
Journal of Symbolic Computation 47 (2012) 552–567

Contents lists available at SciVerse ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

Efficient computation of maximal orders in radical
(including Kummer) extensions
Nicole Sutherland 1

Computational Algebra Group, School of Mathematics and Statistics, University of Sydney, Australia

a r t i c l e i n f o

Article history:
Received 23 December 2010
Accepted 23 December 2011
Available online 30 December 2011

Keywords:
Maximal orders
Kummer extensions
Radical extensions

a b s t r a c t

We describe an algorithm, linear in the degree of the field,
for computing a (pseudo) basis for P-maximal orders of radical
(which includes Kummer) extensions of global arithmetic fields.
We construct our basis in such a way as to further improve
maximal order computations in these radical extensions. Using this
algorithm for the similar problem of computing maximal orders of
class fields is discussed. We give examples of both function fields
and number fields comparing the running time of our algorithm to
that of the Round 2 or 4 and Fraatz (2005).

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Maximal order computations usually use algorithms like Round 2 (Cohen, 2000) and Round 4
(Baier, 1996; Ford and Letard, 1994) which are polynomial complexity in the degree of the field.
However, for some special types of extensions, like radical extensions, we can find a more efficient
algorithm for maximal order computations (linear complexity in the degree of the field). Kummer
extensions are a special case of radical extensions. An efficient algorithm for maximal orders of
Kummer extensions is important in class field theory and coding theorywhich use such computations
heavily. Radical extensions occur as both algebraic function fields or number fields. We state our
results generally as they apply to both but note that we gain most in the case of function fields.

To computemaximal orders we factor the discriminant of the input order and compute P-maximal
orders for every prime P dividing the discriminant. Note that the computation of a maximal order is
polynomial time equivalent to finding the largest squarefree factor of the discriminant (Chistov, 1989)
and factoring an integer discriminant is a sub-exponential time algorithm, so in a number field this
initial computation may dominate the whole computation. For a radical extension by xn − awe know
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the discriminant is nnan−1, so we need only factorize n and a, hence we can avoid both computing
and factoring the whole discriminant. These P-maximal orders we compute are then added together
to gain the maximal order itself. We can gain most then by considering the computation of the
P-maximal orders.

Wehave implemented our algorithms inMagmaV2.16 (Cannon et al., 2009) (and later) andprovide
a comparison of timings in Section 7. For a discussion of number fields and function fields in Magma
please see Fieker (2006).

We follow Stichtenoth (1993) in notation. Here we give the key definitions and results which are
based on those in Stichtenoth (1993) as noted but extended to include algebraic number fields.

Definition 1. Let F be a algebraic field, n > 1 and let u ∈ F be such that u ≠ wd for all w ∈ F and
d > 1, d|n. Then F ′

= F(α) with αn
= u is a radical extension of F .

An important special case of radical extensions are Kummer extensions. It is only these which
Stichtenoth considers.

Definition 2 (Stichtenoth, 1993 III.7.3). Let F be a algebraic field containing a primitive nth root of
unity (where n > 1 is coprime to the characteristic of F ) and let u ∈ F be such that u ≠ wd for all
w ∈ F and d > 1, d|n. Then F ′

= F(α) with αn
= u is a Kummer extension of F .

Definition 3. Let O be an order in a field F ′/F with coefficient ring ZF , a maximal order of F , and let P
be a prime of ZF . A P-maximal order of O is an order PO such that O is a submodule of PO, PO ⊆ ZF and,
as ZF modules, PO/O is P-primary and ZF ′/PO has no P-primary component (where ZF ′ is a maximal
order of F ′).

Note that Cohen (2000) gives a definition of an order being P-maximal (Definition 2.4.1(1))
however his definition concentrates on the difference between a P-maximal order and a maximal
order and does not have any reference to a suborder as our definition does. The suborder is important
to us as it will be the input into our algorithm and the P-maximal order we will compute will be the
minimal such one containing the input order.

Let F ′/F be a finite separable extension of the algebraic field F/K and P ∈ PF be a place of F/K . We
recall from Stichtenoth (1993) Corollary III.3.5 that the integral closure O′

P of OP in F ′ is

O′

P =


P ′|P

OP ′

where OP ′ is the valuation ring at the place P ′. We also have from this corollary that there is a basis
{ai} of F ′/F such that

O′

P =

n
i=1

OPai

and we call such a basis {ai} an integral basis of O′

P over OP or a P-integral basis.
Therefore we have that O′

P contains those elements of F ′ with non–negative valuation at all
primes P ′

|P .

Definition 4. We call an order O in F ′/F an equation order if O = C[α] where α is a root of a monic
integral polynomial over the order C of the algebraic field F .

The orders we are interested in will be extensions of the maximal order of the algebraic field F , so
C will be a maximal order.

Without loss of generality we assume u is an integral element of F so that the defining polynomial
of F ′ is monic and integral and therefore the P-maximal order will contain the equation order.

Definition 5. We call F ′/F a relative extension if F itself is an extension (of finite degree) of some
field. If F is a rational function field or Q then F ′/F is called an absolute extension.



554 N. Sutherland / Journal of Symbolic Computation 47 (2012) 552–567

1.1. Previous work

Earlierwork on computingmaximal orders of radical extensions has concentrated on computations
in Kummer extensions.

Let P be a prime in an algebraic field F . Generators of P-maximal orders of Kummer extensions
of F are well known (for number fields (Daberkow, 1995; Pohst, 1996; Daberkow, 2001), for function
fields (Fraatz, 2005)). However, it is expensive to construct a P-maximal order from those generators
as this is constructing a minimal order containing a set of elements which is expensive, at least O(n3)
where n is the degree of the field, because of the use of normal form.

Daberkow and Pohst have considered Kummer extensions in Daberkow (1995), Pohst (1996) and
Daberkow (2001). In these publications they provide a system of generators for the maximal order of
a Kummer extension (Daberkow (1995) Theorem 3.29 and Pohst (1996) Theorem 2.3). They restrict to
Kummer extensions of primedegree and reduction of generators is required. After reduction they have
at most twice the prime degree number of generators. Pohst notes that a relative integral basis only
exists under certain conditions. Daberkow (1995) and Pohst (1996) state Hecke’s Theorem (Hecke,
1954, 1981). They are also interested in relative discriminants (of maximal orders) of Kummer
extensions.

