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We establish that for n53 and p > 1; the elliptic equation Du þ KðxÞup ¼ 0 in Rn

possesses separated positive entire solutions of infinite multiplicity, provided that a

locally Hölder continuous function K50 in Rn =f0g; satisfies KðxÞ ¼ OðjxjsÞ at x ¼ 0

for some s > �2; and KðxÞ ¼ cjxj�2 þ Oðjxj�n½log jxj
qÞ near 1 for some constants

c > 0 and q > 0: In the radial case KðxÞ ¼ jxjl

1þjxjt with l > �2 and t50; or KðxÞ ¼

jxjl�2

ð1þjxj2Þl=2
with l > 0; we investigate separation phenomena of positive radial solutions,

and show that if n and p are large enough, the equation possesses a positive radial

solution with initial value a at 0 for each a > 0 and a unique positive radial singular

solution among which any two solutions do not intersect. # 2002 Elsevier Science (USA)

Key Words: semilinear elliptic equations; separated positive solutions; infinite

multiplicity; singular solutions.
1. INTRODUCTION

In this paper, we study the elliptic equation

Du þ KðxÞup ¼ 0; ð1:1Þ

where n53; D ¼
Pn

i¼1
@2

@x2
i

is the Laplace operator, p > 1; and K is a locally

Hölder continuous function in Rn=f0g: By an entire solution of (1.1), we
mean a positive weak solution of (1.1) in Rn satisfying (1.1) pointwise in
Rn=f0g:
There have been many works on (1.1) which occurs frequently in

Riemannian geometry and mathematical physics. We refer the interested
readers to [3, 4, 11–13, 17–19] and the references therein.
The fundamental questions are about the multiplicity of positive solutions

and their characteristic properties. The equation shows different frames
according to many cases of K and the exponent p: This paper presents
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sufficient conditions verifying infinite multiplicity of positive solutions, and
explains solutions in terms of separation. In such perspective, we review
related works as follows. It was Ni [17] in 1982 who first studied (1.1)
systematically. In case jKðxÞj4Cð1þ jxjlÞ for some l5� 2; Ni showed that
(1.1) with p > 1 possesses infinitely many positive solutions bounded away
from 0: From his proof of this problem, we emphasize that any two
solutions among them do not intersect (or are separated). In [6], Gui treated
the opposite case K behaving like jxjl at 1 for l > �2; and established
infinite multiplicity of separated positive solutions for (1.1) under the
following conditions:

(K1) K50 is a locally Hölder continuous function in Rn=f0g;

(K2) KðxÞ ¼ OðjxjsÞ at x ¼ 0 for some s > �2;

and an integral condition controlling the deviation of K at 1 from cjxjl for
some c > 0; l > �2 when p5pðn; lÞ; where

pc ¼ pcðn; lÞ ¼
ðn�2Þ2�2ðlþ2ÞðnþlÞþ2ðlþ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþlÞ2�ðn�2Þ2

p
ðn�2Þðn�10�4lÞ if n > 10þ 4l;

1 if n410þ 4l:

8<
:

Moreover, each solution u satisfies the following asymptotic behavior:

lim
jxj!1

jxjmuðxÞ ¼ L;

where m ¼ lþ2
p�1 and

L ¼ Lðn; p; l; cÞ ¼ mðn � 2� mÞ
1

c

� � 1
p�1

: ð1:2Þ

Recently, motivated by a work [2] on infinite multiplicity for the
inhomogeneous equation

Du þ up þ f ¼ 0;

Bae et al. [1] studied again (1.1) with p5pcðn; lÞ; and improved Gui’s result.
In particular, infinite multiplicity of separated positive solutions for (1.1) is
verified when K satisfies (K1), (K2) and the following condition:

KðxÞ ¼ cjxjl þ Oðjxj�d Þ at jxj ¼ 1

for some d > n � l2ðn; p; lÞ � mðp þ 1Þ; where

l2 ¼ l2ðn; p; lÞ ¼
ðn � 2� 2mÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn � 2� 2mÞ2 � 4ðl þ 2Þðn � 2� mÞ

q
2

:
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The quadratic polynomial PðzÞ ¼ z2 � ðn � 2� 2mÞz þ ðl þ 2Þðn � 2� mÞ
has two positive real roots l14l2 if and only if n > 10þ 4l and p5pc: These
two numbers l1; l2 play important roles in describing the asymptotic
behavior at 1 of solutions in case KðxÞ ¼ cjxjl (see [7, 10]).
On the basis of the above-mentioned Ni’s result and the observation,

pcðn; lÞ ! 1 as l ! �2; it is assumed that (1.1) possesses separated positive
solutions of infinite multiplicity when KðxÞ has a similar behavior to cjxj�2

at 1: The first objective of this paper is to study this borderline problem,
and to establish infinite multiplicity for any p > 1: Before stating our result,
we summarize two known facts concerning the case. In [12], Li and
Ni established that if a nonnegative radial function K in Rn; satisfies
KðrÞ ¼ OðrsÞ at r ¼ 0 for some s50; r2KðrÞ ! c > 0 as r ! 1; and

lim sup
r!1

rðlog rÞ2½r2KðrÞ
r5
cp

ðn � 2Þðp � 1Þ
;

then there exists an > 0 such that for each a 2 ð0; an
; (1.1) with 15p5
ðn þ 2þ 2sÞ=ðn � 2Þ has a positive radial solution ua with uað0Þ ¼ a: For the
nonradial case, Gui [5] proved

