} and {py’} ap- 
proach 0.5 and 1, respectively, as j approaches n. The matrix of Example 8.1 
suggests how the matrices satisfying Conjectures 5.1 and 5.2 might be con- 
structed. 

EXAMPLE 8.2. Consider the tridiagonal matrix A of dimension n = 501, 
with diagonal elements (Y~ = 0, i = 1, 2, . . . , n, and codiagonal elements 
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TABLE 8.2 

i 2 20 40 60 80 100 120 140 160 180 200 

pp’ 4.28 1.12 0.91 0.82 0.76 0.73 0.70 0.68 0.66 0.64 0.63 

#’ 5.03 1.48 1.29 1.21 1.16 1.13 1.11 1.09 1.07 1.06 1.05 

pi = i(i/(n - l)), i = 1,2, . . . , n - 1. For this matrix numerically com- 
puted residuals of the gmr algorithm decreased at exactly every second step, 
i.e., 

The residuals of the Lanczos algorithm were increasing at every second step. 
More precisely, they satisfied the relations 

r$yij > r-i:), i = 1, 2, . . . , 248. 

Both algorithy started with t-IL) = t-p’ = 0.001 and at the final steps they 
reached 
r$&/r~~ z :r 

z (L) 500 = 0.011 and rig r. rg = 0.00036. Thus, 

From all the tests we have performed we conclude that the gnu algorithm 
is essentially superior to the Lanczos algorithm for matrices with constant or 
increasing codiagonal elements. For random matrices or matrices with de- 
creasing codiagonal elements, both algorithms produce nearly the same re- 
siduals . 
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