Fraatz (2005) also computes generators for a maximal order of Kummer extensions of function
fields. There is no restriction on the degree of the extension and the number of generators is related
to the number of ramified primes. We will compare timings from our implementation with his.

Cohen (2000) also states Hecke’s Theorem. In his proof of Hecke’s Theorem (Theorem 10.2.9) he
gives elements which are Kummer equivalent (Definition 10.2.8) to the primitive element of the
Kummer extension but generate a P-integral power basis of the Kummer extension (Stichtenoth
(1993) Propositions III.5.11 and 12) when P is either totally ramified or unramified in the extension.
At the end of Section 5.3.6 he claims that computing an integral pseudo basis of a Kummer extension
is easy. We shall show here that it indeed is a very efficient computation.

Stichtenoth (1993) states andproves the values of the ramification degrees anddifferent exponents
of primes of a Kummer extension of F over P in Proposition III.7.3 and its proof. Elements generating
a P-integral power basis of a Kummer extension can be deduced from this proof and this is where we
started.

In this paper we derive a pseudo basis for a P-maximal order of a radical extension in a way such
that the computation of the maximal order from these P-maximal orders is efficient. This does not
require the minimal order computation required to compute an order from generators. We extend
our work on Kummer extensions to the computation of maximal orders of class fields.

2. A (local) P-integral power basis

Stichtenoth (1993) (Theorem III.7.3 and its proof) suggests, for a Kummer extension F ′
= F(α),

an isomorphic field E = F(β) such that a root of the defining polynomial of E defines a (local) P-
integral power basis for F ′ where β is Kummer equivalent to α. We used this β as the basis of our
first algorithm to compute a P-maximal order of a radical extension. Note that Stichtenoth does not
use the existence of a primitive n-th root of unity in the coefficient field so we state our theorem for
radical extensions.

Theorem 6 (P-Integral Power Basis of a Radical Extension). Let F ′/F be a radical extension defined by the
polynomial xn − u and let α be a root of this polynomial, a primitive element for F ′. Let P be a prime of F
with vP(n) = 0 and abbreviate vP(u) to v(u). Set g, k, j such that g = kv(u) + nj, 0 ≤ g < n and g is
minimal (i.e. g = gcd(v(u), n)mod n).

• If g ≤ 1 then {β i
}0≤i<n where β = αkπ j and π is a uniformizing element for P is a (local) P-integral

power basis for F ′.
• If g > 1 then {β i

1β
l
2}0≤i<g,0≤l<n/g where

β1 = α(n/g)π (−v(u)/g), β2 = αk′π j′ with
v(u)
g

k′
+

n
g
j′ = 1
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is a (local) P-integral power basis for F ′. (That is β1 is a root of xg − β
g
1 = xg − uπ (−v(u)) and β2 is a

root of x(n/g)
− (αk′π j′)(n/g)).

Proof. For any prime P ′ of F ′, P ′
|P , we know P ′ has ramification degree n/g over P (Stichtenoth, 1993)

for g > 0 and ramification degree 1 for g = 0.
We consider 3 cases :

(1) P ′
|P is totally ramified : g = 1,

vP ′(β) = kvP ′(α) + jvP ′(π) = kvP ′(α) + j
n
g

= 1.

Therefore β is a P ′ prime element so by Stichtenoth (1993) Proposition III.5.12, {β i
}0≤i<n is a

(local) P-integral basis for F ′.
(2) P ′

|P is unramified : g = 0, k = 1, j = −v(u)/n

vP ′(β) = k
v(u)
n

+ j =
v(u)
n

−
v(u)
n

= 0.

Theminimal polynomial ofβ isφ = xn−βn
= xn−ukπ jn and vP(ukπ jn) = kv(u)+jnvP(π) = 0 so

theminimal polynomial is integral at P and vP ′(φ′(β)) = vP ′(nβn−1) = vP ′(n)+(n−1)vP ′(β) = 0
so that {β i

}0≤i<n is a (local) P-integral basis for F ′ by Stichtenoth (1993) Proposition III.5.11. Note
that this does not hold when vP(n) is not zero, i.e. when P is a critical prime.

(3) When g > 1, P ′
|P is ramified but not totally. We split F ′ into a tower of extensions and consider

F ′/F0/F where F0 = F(α0) and F ′
= F ′

0(α) and α0 = αn/g . Let P0 = P ′
∩ F ′

0 then gcd(g, v(u)) =

g ≡ 0mod g so P0|P is unramified and β1 = αk
0π

j with k = 1 and j = −v(u)/g , vP0(β1) = 0 as
for case (2) above. Therefore {β i

1}0≤i<g is a (local) P-integral basis for F0/F .
Consider P ′

|P0. This is totally ramified since

gcd(n/g, vP0(α
n/g)) = gcd(n/g, vP(α

n/g)) = gcd(n/g, v(u)/g) = 1.

Therefore we have β2 = αk′π j′ as in case (1) above with vP ′(β2) = 1 so {β l
2}0≤l<n/g is a (local)

P-integral power basis for F ′/F0.
We have then that {β i

1β
l
2}0≤i<g,0≤l<n/g is a basis for F ′/F . Since vP ′(β2) = 1 and vP ′(β1) =

n
g vP0(β1) = 0 both β1 and β2 are P ′-integral and so {β i

1β
l
2} is a (local) P-integral basis for

F ′/F . �

3. A pseudo basis

A (local) P-integral power basis is an improvement on generators but we found we can do
better than this. There are a few more requirements for a basis of a P-maximal order and there
are ways in which we can construct our P-maximal order more efficiently. We would like to avoid
certain denominators, the P-maximal order to contain the equation order and as we are interested in
computing maximal orders we want it to be easy to add the P-maximal orders we compute. And as
Pohst (1996) notes a relative integral basis does not exist in every extension.

This led to the use of pseudo bases. We will give Cohen’s (Cohen, 2000) Definition 1.4.1 of pseudo
elements and bases and Hoppe’s (Hoppe, 1998) Definition 4.1.1 of a pseudo matrix.

Definition 7 (Cohen, 2000, Definition 1.4.1). Let M be a finitely generated torsion-free R-module and
set V = FM where R is a Dedekind domain and F is its field of fractions.