Theorem A. If C14ð1þ jxjÞ2KðxÞ4C2 for some C25C1 > 0 and KðxÞ ¼
cjxj�2 þ Oðjxj�dÞ at jxj ¼ 1 for some d > 2; then (1.1) with p > 1 possesses

infinitely many separated positive entire solutions with the asymptotic behavior

lim
jxj!1

ðlog jxjÞ1=ðp�1ÞuðxÞ ¼ L; ð1:3Þ

where

L ¼ Lðn; p;�2; cÞ ¼
n � 2

ðp � 1Þc

� � 1
p�1

: ð1:4Þ

In the former, K is radially symmetric while in the latter, K is positive.
Moreover, K has no singularity at the origin in both cases. Without these
conditions on K ; we establish infinite multiplicity for (1.1) through an
analysis on asymptotic behavior near infinity.

Theorem 1.1. Let p > 1: If K satisfies (K1), (K2) and

KðxÞ ¼ cjxj�2 þ Oðjxj�n½log jxj
qÞ; ð1:5Þ

near jxj ¼ 1 for some constants c > 0 and q > 0: Then, (1.1) possesses

infinitely many separated positive entire solutions with the asymptotic behavior

(1.3). In case K is radial, there exist separated positive radial solutions ua

indexed continuously by all small initial data a > 0:
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The question, whether ½log jxj
q in (1.5) can be replaced by the form jxjq

with 05q5n � 2; is not yet answered.
To prove Theorem 1.1, we make use of the particular barrier method

initiated by Gui [5, 6] and modified in [1, 2]. In order to activate this method
efficiently, one needs detailed information on the asymptotic behavior of the
difference of positive solutions to the specific equation (1.1) with KðxÞ ¼
cjxj�2 near 1: The first step is to investigate the asymptotic behavior.
Afterwards, by employing Green’s identity, we construct infinitely many
pairs of super- and sub-solutions of the given equation (1.1). By standard
techniques showing the existence of positive solutions, Theorem 1.1 is
verified.
In case K is radial, we obtain a continuous family of separated positive

radial solutions in proving Theorem 1.1 as a by-product, if initial data are
small enough. The next question is whether these separation phenomena are
valid up to 1:More generally, we study this question under a monotonicity
assumption on KðrÞ: The initial value problem for positive radial solutions is

u00 þ
n � 1

r
u0 þ KðrÞup ¼ 0; uð0Þ ¼ a > 0: ð1:6Þ

This has a unique solution u 2 C2ðð0; eÞÞ \ Cð½0; eÞÞ for e > 0 small under the
following condition:

(K) K is a nonnegative radial function in Cðð0;1ÞÞ with Kc0 andZ
0

rKðrÞ dr51:

(See [18, Propositions 4.1 and 4.2].) We denote the unique solution by uaðrÞ
and call ua a slowly decaying solution if uaðrÞ > 0 on ð0;1Þ and rn�2uaðrÞ !
1 as r ! 1: Note that under (K), rn�2uaðrÞ is increasing as r increases if
ua > 0 on ð0;1Þ: The structure of Type S is as follows:

(1.6) has a slowly decaying solution uaðrÞ for every a > 0:

For this structure, Ni and Yotsutani showed the following in [18,
Theorem 6].

Theorem B. Let p5nþ2þ2l
n�2 with l > �2: If K satisfies (K), KðrÞ ¼ OðrlÞ at

r ¼ 0 and ðr�lKðrÞÞ040;c0 in ð0;1Þ; then for every a > 0; (1.6) has a positive

solution ua on ð0;1Þ and Z 1

0

Kup
ar

n�1 dr ¼ 1:

Moreover, if p > nþ2þ2l
n�2 and ðr�lKðrÞÞ0 � 0; then this still holds.
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For solution structures including various types, we refer the interested
readers to [9, 18, 20, 21]. To specify asymptotic behavior at 1; r�lKðrÞ !
c > 0 as r ! 1; can be added to the assumptions of Theorem B, with the
result that by [10, Theorem 1], each solution ua satisfies

lim
r!1

rmuaðrÞ ¼ Lðn; p; l; cÞ: ð1:7Þ

As the simplest form, the Lane–Emden equation or Emden–Fowler
equation from astrophysics:

Du þ cjxjlup ¼ 0; ð1:8Þ

in Rn; where l > �2; p > nþ2þ2l
n�2 and c > 0; gives an insight into the structure

of Type S. As seen in Theorem B, (1.8) has the structure of Type S. Let va be
a positive radial solution va with vað0Þ ¼ a for each a > 0: Then, va satisfies
(1.7). Furthermore, any two positive radial solutions of (1.8) cannot intersect

each other if and only if p5pcðn; lÞ with l > �2: (See Propositions 3.5 and 3.7
in [19].) Therefore, we expect that if p5pcðn; lÞ; then the structure, under
proper conditions on KðrÞ; is of Type SS:

(1.6) has the structure of Type S, and any two positive solutions are
separated.