(1) A pseudo-element of V is a sub-R-module of V of the form aω with ω ∈ V and a a fractional ideal
of R, or equivalently an equivalence class of pairs (ω, a) formed by an element of V and a fractional
ideal of R under the equivalence relation (ω, a)R(ω′, a′) if and only if aω = a′ω′ as sub-R-modules
of rank 1 of V .

(2) The pseudo-element aω is said to be integral if aω ⊂ M .
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(3) If ai are fractional ideals of R and ωi are elements of V , we say that (ωi, ai)1≤i≤k is a pseudo-
generating set forM if

M = a1ω1 + · · · + akωk.

(4) We say that (ωi, ai)1≤i≤k is a pseudo-basis ofM if

M = a1ω1 ⊕ · · · ⊕ akωk.

From a pseudo-generating set or basis we can construct a pseudo matrix by putting the vectors wi
into the columns (or rows) of a matrix.

Definition 8 (Hoppe, 1998, Definition 4.1.1). Let O be an order of a field F and let m, n ∈ N and A be
an (n × m)-matrix over F with column vectors A1, . . . , Am in F n. Let a1, . . . , am be fractional ideals of
O. Then [(a1, . . . , am), A] is a pseudo matrix over Owith n rows andm columns.

A pseudo matrix constructed from a pseudo basis for an order O in a field F ′ of degree n will have
n rows and n columns. We use a pseudo matrix [(aj), (ωj)] as a transformation matrix expressing the
basis ofO as a linear combination of the basis of its suborder S. Let {sj} be a basis for the field of fractions
of S such that sjsj ⊆ S where sj are the ideals in a pseudo basis of S. Then {bi} with bi =


j wijsj is

a basis for the field of fractions of O with biai ⊆ O where wij is the ij-th entry of the matrix whose
columns are ωj.

These pseudo bases meet all the above requirements. They allow us to handle denominators,
include the equation order and create the order with a diagonal matrix which makes the additions
more efficient. To compute the sum of 2 orders constructed as transformations of a common suborder
usually involves a union (or join) of their bases followed by a hermite form calculation, which is
cheaper when applied to the join of two diagonal matrices. We can arrange our pseudo bases such
that the corresponding pseudo matrices are identity matrices and addition becomes taking the GCDs
of the coefficient ideals aj.

We can construct a pseudo basis from the P-integral power basis of Theorem 6 in each case. We
will show that the pseudo basis we construct is a pseudo basis for an order (i.e. it contains 1 and is
closed under multiplication) which is at least as large as the order the basis is a transformation of. We
prove P-maximality later.

Proposition 9. Suppose we satisfy the hypothesis of Theorem 6. Let O be an order of F ′ and let P now
denote P ∩ C where C ⊂ F is the coefficient order of O.

• If P ′
|P is either totally ramified or unramified then

(ωi, ai)i = (αki , P ji+v(u)ti)0≤i<n, ki = ki + tin, 0 ≤ ki < n

is a pseudo basis for an order containing the equation order of O,
• Otherwise

(ωil, ail)i = (αkil , P−iv(u)/g+j′ l+v(u)til)0≤i<g,0≤l<n/g , in/g + k′l = kil + tiln, 0 ≤ kil < n

is a pseudo basis for an order containing the equation order of O.

These pseudo bases are derived from the P-integral power basis as follows.

• P ′
|P is totally ramified or unramified, a P-integral basis is {β i

}0≤i<n, β = αkπ j, kv(u)+nj = g, g =

0, 1. Using pseudo elements,

(αkP j)i = αkiαtinP ji where ki = ki + tin and 0 ≤ ki < n
= αkiutiP ji

= αkiπv(u)tiu′tiP ji where u = πu′

and π is a uniformizing element for P or is P.

We group the P parts together and note that multiplication by u′ does not change the power of P
to get the pseudo basis (αki , P ji+v(u)ti)0≤i<n.
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We also note that since k is coprime to n (k = 1 or g = 1) and ki1 = ki2 =⇒ k(i1 − i2) = (ti1 −

ti2)n we have ki1 = ki2 =⇒ i1 = i2. So the values ki are unique and since there are n different ki
values, for each 0 ≤ z < n there is some i such that ki = z.

• P ′
|P is partially ramified, a P-integral basis is {β i

1β
l
2}0≤i<g,0≤l<n/g , where β1 = αn/gπ−v(u)/g ,

β2 = αk′π j′ and v(u)
g k′

+
n
g j

′
= 1. Using pseudo elements,

(αn/gP−v(u)/g)i(αk′P j′)l = αkilαtilnP−iv(u)/g+j′ l where
in/g + k′l = kil + tiln and 0 ≤ kil < n

= αkilu′tP−iv(u)/g+j′ l+v(u)til .

We note that multiplication by u′ does not change the power of P to get the pseudo basis
(αkil , P−iv(u)/g+j′ l+v(u)til)0≤i<g,0≤l<n/g .

Here again the kil are unique. If ki1 l1 = ki2 l2 then (l1 − l2)k′
= n/g((ti1 l1 − ti2 l2)g − (i1 − i2))

and since k′ and n/g are coprime n/g|l1 − l2 < n/g so l1 = l2. Let tm = tim lm . Then we have
g(t1 − t2) = i1 − i2 so g|i1 − i2 < g and i1 = i2. Therefore, since there are n different kil values, for
each 0 ≤ z < n there is some i and l such that kil = z.

Proof. We will show that (ωi, ai)i is a pseudo basis for an order when P ′
|P is either totally ramified

or unramified and note that the partially ramified case can be proven similarly.
When i = 0, ω0 = 1, a0 = 1 so 1 is contained in the span of (ωi, ai)i. We now use pseudo elements

and check that aiωi ×ai′ωi′ is in the span of (ωi, ai)i. For i, i′ < nwe have i+ i′ = mn+ i′′, i′′ < n,m =

0, 1 so

aiωi × ai′ωi′ = P j(i+i′)+v(u)(ti+ti′ )αki+ki′ .

But ki + ki′ = ki′′ + (ti′′ + km − (ti + ti′))n so

aiωi × ai′ωi′ = P j(mn+i′′)+v(u)(ti+ti′ )αki′′ u(ti′′+km−(ti+ti′ ))

= P ji′′+jmn+v(u)(ti+ti′ )+v(u)(ti′′+km−(ti+ti′ ))αki′′

= P ji′′+v(u)ti′′+jmn+v(u)kmαki′′

= ai′′ωi′′P jmn+v(u)km

⊆ ai′′ωi′′ since jmn + v(u)km = mg ≥ 0.

Therefore aiωi × ai′ωi′ is in the span of (ωi, ai)i.
To check that the order with pseudo basis (ωi, ai)i contains Owe check that the exponents of P are

non-positive. When

g = 0,

ji + v(u)ti =
−v(u)

n
i + v(u)ti = v(u)


ti −

i
n


≤ 0 since ti = ⌊ki/n⌋ and k = 1

g = 1,

kv(u) + jn = 1, so ikv(u) + ijn = i,
i = ikv(u) − tinv(u) + ijn + tinv(u)
= v(u)(ki − tin) + n(ji + v(u)ti)
= v(u)ki + n(ji + v(u)ti),

n(ji + v(u)ti) = i − v(u)ki ≤ i.
Therefore ji + v(u)ti ≤ i/n < 1, so ji + v(u)ti ≤ 0.1 < g < n,

vP ′(αkilP−iv(u)/g+j′ l+v(u)til) = vP ′((αn/gP−vu/g)i(αk′P j′)l) = 0i + 1l = l.

Therefore, l = kilvP ′(α) + vP ′(P)


j′l − i

v(u)
g

+ v(u)til
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n
g


j′l − i

v(u)
g

+ v(u)til


= l − kilvP ′(α) ≤ l since kilvP ′(α) ≥ 0

j′l − i
v(u)
g

+ v(u)til ≤ l
g
n

< 1 since 0 ≤ l <
n
g
.

Therefore j′l − i
v(u)
g

+ v(u)til ≤ 0 since the LHS is an integer.

So we have in all cases that the exponents of P in the pseudo basis are non-positive. The order with
pseudo basis (ωi, ai)i will contain the equation order since for i such that ki = 1, α = 1×ωi and 1 ∈ ai
since (v(u)ti + ji) ≤ 0, so α, a primitive element for the equation order, is in the order with pseudo
basis (ωi, ai)i.

In the partially ramified case, let i, l be such that kil = 1, α = 1 × ωi and 1 ∈ ai since (jl − iv(u)/
g + v(u)til) ≤ 0 so α is an element of the transformed order.

Therefore the order created using this pseudo basis will contain the equation order of O which it
is constructed as a transformation of. �

LetO′ be the orderwith pseudo basis (ωi, ai)i we are constructing as a transformation ofO.We form
a transformation pseudomatrix expressing the basis ofO′ as a transformation of the basis ofO. We use
the ωi, the powers of α, (as module elements) as the columns of the matrix and the powers of P as the
ideals aj. The order of the basis of O′ does not matter so we reorder our pseudo basis to (αi, Pmi)0≤i<n
(since ki takes all values 0 ≤ i < n). If O is an equation order then as module elements the powers αi

are the standard basis vectors ei and the matrix containing them as columns is the identity.
When O is not a relative extension and so an integral basis exists, we can simplify a little. Since the

primes of F are elements of the integer ring of F each power of P is an element of F . Therefore we can
multiply these into the matrix, first extracting the most negative power to use as a denominator for
the transformation.

We summarize in this algorithm. Notation is as previously.

Algorithm 1 (Computing a Pseudo Basis of a P-Maximal Order). We take as input an equation order O
in a radical field extension F ′/F with coefficient ring C and a prime P ∈ C or P ⊂ C .

(1) Compute v(u), g, k, j as in Theorem 6.
(2) Let T be the transformation matrix of the P-maximal order we are computing
(3) if g ≤ 1 then

(a) if F is a relative extension
(i) set T to the identity matrix, let I be an array of ideals
(ii) for i ∈ [0 . . . n)

Put P ji+v(u)ti in the kith entry of I
(b) if F is not a relative extension

(i) Compute µ = mini{ji + v(u)ti}
(ii) for i ∈ [0 . . . n)

Put P ji+v(u)ti−µ in the kith diagonal entry of T
otherwise

Compute k′, j′ as in Theorem 6.
(a′) if F is a relative extension

(i) set T to the identity matrix, let I be an array of ideals
(ii) for i ∈ [0 . . . n)

Put P−iv(u)/g+j′ l+v(u)til in the kilth entry of I
(b′) if F is not a relative extension

(i′) Compute µ = mini,l{−iv(u)/g + j′l + v(u)til}
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(ii′) for i ∈ [0 . . . g), l ∈ [0 . . . n/g)
Put P−iv(u)/g+j′ l+v(u)til−µ in the kilth diagonal entry of T

(4) If F is a number field and P is a critical prime then handle as in Section 4.

We now analyse the complexity of the above algorithm. There are n powers P ji+v(u)ti or P ji+v(u)ti−µ

to compute where 0 ≥ ji + v(u)ti ≥ −v(u) so −v(u) ≤ µ ≤ 0 (and similarly for g > 1) so the
powers we compute have exponents between 0 and −v(u) or −µ which is at worst v(u). Therefore
the complexity is O(n log(v(u)) + log(v(u))) since computing v(u) has complexity O(log(v(u))).

3.1. Proof of P-maximality

Theorem 10. The order with pseudo basis computed using Algorithm 1 is a P-maximal order of O.

Proof. Let R be the order of F ′/F with pseudo basis

(ωi, ai)i = (αki , P (v(u)ti+ji))0≤i<n

if P is totally ramified or unramified or

(ωil, ail)il = (αkil , P−iv(u)/g+jl+v(u)til)0≤i<g,0≤l<n/g

otherwise.
To prove that R is the P-maximal order of the equation orderOweneed to prove that asZF modules

R/O is P-primary and that R is maximal with these properties.

R/O is P-primary When F ′/F is not a relative extension, we test whether R/O is P-primary by
considering the determinant of the inverse of the transformationmatrix. The transformation
matrix is a diagonal matrix containing non-positive powers of P , therefore the inverse of the
transformation matrix is a diagonal matrix containing non-negative powers of P . Therefore
the determinant is a non-negative power of P .

When F ′/F is a relative extension, we consider the principal ideal generated by the
determinant of the inverse of the transformation matrix divided by the coefficient ideals,
ai. In this case the transformation matrix is the identity, so the principal ideal generated by
the determinant of the inverse is 1ZF . Dividing this by non-positive powers of P gives an
ideal which is a non-negative power of P .