There have been several similar studies on separation structure (see
[1, 2, 5–7, 16]). The structure of Type SS is closely related with the stability
of positive solutions, which are translated as positive steady states of
the corresponding parabolic equations. In [7, 8], Gui et al. observed that
the critical exponent p ¼ pcðn; 0Þ is the dividing line of ‘‘instability’’ in
case p5pcðn; 0Þ and ‘‘stability’’ in case p5pcðn; 0Þ in a certain sense.
In a recent paper [16], Liu et al. studied the structure of Type SS and

proved the following

Theorem C. Let p > pcðn; lÞ with l > �2: Suppose that K 2 C1ðð0;1ÞÞ
satisfies

d

dr
ðr�lKðrÞÞ40; r 2 ð0;1Þ

and

lim
r!0

r�lKðrÞ ¼ k0 > 0; lim
r!1

r�lKðrÞ ¼ c > 0:

Then, (1.6) has the structure of Type SS. Moreover, there is a unique singular

solution UðrÞ that for each positive radial solution ua of (1.6), rmuaðrÞ !
Lðn; p; l; cÞ as r ! 1 and rmUðrÞ ! Lðn; p; l; k0Þ as r ! 0;

uaðrÞ5UðrÞ4
Lðn; p; l; 1Þ

½r2KðrÞ

1

p�1

: ð1:9Þ
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The second objective of this paper is to include the case p ¼ pðn; lÞ and to

search for the structure of Type SS when KðxÞ ¼ jxjl

1þjxjt for some l > �2 and

t50; or KðxÞ ¼ jxjl�2

ð1þjxj2Þl=2
for some l > 0: Our result covers these two cases.

Theorem 1.2. Let p5pcðn; lÞ with l > �2: Assume that K satisfies (K)
and r�lKðrÞ is non-increasing in r 2 ð0;1Þ: Then, (1.6) has the structure of

Type SS and possesses a singular solution UðrÞ as the monotone limit of

positive regular solutions uaðrÞ satisfying (1.9).

Importantly, the structure of Type SS is established without the
convergence of r�lKðrÞ to a positive constant as r tends to 1: For example,
the case in which r�lKðrÞ behaves like r�t at1 for some t50; can be solved.
Moreover, (1.9) provides upper bounds of the family {ua} on compact
regions in ð0;1Þ; which lead immediately to the existence of a positive radial
singular solution. Theorem 1.2 can be applied directly to the typical
equation

Du þ
jxjl

1þ jxjt
up ¼ 0 in Rn;

where l > �2 and t50 as follows:

Corollary 1.3. Let l > �2; t50 and p5pcðn; lÞð> nþ2þ2l
n�2 Þ: Then, the

equation

u00 þ
n � 1

r
u0 þ

rl

1þ rt
up ¼ 0; uð0Þ ¼ a > 0; ð1:10Þ

has the structure of Type SS and possesses a unique singular solution UðrÞ that

for every a > 0;

uaðrÞ5UðrÞ4
1þ rt

rlþ2

� � 1
p�1

Lðn; p; l; 1Þ

and

lim
r!0

r
lþ2
p�1UðrÞ ¼ Lðn; p; l; 1Þ:

Moreover,

lim
r!1

r
l�tþ2

p�1 uaðrÞðor UðrÞÞ ¼ Lðn; p; l � t; 1Þ if l � t > �2;

lim
r!1

ðlog rÞ
1

p�1 uaðrÞðor UðrÞÞ ¼ Lðn; p;�2; 1Þ if l � t ¼ �2;
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and at 1;

uaðrÞðor UðrÞÞ � caðor c1Þ �

r2þl�t if � 2 > l � t > �n;

r2�n log r if l � t ¼ �n;

r2�n if l � t5� n;

8><
>:

where limr!1 uaðrÞðor UðrÞÞ ¼ caðor c1Þ > 0: Here, ‘‘f � g at 1’’ means

that there exist two positive constants C1;C2 such that C1g4f4C2g near 1:

Uniqueness part of singular solutions was proved in [16] while the
asymptotic behaviors in Corollary 1.3 can be proved by some results in
[10, 12]. The precise statements to guarantee these two parts in Corollary 1.3
shall be given in Section 3.
In 1986, Batt et al. [3] proposed the equation

Du þ
jxjl�2

ð1þ jxj2Þl=2
up ¼ 0 in R3; ð1:11Þ

where l > 0: This model with l ¼ 2 was formulated in 1930 by Matukuma to
describe the dynamics of globular cluster of stars in R3: Here, u > 0
represents the gravitational potential, R ¼ � 1

4pDu is the density andR
R3 RðxÞ dx is the total mass. Since the globular cluster has the radial
symmetry, positive radial entire solutions are of particular interest. On
Matukuma equation, it is known that if 15p55; then ua is a slowly
decaying solution only for small a > 0; while if p55; the structure is of Type
S. (See Theorems 5 and 6 in [18].) We remark a consequence of Theorem 1.1:
For p > 1 and l > 0; any two positive radial solutions of (1.11) are separated
if initial data are small enough. Applying Theorem 1.2 to (1.11), we establish
the following

Corollary 1.4. Let l > 0 and p5pcðn; l� 2Þð> 1þ 2l
n�2Þ: Then, the

equation

u00 þ
n � 1

r
u0 þ

rl�2

ð1þ r2Þl=2
up ¼ 0; uð0Þ ¼ a > 0; ð1:12Þ

has the structure of Type SS and possesses a unique singular solution UðrÞ that

for every a > 0;

uaðrÞ5UðrÞ4
ð1þ r2Þ

l
2

rl

2
4

3
5

1
p�1

Lðn; p; l� 2; 1Þ;

lim
r!0

r
l

p�1 UðrÞ ¼ Lðn; p; l� 2; 1Þ;
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and

lim
r!1

ðlog rÞ
1

p�1 uaðrÞðor UðrÞÞ ¼ Lðn; p;�2; 1Þ:

We observe that in R3; if 05l51
4
and p5pcð3; l� 2Þ; (1.12) has the

structure of Type SS and moreover, possesses a unique singular solution.
The additional assumption p > 1þ l implies that the mass sum on the unit
ball is finite.
This paper is organized as follows. The asymptotic behavior of positive

radial solutions of (1.1) with KðxÞ ¼ cjxj�2 near 1 is studied in Section 2
and then, we prove Theorem 1.1 and apply multiplicity results to
Riemannian geometry. In Section 3, we prove Theorem 1.2 and make
several remarks.