Therefore R/O is P-primary.
Maximality at P We take the elements from our (local) P-integral power basis in Theorem 6 and

prove that they are in the localization of R at P . The localization of R at P is RP∩R, fractions of
elements in R with no P in the denominator. It is contained in the integral closure O′

P .
Basis {bi} = {(αkπ j)i}

(αkπ j)i = αkiαtinπ j

= αkiutiπ j where u = πv(u)u′

= ωiu′tiπv(u)ti+j

= u′ti r where r ∈ R since πv(u)ti+j
∈ ai.

Since vP(u′) = 0, vP(u′ti) = 0 also, so there is no P in the denominator of (αkπ j)i.
Therefore (αkπ j)i is in the localization of R at P .

Basis {bil} = {(αn/gπ−v(u)/g)i(αkπ j)l}

(αn/gπ−v(u)/g)i(αkπ j)l = αin/g+klπ−iv(u)/g+jl

= αkilαtilnπ−iv(u)/g+jl

= αkilutilπ−iv(u)/g+jl

= ωilu′tilπ−iv(u)/g+jl+v(u)til

= u′til r where r ∈ R since π−iv(u)/g+jl+v(u)til ∈ ail
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Since vP(u′) = 0, vP(u′til) = 0 also, so there is no P in the denominator of
(αn/gπ−v(u)/g)i(αkπ j)l. Therefore (αn/gπ−v(u)/g)i(αkπ j)l is in the localization of R at P .
The basis {(αkπ j)i} or {(αn/gπ−v(u)/g)i(αkπ j)l} is an integral basis of F ′ at P , that is, it

is a basis for the integral closure O′

P . Therefore the integral closure O′

P is contained in the
localization of R at P . Since also the localization of R at P is contained in the integral closure
O′

P the localization of R at P is the integral closureO′

P . Thereforewe have that v(disc(RP∩R)) =

v(disc(O′

P)). But by Pohst and Zassenhaus (1989) p292 (invariance under localization) this
means that vP(disc(R)) = vP(disc(ZF ′)) since O′

P is the localization of ZF ′ at P . Therefore R is
P-maximal. �

3.2. The maximal order

Here we summarize the algorithmwe use to compute a maximal order of a radical extension from
the P-maximal order computed using Algorithm 1.

Algorithm 2 (Computing Maximal Orders of Radical Extensions). We take as input an order O in a
radical extension F ′/F .
(1) Factorize the discriminant of O.
(2) If F ′/F is a relative extension then

(a) For each prime P in the factorization of the discriminant compute the array of ideals IP as in
Algorithm 1 Step 3(a) and 3(a′).

(b) For i ∈ [0 . . . n) Take the GCD of all the ith entries of the IP arrays and collect the results in the
array of ideals G.

(c) Construct the orderM with transformation pseudo matrix [G, In×n].
(d) If O is not an equation order then set M = M + O since there may have been primes O was

already P-maximal at which do not appear in its discriminant.
(e) If there are critical primes in the factorization of the discriminant compute the P-maximal

order of the equation order of O using another algorithm (see Section 4) and add into M for
each critical prime P .

Otherwise
(a′) Compute the sum M of O and all the P-maximal orders of O (computed using Algorithm 1 if

P is non-critical) for each prime P in the factorization of the discriminant. If P is critical then
apply another algorithm (see Section 4).

(3) M is the maximal order of O

4. Critical primes

We note a limitation of our algorithm for number fields only. Since critical primes do not occur in
function fields our algorithm is complete for function fields.

Definition 11. Let P be a prime of a number field F and let F ′ be an extension of F . If the minimum of
P or the absolute minimum of P divides the degree of F ′/F then P is a critical prime for F ′/F .

Algorithm 1 does not compute a P-maximal order at critical primes which are not totally ramified.
At critical primes vP(n) ≠ 0 which upsets our proof of Theorem 6 in case (2), the unramified primes
and therefore also case (3) which uses the unramified case. The order it does compute may not be big
enough so the Round 2 was called on the result which became very expensive in some examples. This
only applies to equation orders which are not maximal since if the equation order is maximal this can
be determined using the Dedekind test (Cohen, 2000).

In the small number of cases when F = Q, Round 4 can be applied. In the case where F ′ can be
completed we can factorize the defining polynomial of F ′ over the completion of F at P and use the
two-element certificate returned along with the factorization (Pauli, 2001) to form a matrix over the
completion which is mapped back to F and becomes the basis matrix of the P-maximal order. We also
compute the exponents for the powers of P which are the coefficient ideals of the P-maximal order.

For number fields of prime degree there are techniques to compute a (local) P-integral basis when
P is a critical prime (Daberkow, 1995). Such techniques could be extended to fields whose degree is
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the product of 2 primes, however they involve a congruence that is difficult and so far time consuming
to solve so we have not done any further work in this direction.

5. Other uses of the algorithm

There are some computations other than (P-)maximal orders of radical extensions which we
hoped could benefit from the use of Algorithm 2. We identified or constructed Kummer extensions in
these computations, computed a pseudo basis for the maximal order in that Kummer extension then
mapped that maximal order basis back to the original. This was found to be very advantageous for
computing maximal orders of class fields.

5.1. Dual and intersection

Let E be an equation order of the field extension F ′/F of degree n. Let E# denote the dual of E with
respect to the trace and K be a radical extension containing F ′. Once we have a maximal order for K
we need to intersect that maximal order with F ′ to gain a maximal order of F ′ since K is larger than F ′.
To do this we compute the dual of the equation order of the original field where the dual is defined as

E#
= {x ∈ F ′

|Tr(xE) ∈ ZF }.

For all x ∈ ZF ′ we have xe ∈ ZF ′ for all e ∈ E so x ∈ E# and ZF ′ ⊆ E#.
Note that this holds for all orders O of F ′ but our interest is in equation orders.
In parallel to Cohen (2000) Definition 2.3.16 and Proposition 2.3.18 and more generally we have

Proposition 12. Let (ωi, ai)i be a pseudo basis of an order O where ωi ∈ O and ai are fractional ideals of
the coefficient ring of O which is maximal. If T = TrL/K (ωiωj), the pseudo matrix [T−1, a−1

i ] represents a
pseudo basis of O#.