2. INFINITE MULTIPLICITY

In this section, we consider the case that KðxÞ behaves like jxj�2 at 1:
Before studying the nonradial case, we analyze the radial case in detail.
Then, we proceed similar arguments as in [1, 2, 6] in order to prove infinite
multiplicity for general cases. It will turn out that the asymptotic behavior of
the difference of two positive radial solutions of

Du þ cjxj�2up ¼ 0 ð2:1Þ

near 1 for some c > 0; plays a central role in establishing infinite
multiplicity for (1.1).

2.1. In this subsection, we consider the asymptotic behavior of positive
radial solutions of (2.1). We first recall the following asymptotic behavior
(see [10, Lemma 5.1]).

Lemma 2.1. Let p > 1; c > 0 and u be a positive radial solution of (2.1). If

lim
r!1

ðlog rÞ1=ðp�1ÞuðrÞ ¼ L;

then

uðrÞ ¼
L

ðlog rÞ1=ðp�1Þ
�

pL logðc log rÞ

ðp � 1Þ2ðn � 2Þðlog rÞp=ðp�1Þ
þ o

1

ðlog rÞp=ðp�1Þ

 !
; ð2:2Þ

near 1; where L ¼ Lðn; p;�2; cÞ is given by (1.4).

Another ingredient is that any two positive radial solutions of (2.1) do not
intersect infinitely. To prove this, we need Lemma 4.1 in [2].
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Lemma 2.2. Suppose that W satisfies

W 00 þ FðtÞW 0 þCðtÞW4ðor5Þ 0

in ½T ;þ1Þ; where F > 0 and

CðtÞ41
4
F2ðtÞ þ 1

2
F0ðtÞ:

Then, W does not change sign for t large.

The difference of two positive radial solutions of (2.1) displays the
following asymptotic behavior.

Proposition 2.3. Let p > 1 and v1; v2 be two positive radial solutions of

(2.1). Suppose that

lim
r!1

ðlog rÞ1=ðp�1Þv1ðrÞ ¼ Lðn; p;�2; cÞ ¼ lim
r!1

ðlog rÞ1=ðp�1Þv2ðrÞ: ð2:3Þ

Then,

lim
r!1

ðlog rÞd ½v2ðrÞ � v1ðrÞ
 ¼ 0

for any d > 0:

Proof. Set W ðtÞ :¼ V2ðtÞ � V1ðtÞ; t ¼ log r; where ViðtÞ ¼ viðrÞ; i ¼ 1; 2:
Then, by (2.2)

W ðtÞ ¼ oðt�p=ðp�1ÞÞ atþ1 ð2:4Þ

and thus, Z þ1

W 2ðsÞ ds51: ð2:5Þ

Moreover, W satisfies

Wtt þ ðn � 2ÞWt þ hðtÞW ¼ 0; ð2:6Þ

where

hðtÞ :¼
c

V
p

2
�V

p

1

V2�V1
if V2ðtÞ=V1ðtÞ;

pcV
p�1
1 if V2ðtÞ ¼ V1ðtÞ:

8<
:

Since pc minfV1;V2g
p�14hðtÞ4pc maxfV1;V2g

p�1; we have from (2.3),

lim
t!þ1

thðtÞ ¼
pðn � 2Þ

p � 1
: ð2:7Þ
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By Lemma 2.2, W does not change sign for t large. We may assume that
W ðtÞ > 0 on ½T ;þ1Þ for some T > 0: From (2.6), we have WtðtÞ4
e�ðn�2Þðt�TÞWtðTÞ for t > T : Since viðrÞ goes to 0 as r tends to 1; vi and
Vi are decreasing eventually near 1 and þ1; respectively. Hence,
near þ1;

ht ¼
pcðV2tV

p�1
2 � V1tV

p�1
1 Þ � pcðV2t � V1tÞx

p�1

V2 � V1
40 ð2:8Þ

for some V14x4V2: Multiplying (2.6) by Wt and integrating over ½t; t
 for
t5T large enough that (2.8) holds for t5t; we have

�
1

2
W 2

s þ 1
2

hðsÞW 2ðsÞ
� �t

t
¼
Z t

t
ðn � 2ÞW 2

s ðsÞ �
1

2
hsðsÞW 2ðsÞ

� �
ds;

which combined with (2.4), (2.7) and (2.8) impliesZ þ1

t
W 2

s 51;

Z þ1

t
ð�hsÞW 251: ð2:9Þ

Then,

lim
t!þ1

W 2
t ðtÞ ¼ 0 ð2:10Þ

and

1

2
W 2

t ðtÞ þ
1

2
hðtÞW 2ðtÞ ¼

Z þ1

t
ðn � 2ÞW 2

s ðsÞ �
1

2
hsðsÞW 2ðsÞ

� �
ds: ð2:11Þ

Multiplying (2.6) by W and integrating over ½t;þ1Þ; we obtain from (2.4)
and (2.10),

W ðtÞWtðtÞ þ
n � 2

2
W 2ðtÞ ¼

Z þ1

t
½hðsÞW 2ðsÞ � W 2

s ðsÞ
 ds: ð2:12Þ

Again, multiplying (2.6) by tWt and integrating over ½t;þ1Þ; we observe
that Z þ1

t
sW 2

s 51;

Z þ1

t
ð�shsÞW 251: ð2:13Þ

Moreover, it follows that

lim
t!þ1

tW 2
t ðtÞ ¼ 0 ð2:14Þ

since by (2.4) and (2.7),

lim
t!þ1

thðtÞW 2ðtÞ ¼ 0:
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Then,

1
2
tW 2

t ðtÞ þ
1
2
thðtÞW 2ðtÞ

¼
Z þ1

t
ðn � 2Þs �

1

2

� �
W 2

s ðsÞ ds �
1

2

Z þ1

t
½shsðsÞ þ hðsÞ
W 2ðsÞ ds: ð2:15Þ

Multiplying (2.6) by tW ; integrating over ½t;þ1Þ; and using (2.4), (2.10)
and (2.13), we have

tW ðtÞWtðtÞ �
1

2
W 2ðtÞ þ

n � 2

2
tW 2ðtÞ

¼
Z þ1

t
shðsÞ �

n � 2

2

� �
W 2ðsÞ � sW 2

s ðsÞ
� �

ds: ð2:16Þ

Integrating (2.11) over ½t1;þ1Þ such that for t5t1; W ðtÞ > 0 and htðtÞ40;
and using (2.5), (2.8) and (2.9), we have

1

2

Z þ1

t1
½W 2

t ðtÞ þ hðtÞW 2ðtÞ
 dt

¼
Z þ1

t1

Z þ1

t
ðn � 2ÞW 2

s ðsÞ �
1

2
hsðsÞW 2ðsÞ

� �
ds dt51; ð2:17Þ

which impliesZ þ1

t1

Z þ1

t
W 2

s ðsÞ ds dt51;

Z þ1

t1

Z þ1

t
½�hsðsÞ
W 2 ds dt51: ð2:18Þ

Integrating (2.12) over ½t1;þ1Þ; we have

1

2
W 2ðt1Þ �

n � 2

2

Z þ1

t1
W 2ðtÞ dt

¼
Z þ1

t1

Z þ1

t
½W 2

s ðsÞ � hðsÞW 2ðsÞ
 ds dt; ð2:19Þ

which combined with (2.5) and (2.18) impliesZ þ1

t1

Z þ1

t
hðsÞW 2ðsÞ ds dt51: ð2:20Þ

Integrating (2.15) over ½t1;þ1Þ; we have from (2.5), (2.7), (2.13)
and (2.20),Z þ1

t1

Z þ1

t
sW 2

s ds dt51;

Z þ1

t1

Z þ1

t
½�shsðsÞ
W 2 ds dt51 ð2:21Þ
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and

1

2

Z þ1

t1
½tW 2

t ðtÞ þ thðtÞW 2ðtÞ
 dt

¼
Z þ1

t1

Z þ1

t
ðn � 2Þs �

1

2

� �
W 2

s ðsÞ
�

�
1

2
fshsðsÞ þ hðsÞgW 2ðsÞ

�
ds dt: ð2:22Þ

Integrating (2.16) over ½t1; t
; we have

t
2

W 2ðtÞ
h it

t1
þ
Z t

t1

n � 2

2
t� 1

� �
W 2ðtÞ dt

¼
Z t

t1

Z þ1

t
shðsÞ �

n � 2

2

� �
W 2ðsÞ � sW 2

s ðsÞ
� �

ds dt:

By (2.4), (2.7) and (2.21),

t1
2

W 2ðt1Þ �
Z þ1

t1

n � 2

2
t� 1

� �
W 2ðtÞ dt

¼
Z þ1

t1

Z þ1

t
sW 2

s ðsÞ � shðsÞ �
n � 2

2

� �
W 2ðsÞ

� �
ds dt; ð2:23Þ

which implies Z þ1

t1

Z þ1

t
W 2ðsÞ ds dt51: ð2:24Þ

Indeed,Z þ1

t1

Z þ1

t
shðsÞ �

n � 2

2

� �
W 2ðsÞ ds dt�

Z þ1

t1

n � 2

2
t� 1

� �
W 2ðtÞ dt

¼
Z þ1

t1
shðsÞ �

n � 2

2

� �
W 2ðsÞðs � t1Þ ds �

Z þ1

t1

n � 2

2
s � 1

� �
W 2ðsÞ ds

¼
Z þ1

t1
fshðsÞ � n þ 2gsW 2ðsÞ dsþ

Z þ1

t1
1�t1 shðsÞ�

n � 2

2

� �� �
W 2ðsÞ ds

and shðsÞ � n þ 2 converges to n�2
p�1 as s ! þ1: Then, (2.24) follows. Again,

it follows from (2.17), (2.19), (2.22) and (2.23) thatZ þ1

t2

Z þ1

t1

Z þ1

t
sW 2

s ðsÞ ds dt dt151
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and Z þ1

t2

Z þ1

t1

Z þ1

t
W 2ðsÞ ds dt dt151:

Iterating the above process, we obtainZ þ1

td

Z þ1

td�1

� � �
Z þ1

t
W 2

s ðsÞ ds dt dt1 � � � dtd�151 ð2:25Þ

and Z þ1

td

Z þ1

td�1

� � �
Z þ1

t
W 2ðsÞ ds dt dt1 � � � dtd�151

for any positive integer d : Note that by Fubini’s Theorem,Z þ1

t1

Z þ1

t
W 2

s ðsÞ ds dt¼
Z þ1

t1

Z s

t1
W 2

s ðsÞ dt ds ¼
Z þ1

t1
W 2

s ðsÞðs�t1Þ ds51:

Hence, applying this modification repeatedly to (2.25), we have the
equivalent form Z þ1

td

sdW 2
s ds51:

Then, for t large,

jW ðtÞj ¼
Z þ1

t
WsðsÞ ds

����
���� ¼

Z þ1

t
s�dðsdWsÞ ds

����
����

4
Z þ1

t
s�2d ds

� �1=2 Z þ1

t
s2dW 2

s ds

� �1=2

¼
Cd

½ð2d � 1Þt2d�1
1=2
;

where

Cd ¼
Z þ1

t
s2dW 2

s ds

� �1=2
51:

That is,

t2ðd�1ÞjW ðtÞj24
C2

d

ð2d � 1Þt
:
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Therefore, we conclude that

lim
t!þ1

td�1W ðtÞ ¼ 0

for any integer d51; which completes the proof of Proposition 2.3. ]

The assumptions on K at 1 in Theorem 1.1 comes from Proposition 2.3,
which is one of the major elements to prove Theorem 1.1.

2.2. In order to prove infinite multiplicity for general cases, we first
consider positive radial solutions of (1.6) with a radial function K : In
particular, KðrÞ satisfies the following condition:

(K3)
R1
1 jKðrÞ � cr�2jrn�1ðlog rÞ�a dr51 for some c > 0; a > 0:

For our convenience, we fix a family f %uuag of separated positive radial
solutions of (1.6) indexed by a 2 ð0; an
 for some an > 0 such that %uuað0Þ ¼
a; %uua is monotonically increasing on ð0; an
 and

lim
r!1

ðlog rÞ1=ðp�1Þ %uuaðrÞ ¼ Lðn; p;�2; cÞ; ð2:26Þ

where K is a smooth positive radial function %KK satisfying

%KKðrÞ ¼
1

1þ r2
for 04r41

and

%KKðrÞ ¼
c

r2
for r52:

(See [5, Theorem 5.1 and Lemmas 5.3, 5.6] for the existence.) It follows from
Proposition 2.3 that for each a 2 ð0; anÞ;

FaðrÞ :¼ %uuanðrÞ � %uuaðrÞ ¼ oð½log r
�dÞ as r ! 1 ð2:27Þ

for any d > 0:
To prove the existence of separated positive radial solutions, which are

indexed continuously by initial data, we need the following

Lemma 2.4. Assume that Kc0 holds (K). Suppose that there exist three

solutions ua; ub; ug of (1.6) such that 05ua5ub5ug in ½0; %RRÞ for some %RR 2
ð0;1
: Then, for each a5d5b; (1.6) possesses a positive radial solution ud in

B %RR satisfying

05uaðrÞ5udðrÞ5ubðrÞ

for 04r5 %RR:
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(See Lemma 2.5 in [1].) Now, we prove infinite multiplicity in the radial
case.

Proposition 2.5. Let p > 1: Assume that K satisfies (K) and (K3) for

some c > 0; a > 0: Then, there exists a positive constant gn ¼ gnðp;KÞ such that

for each g 2 ð0; gn
; (1.6) possesses a positive radial solution ug with ugð0Þ ¼ g
with the asymptotic behavior

lim
r!1

ðlog rÞ1=ðp�1ÞugðrÞ ¼ Lðn; p;�2; cÞ ð2:28Þ

and no two of them can intersect.

Proof. For each 05a5an; Fa > 0 satisfies (2.27) for any d > 0; and

DFa ¼ � %KKðð %uuanÞ
p � %uup

aÞ4� p %KK %uup�1
a Fa:

For all g > 0; there exists a unique positive solution ug of (1.6) locally.
First, we claim that for given 05b5an; there exists 05%gg5b such that
for every 05g4%gg; ug5 %uub in BðRgÞ whenever ug > 0 in BðRgÞ for
some Rg > 0:
Suppose that for any 05%gg5b; there exists 05*gg5%gg such that u*gg > 0 in

BðR*ggÞ; w*ggðrÞ :¼ %uubðrÞ � u*ggðrÞ > 0 on ½0;R*ggÞ but w*ggðR*ggÞ ¼ 0 for some R*gg > 0:
Then, w*gg satisfies

Dw*gg ¼ � %KK %uu
p
b þ Ku

p
*gg

in BðR*ggÞ: Fix b5a5an: Applying Green’s identity, we have

04
Z

BðR*ggÞ
ðw*gg DFa � Fa Dw*ggÞ

4
Z

BðR*ggÞ
f�p %KK %uup�1

a w*ggFa þ %KK %uu
p
bFa � Ku

p
*ggFag

4
Z

BðR*ggÞ
f�p %KK %uup�1

a w*ggFa þ p %KK %uu
p�1
b w*ggFa þ ð %KK � KÞup

*ggFag

and

p

Z
BðR*ggÞ

½ %uup�1
a � %uu

p�1
b 
 %KKw*ggFa4

Z
BðR*ggÞ

ð %KK � KÞup
*ggFa:

Since %uub > 0 in Rn and u*gg4*gg on ½0;R*gg
; we may assume that for small *gg > 0;
R*gg > 1 and w*gg51

2
%uubð1Þ in B1: Hence, for small %gg > 0 and thus, for small
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05*gg4%gg; we have

1

2
p %uubð1Þ

Z
Bð1Þ

½ %uup�1
a � %uu

p�1
b 
 %KKFa4

Z
BðR*ggÞ

ð %KK � KÞup
*ggFa ð2:29Þ

4
Z

BðR*ggÞ
ðK � %KKÞ %uu

p
bFa;

where k� ¼ maxð�k; 0Þ: However, this is impossible because from (2.26),

(K3), (2.27) with d > a � p
p�1 ; and the Dominated Convergence Theorem,

the right-hand side of (2.29) goes to 0 as *gg ! 0 while the left-hand side is a
fixed positive constant, which verifies the claim. Therefore, there exists 05
%gg5b such that for all 05g4%gg; 05ug5 %uub in BðRgÞ:
Regarding Rg as the supremum of the set f R > 0 j ug > 0 in BRg; we

observe that Rg ! 1 as g ! 0þ because for 04r5Rg;

ugðrÞ ¼ gþ
Z r

0

u0
g ds

¼ g�
Z r

0

Z s

0

t

s

� �n�1
KðtÞup

gðtÞ dt ds

5g� gp

Z Rg

0

tn�1KðtÞ
Z Rg

t

s1�n ds

� �
dt

5g 1�
gp�1

n � 2

Z Rg

0

tKðtÞ dt

� �
: ð2:30Þ

If lim infg!0þ Rg51; then from (K) and (2.30), ugðRgÞ > 0 for some g > 0
small, which contradicts the definition of Rg: Moreover, it follows
that for given R > 0; there exists 05*gg5%gg such that for 05g5*gg; ug > 0
in BR:
For 05b5an; let Ib be the set of 05g5%ggðbÞ satisfying

p

2

Z
Bð1Þ

½ %uup�1
b � up�1

g 
Fb

1þ jxj2
>

Z
BðRgÞ

ðK � %KKÞþu p�1
g Fb:

Then, Ib*ð0; gbÞ for some gb > 0 since from (2.26), (K3) and (2.27) with
d > a � 1; the right-hand side goes to 0 as g ! 0 by the Dominated
Convergence Theorem while the left-hand side is bounded below a positive
constant which is irrelevant to g when g > 0 is small.
It follows from (2.30) that there exists 05#gg4gb such that for all 05g5#gg;

Rg > 1 and ugðrÞ53
4
g on ½0; 1
:

We now claim that for small 05g5#gg so that ugðrÞ53
4
g for 04r41; there

exists 05Z5g entailing ug > %uuZ in Rn: Suppose that there exists 05#gg15#gg
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such that for each 05Z5#gg1; there exists rZ > 0 satisfying ŵZðrÞ ¼ u#gg1 ðrÞ �
%uuZðrÞ > 0 in ½0; rZÞ and ŵZðrZÞ ¼ 0: From Green’s identity,

04
Z

BðrZÞ
ðŵZ DFb � Fb DŵZÞ

4
Z

BðrZÞ
½�p %KKŵZ %uu

p�1
b Fb þ Ku

p
#gg1

Fb � %KK %uup
ZFb


and

Z
BðrZÞ

p %KKŵZ½ %uu
p�1
b � u

p�1
#gg1


Fb4
Z

BðrZÞ
½p %KKŵZ %uu

p�1
b � %KKðup

#gg1
� %uup

ZÞ
Fb

4
Z

BðrZÞ
ðK � %KKÞþu

p
#gg1

Fb:

Since %uuZ is monotonically decreasing to 0 as Z decreases to 0 and thus
%uuZ ! 0 uniformly on ½0;R
 for any fixed R > 0; we may assume that
rZ > 1 and ŵZðrÞ53

4
#gg1 � %uuZðrÞ51

2
#gg1 in B1 if Z > 0 is small enough. Then,

we have

p

2

Z
Bð1Þ

%KK ½ %uup�1
b � u

p�1
#gg1


Fb4
Z

BðRgÞ
ðK � %KKÞþu

p�1
#gg1

Fb;

which is impossible because #gg1 2 Ib: Therefore, for each 05b5an; there exist
b > g > Z > 0 satisfying %uuZ5ug5 %uub in Rn:
Repeating the above arguments, we find a decreasing sequence fugi

g of
positive solutions of (1.6) such that there exists a positive decreasing
sequence faig going to 0 as i ! 0 with 05ai5an and

%uuan > ugi
> %uuai

> ugiþ1
> 0 in Rn

for each i51: By (2.26), every ugi
has the asymptotic behavior (2.28). On the

other hand, it follows from Lemma 2.4 that for every gj > g > gjþ1; j52; ug

exists globally and ugj
> ug > ugjþ1

in Rn: Therefore, we conclude that there
exists gn > 0 such that for 05g4gn; ug > 0 in Rn and ug is monotonic with
respect to g; which completes the proof. ]

Considering the general case, we assume the following condition:

(K4) The infimum K1ðrÞ and the supremum K2ðrÞ of KðxÞ on
fx ¼ ðx1; x2Þ: jx2j ¼ rg are continuous functions on ð0;1Þ andR
0 rK2ðrÞ dr51:
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A direct application of Proposition 2.5 leads to the following assertion.