The proof follows similarly to Cohen’s proof of Proposition 2.3.18 in Cohen (2000).
We do not construct the order E# as it is more efficient to work with the pseudo basis only. To

compute the intersection of the maximal order of K with E#, we find the basis of the maximal order
of K with respect to the coefficient ring of E. We map the pseudo basis of E# into K and express both
bases as pseudo matrices with respect to the coefficient ring of E. We intersect these two bases as
pseudo matrices and create the maximal order of F ′ as a transformation of E.

5.2. A Kummer approach to radical extensions

We began by following a similar approach to Daberkow (1995), Section 4.3. For a radical extension
F ′/F of degree n we computed a cyclotomic extension Fc/F which contained the nth roots of unity
and then extended this by the defining polynomial of F ′/F to gain a Kummer extension K/Fc . After
computing themaximal order of K using Algorithm 2we intersected this with the dual of the equation
order of F ′ to gain the maximal order of F ′/F .

Unfortunately this was quite expensive for some examples. However, Stichtenoth (1993) Remark
III.7.5 notes that he does not use the presence of the roots of unity in the coefficient field. So wewrote
Theorem 6 and Algorithms 1 and 2 for radical extensions rather than Kummer extensions.

It turns out that the algorithm following Daberkow (1995) can be faster than Round 2 for some
examples requiring only small degree cyclotomic extensions but Algorithm 2 is faster still. For a
comparison of timings see Section 7.4.

5.3. Use of Kummer algorithm to compute maximal orders of class fields

A similar approach can be taken to computemaximal orders of class fields. Herewe can decompose
the field into a compositumof cyclic fields Ci/k of prime power degree. A generatorβ inside a Kummer
extension can be found for each Ci so there is known a Kummer extension Ki = k(ζpr )(β) and some
α ∈ Ki such that Ci = k(α). We do similar to as we did originally in the radical case above—compute
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the maximal order of the Kummer extension Ki then intersect this with the dual of the class field to
gain a maximal order, see Section 5.1.

Algorithm 3 (Maximal Orders of Class Fields Using Kummer Extensions). We take as input an abelian
field A. For each cyclic field component C we do

(1) Get the associated Kummer extension K of C .
(2) If C is a Kummer extension then compute the maximal order of C using Algorithm 2.
(3) Otherwise create a Kummer extension Ka isomorphic to K but defined as an extension of the

coefficient ring of K represented as an absolute extension.
(4) Compute the maximal order of Ka using Algorithm 2.
(5) Find a basis of the maximal order of Ka with respect to the coefficient ring of K . This is a basis for

the maximal order of K .
(6) Find a dual basis for (the equation order of) C .
(7) Take the intersection of the bases in (5) and (6) and construct the (mostly) maximal orderM of C

using it.
(8) If there are critical primes which are not totally ramified in the discriminant of K then we do not

handle them in Algorithm 2 soM is notmaximal andwe handle all the critical primes as discussed
in Section 4 to get the maximal order of C .

The maximal orders of the components C are then combined together (algorithm by Dr. Claus
Fieker). Since it is easy to compute the discriminant of A from the class field theoretic input it is easy
to determine whether this order is maximal and if it is not to compute its maximal order using the
Discriminant algorithm (Buchmann and Lenstra, 1994).

6. Examples

We show calculations for a few simple examples. The first example has one ramified and one
unramified prime.

Example 1. Consider K/Q given by K = Q[x]/⟨x2 + 11⟩, u = 11. There are 2 primes dividing the
discriminant of K . The prime 2 is critical and does not ramify in K , the prime 11 ramifies in K . We
have vu = 0 at 2 and vu = 1 at 11. At the prime 2 we have g = 0, k = 1, j = 0. At the prime
11 we have g = 1, k = −1, j = 1. So we have a local 2-integral basis {αi

}i=0,1 and a local 11-
integral basis {(α−111)i}i=0,1 where α2

= 11. We compute the pseudo basis ({1, α}, {1, 1}) at 2 using
k0 = 0, t0 = 0, k1 = 1, t1 = 0 and ({1, α}, {1, 111−1

}) at 11 using k0 = 0, t0 = 0, k1 = 1, t1 = −1.
So as far as we can compute {αi

}i is an integral basis for K . This is unfortunately not the case since 2
is a critical prime and a 2-maximal order can be computed using the Round 4 algorithm, but at least
we have a basis for the 11-maximal order.

We give an example of a function fieldwhich is a Kummer extension. This example contains primes
which are neither totally ramified nor unramified.

Example 2. Consider F/Q(ζ8)(t) given by F = Q(ζ8)(t)[x]/⟨x8 + 3t4⟩. There is 1 prime dividing each
of the finite and the infinite discriminants. Both primes, t and 1/t , have vu = 4 and also g = 4.
So we have a local t integral basis {(α2t−1)i(α−1t)l}0≤i<4,0≤l<2 where α8

= −3t4 and a local 1/t
integral basis {(γ 2(1/t)−1)i(γ −11/t)l}0≤i<4,0≤l<2 where γ 8

= −3/t4. We compute the pseudo basis

({1, α7, α2, α, α4, α3, α6, α5
}, {t0, t−3, t−1, t0, t−2, t−1, t−3, t−2

})

at t and

({1, γ 7, γ 2, γ , γ 4, γ 3, γ 6, γ 5
},

{(1/t)0, (1/t)−3, (1/t)−1, (1/t)0, (1/t)−2, (1/t)−1, (1/t)−3, (1/t)−2
})

at 1/t . At t we form the matrix with diagonal {1, 1, t−1, t−1, t−2, t−2, t−3, t−3
} which wemultiply by

(and pair with) the denominator t3 to gain the transformation matrix of the (t) maximal order of F as
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a transformation of the finite equation order of F having basis {αi
} over a maximal coefficient ring. At

1/t we form the matrix with diagonal

{1, 1, (1/t)−1, (1/t)−1, (1/t)−2, (1/t)−2, (1/t)−3, (1/t)−3
}

which we multiply by (and pair with) the denominator (1/t)3 to gain the transformation matrix of
the (1/t) maximal order of F as a transformation of the infinite equation order having basis {γ i

}.
Note that the calculations here are identical for each prime since they share the same value of vu

and the rest is substitution of primitive elements and primes.

The next example is represented as a relative extension. It contains 2 primes which are ramified
and 5 which are partially ramified.

Example 3. Consider F ′/F(t) given by F = F7(t)[x]/⟨x3 + x + (t + 1)/t2⟩, F ′
= F [x]/⟨x6 + (t +

1)(t + 2)3/t⟩. There are 5 primes dividing the finite discriminant and 2 primes dividing the infinite
discriminant. These primes are ideals of either the finite maximal order of F or the infinite maximal
order of F . There is 1 prime above t and 2 primes above each of t + 1 and t + 2, and we shall call these
P0, P11, P12, P21 and P22 respectively. There are 2 primes above 1/t which shall call P1i and P2i—we
consider these as infinite primes. We have vu0 = 15, vu1 = 1, vu2 = 3 and vui = 45 (the valuation
of u is the same for both primes lying over t + 1, t + 2 and 1/t).

Let α be such that α6
+ t5(t + 1)(t + 2)3 = 0, γ such that γ 6

+ (t + 1)(t + 2)3/t49 = 0 and let πr

be a uniformizing element for Pr . We compute a local P0-integral basis {(α2π−5
0 )i(απ−2

0 )l}0≤i<3,0≤l<2,
a local P11 integral basis {αi

}, a local P21 integral basis {(α2π−1
21 )iαl

}0≤i<3,0≤l<2 and a local P1i-integral
basis {(γ 2π−15

1i )i(γ π−7
1i )l}0≤i<3,0≤l<2. We note that the P12-integral basis differs to the P11-integral

basis only in the uniformizer, the P22-integral basis differs to the P22-integral basis only in the
uniformizer and the P2i-integral basis differs to the P1i-integral basis only in the uniformizer because
of their common values of vu.

We compute the pseudo bases

({1, α, α2, α3, α4, α5
}, {1, P−2

0 , P−5
0 , P−7

0 , P−10
0 , P−12

0 }) at P0,

({αi
}0≤i<6, {1}0≤i<6) at P11 and P12,

({1, α, α2, α3, α4, α5
}, {1, 1, P−1

2 , P−1
2 , P−2

2 , P−2
2 }) at P21 and P22

and

({1, γ , γ 2, γ 3, γ 4, γ 5
}, {1, P−7

i , P−15
i , P−22

i , P−30
i , P−37

i }) at P1i and P2i

where we use the short hand P1 to refer to either P11 or P12, P2 to refer to either P21 or P22 and Pi to
refer to either P1i and P2i. Since F ′/F is a relative representation we set the transformation matrices
to the identity. The coefficient ideals in the pseudo matrix for P0 are {1, P−2

0 , P−5
0 , P−7

0 , P−10
0 , P−14

0 },
for P11 and P12 are {1}0≤i<6, for P21 and P22 are {1, 1, P−1

2 , P−1
2 , P−2

2 , P−2
2 } and for P1i and P2i are

{1, P−7
i , P−15

i , P−22
i , P−30

i , P−37
i }.

7. Results

We give timings showing that Algorithms 2 and 3 are faster than previous algorithms for a range of
fields. Note that the Round 2 algorithm involves randomness so timings for this algorithmmay differ
depending on seed.

Timings are given for an Intel(R) Core(TM)2 ExtremeCPUX9650 3GHz (4GBRAM)machine running
Magma V2.17-12 under Linux.

7.1. Maximal orders of number fields

Computing maximal orders of degree n Kummer extensions of the cyclotomic field of order n
showed that Algorithm 2 could be 10 times as fast even for some small examples. A comparison of
timings is given in Table 1.
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Table 1
Maximal order computation timings for Kummer extensions of
cyclotomic fields.

Q(ζn)/⟨xn − a⟩ Algorithm 2 Round 2 or 4 Algorithm 2 is

x3 − 54 0.01 s 0.02 s 2 times faster
x6 − 75 0.07 s 0.11 s 1.5 times faster
x9 − 24 0.42 s 4.26 s 10 times faster
x12 − 57 0.35 s 3.21 s 9 times faster

Table 2
Maximal order computation timings for Kummer extensions of function fields.

Field Algorithm 2 Round 2 Algorithm 2 is

Q(ζ8)(t)[x]/⟨x8 − 3t4⟩ (finite) 0.00 s 0.04 s
Q(ζ8)(t)[x]/⟨x8 − 3t4⟩ (infinite) 0.01 s 0.09 s 9 times faster
Q(ζ20)(t)[x]/⟨x20 − 7t11⟩ (finite) 0.02 s 1.21 60 times faster
Q(ζ20)(t)[x]/⟨x20 − 7t11⟩ (infinite) 0.02 s 3.59 179 times faster
Q(t)(ζ7)[x]/⟨x7 + tζ7⟩ (finite) 0.00 s 0.06 s
Q(t)(ζ7)[x]/⟨x7 + tζ7⟩ (infinite) 0.01 s 163.56 s 16 000 times faster

Table 3
Maximal order computation timings for Kummer extensions
of function fields occurring in abelian extensions.

Algorithm Maximum time Average time

Algorithm 2 (Finite) 2.38 s 0.696s
Round 2 (Finite) 211.45 s 56.54 s

Algorithm 2 (Infinite) 5.33 s 0.167s
Round 2 (Infinite) 117.74 s 4.855 s

7.2. Maximal orders of function fields

We give the timings from some simple examples in Table 2.
We ran a batch of maximal order computations for function fields related to abelian extensions.

Let F = F9(t)[x]/⟨x3 + x + 1/t + 1/t2⟩. We form a divisor D by adding together some places of F of
degree 2, compute its ray class group R and form the quotientQ of R by 8R. We compute the subgroups
of Q and compute an abelian extension for D and each subgroup. Let F ′

i be the extension of F defined
by the defining polynomial of the ith abelian extension (of degree 8). There were 448 fields F ′

i . Some
timings for the computations of the finite and infinite maximal orders of F ′

i are given in Table 3.
We also ran Algorithm 2 on the Kummer extensions given as examples in Fraatz (2005) Section

5.1. In Table 4 we give the averages of times from our implementation and that of Fraatz (2005) for
comparison. Fraatz (2005) divided his Kummer extension examples into 3 groups, we compute an
average for each of those groups. The first group of examples are of the form F ′

= F [y]/⟨yn − u⟩
where F = Fq(t)[x]/⟨x5 + 4x4 + t2x3 + 2x2 + t5x + t + 1⟩, ρ is a primitive element of F , q is
a power of 5 and u =

t11+4t10+t8+4t7+t5+4t4+t2+4t+1
t4+4t3+t+4

ρ4
+

1
t2+3

ρ + t2. The second group are of the
form F ′

= F [y]/⟨yn − u⟩ where F = Fq(t)[x]/⟨x2 + 2x + t3 + t + 1⟩, ρ is a primitive element
of F , q is a power of 3 and u = 1/t2ρ + t2. The third group are of the form F ′

= F [y]/⟨yn − u⟩
where F = Fq(t)[x]/⟨x3 − (t + 1)x2 + 2tx − t5⟩, ρ is a primitive element of F , q is a power of 3 and
u = (t3 +2)ρ2

+ (t2 +1)ρ +1. Fraatz (2005) gave timings for finite maximal order computations for
the first group of examples and timings for infinite maximal order computations for the third group
of examples. We will do likewise. As in Fraatz (2005) we consider the finite primes as those which lie
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Table 4
Comparison of average times for examples from Fraatz (2005).

Examples n Algorithm 2 Round 2 Fraatz (2005)

1–6 11–24 1.52 s 737.06 s 117.89 s
7–14 28–160 236.64 s 188309 s (e.g. 7–11 only) 1948.9 s (805 s)
15–20 5–29 0.308 s 185.79s 5.49 s

Table 5
Comparison of average timings of maximal order computations for abelian
fields.

Degree Algorithm 3 Round 2 Difference

8 24.615 s 33.888 s 1.3 times faster
9 1.34 s 133.37 s (27 s) 99 (20) times faster

11 7 s 573.839 s (411.66 s) 81 (58) times faster
16 25.98 s 3964.19 s (2048.59 s) 152 (78) times faster

Table 6
Comparison of timings for maximal order computations of radical extensions.

Extension Algorithm 2 Round 2 Similar to Daberkow (1995)

Q(t)(
√

−t)[x]/⟨x12 +
√

−t⟩ (finite) 0.00 s 0.1 s 0.03 s
Q(t)(

√
−t)[x]/⟨x12 +

√
−t⟩ (infinite) 0.03 s 11.4 s 0.78 s

Q(t)(
√

−t)[x]/⟨x13 +
√

−t⟩ (finite) 0.01 s 0.13 s 564.42
Q(t)(

√
−t)[x]/⟨x13 +

√
−t⟩ (infinite) 0.04 s 15.88 s 2461.82 s

F101(t)(
√

−t)[x]/⟨x13 +
√

−t⟩ (finite) 0.00 s 0.00 s 0.1 s
F101(t)(

√
−t)[x]/⟨x13 +

√
−t⟩ (infinite) 0.03 s 14.34 s 1.73 s

above polynomials in t and the infinite primes as thosewhich lie above 1/t . Sincewe cannot reproduce
or better the timings given in Fraatz (2005) for group 2we give an average of the times given in Fraatz
(2005) in brackets.

7.3. Maximal orders of abelian fields

Let F = Q[x]/⟨x2 − 2⟩. We compute the ray class group R of a divisor in F and take the quotient
Q of R by nR where n will be the degree of the resulting number fields. For some subgroups of Q we
compute an abelian extension A and compute the maximal order of A using both Algorithm 3 and the
default Round 2 algorithm. Some average times are given in Table 5.

Therewas 1 degree 9 examplewhich took over 1000 s, 1 degree 11 examplewhich took over 2000 s
and 1 degree 16 examplewhich took over 100000 s using the Round 2 orDiscriminant (Buchmann and
Lenstra, 1994) algorithms. Removing these times from the average computations resulted in averages
of 27 s, 411.66 s and 2048.59 s (respectively) for the rest.

In Fieker (2006) Section 3.4 there is a genus computation which took almost 9000 s. This
computation takes less than 0.1 s using the techniques described in this paper.

7.4. Maximal orders of radical extensions

We compare times of implementations of Algorithm 2, Round 2 and the approach similar
to Daberkow (1995) for radical extensions in Tables 6 and 7, as much as practical.

In Table 7 we use extensions of F101(t)[y]/⟨y3 + y2 + y+ t⟩ of a range of degrees and give average
times for 10 random radical extensions of each degree whose defining polynomials are of the form
xn −

3
i=1 p

ei
i , where pi is a random prime polynomial and ei is a random integer in the range [1 . . . 5]

randomly multiplied by either 1 or 2.
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Table 7
Comparison of average timings for maximal order computations of radical
extensions.

Degree Algorithm 2 Round 2 Similar to Daberkow (1995)

11 (finite) 0.125 s 12.77 s 148.45 s
11 (infinite) 0.029 s 11.44 s 1305.34 s
12 (finite) 0.074 s 19.53 s 0.291 s
12 (infinite) 0.035 s 28.32 s 0.557 s
13 (finite) 0.152 s 24.8 s 33.31 s
13 (infinite) 0.042 s 23.39 s 27.93 s
14 (finite) 0.082 s 34.85 s 9.57 s
14 (infinite) 0.048 s 36.53 s 25.12 s
15 (finite) 0.123 s 40.5 s 0.679 s
15 (infinite) 0.05 s 52.53 s 0.733 s

19 (finite) 0.384 s 115.538 s 221.02 s
19 (infinite) 0.1 s 203.455 s 771.646 s
21 (finite) 0.35 s 183.28 s 92 s
21 (infinite) 0.099 s 349.21 52 s
22 (finite) 0.157 s 237.6 s 253.64 s
22 (infinite) 0.14 s 439.38 s 3176.34 s
23 (finite) 0.387 s 275.149 s 406.5 s
23 (infinite) 0.148 s 530.516 s 6569 s

27 (finite) 0.951 s 614.88 s >2440 s
27 (infinite) 0.179 s 1303.3 s >52825 s
28 (finite) 0.255 s 739.9 s 56 s
28 (infinite) 0.271 s 1759.23 s 72 s
29 (finite) 0.643 s 835.2 s >7467 s
29 (infinite) 0.248 s 2083 s >112062 s
30 (finite) 0.188 s 1013.4 s 2.55 s
30 (infinite) 0.22 s 1957 s 6.86 s
31 (finite) 0.703 s 1130.83 s 91.6 s
31 (infinite) 0.571 s 2245.44 s 38.3 s
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