Theorem 2.6. Let p > 1 and N53: Assume that K satisfies (K1), (K2),
(K4), and for some constants c > 0 and a > 0;Z 1

1

jKiðrÞ � cr�2jrN�1ðlog rÞ�a dr51; i ¼ 1; 2; ð2:31Þ

where K1ðrÞ :¼ inf jx2 j¼r Kðx1; x2Þ; K2ðrÞ :¼ supjx2 j¼r Kðx1; x2Þ: Then, (1.1)
possesses infinitely many positive entire solutions such that

lim
jx2 j!1

ðlog jx2jÞ
1=ðp�1Þuðx1; x2Þ ¼ LðN; p;�2; cÞ ð2:32Þ

uniformly in x1 2 Rn�N and any two of them do not intersect.

Proof. Applying Proposition 2.5 to K1 and K2; we have positive radial
solution w1;w2 of Dw þ K1w

p ¼ 0 in RN and positive radial solution v1; v2 of
Dv þ K2v

p ¼ 0 in RN satisfying

%uuan > v1 > %uua1 > w1 > %uuZ1 > v2 > %uua2 > w2 in RN ;

where %uua1 ; %uuZ1 ; %uua2 are solutions of (1.6) with K ¼ %KK : Since ṽiðx1; x2Þ :¼
viðjx2jÞ and w̃iðx1; x2Þ :¼ wiðjx2jÞ are super-solutions and sub-solutions of
(1.1) in Rn=f0g; respectively, by the standard super- and sub-solution
method there exist solutions ui of (1.1) in Rn=f0g such that

ṽi5ui5w̃i; i ¼ 1; 2:

Then, each ui is a weak solution of (1.1) in Rn and an entire solution in
C2ðRn=f0gÞ \ CðRnÞ (see [6, 17]). Repeating the above procedure, we
construct infinitely many ordered positive entire solutions entailing the
asymptotic behavior (2.32). ]

From Theorem 2.6, Theorem 1.1 follows immediately as a typical case.
We interpret the result of Theorem 2.6 in the context of Riemannian

geometry. Let ðM ; gÞ be an n-dimensional Riemannian manifold and K

be a given function. The scalar curvature problem is to find a metric g1
on M conformal to g such that the corresponding scalar curvature to
g1 is K : The introduction of u > 0 by g1 ¼ u4=ðn�2Þg; n53; brings out the
equation

4ðn � 1Þ
n � 2

Dgu � ku þ Ku
nþ2
n�2 ¼ 0; ð2:33Þ

where Dg denotes the Laplace–Beltrami operator on M in the g metric and k

is the scalar curvature of ðM; gÞ: If M ¼ Rn and g ¼
Pn

i¼1 dx2
i is the
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standard metric, then (2.33) reduces to

Du þ KðxÞu
nþ2
n�2 ¼ 0 in Rn:

When p ¼ nþ2
n�2 ; Theorem 2.6 is translated as follows:

Theorem 2.7. Let N53: Assume that K holds (K1), (K2), (K4) and

(2.31) for some constants c > 0 and a > 0: Then, there exist infinitely many

Riemannian metrics g1 on Rn with the following properties:

(i) K is the scalar curvature of g1;

(ii) g1 is conformal to the standard metric g on Rn;

(iii) g1 is complete.

3. STRUCTURE OF TYPE SS

In this section, we prove Theorem 1.2. For all a > 0; we consider not only
the existence of slow decaying solutions but also their separation properties.
First, we make an interesting observation.

Proposition 3.1. Let l > �2 and p > nþl
n�2 : Assume that K satisfies (K)

and

lim
r!0

r2KðrÞ ¼ 0: ð3:1Þ

Then, every solution ua of (1.6) with uað0Þ ¼ a > 0 remains positive as long as

the relation

r2KðrÞup�1
a ðrÞ5Lp�1 ð3:2Þ

holds from r ¼ 0; where L ¼ Lðn; p; l; 1Þ is given by (1.2).

Proof. Let V ðtÞ :¼ rmuaðrÞ; t ¼ log r: Then, V satisfies

Vtt þ aVt � Lp�1V þ kðtÞV p ¼ 0; ð3:3Þ

where a ¼ n � 2� 2m and kðtÞ :¼ e�ltKðetÞ: It follows from (3.1) that

lim
t!�1

kðtÞV ðtÞp�1 ¼ lim
r!0

r2KðrÞup�1
a ðrÞ ¼ 0

and thus, kV p�15Lp�1 near �1: Suppose that there exists T such that V is
positive and kVp�15Lp�1 on ð�1; TÞ; but V ðTÞ ¼ 0: Then, by (3.3),
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we have

Vtt þ aVt ¼ ðLp�1 � kðtÞVp�1ÞV > 0 on ð�1; TÞ: ð3:4Þ

Multiplying (3.4) by eat and integrating from t to T ; we obtain

eaT VtðTÞ > eatVtðtÞ

¼mraþmuaðrÞ þ raþmþ1u0
aðrÞ

which goes to 0 as r ! 0 since

�rn�1u0
aðrÞ ¼

Z r

0

sn�1KðsÞu p
aðsÞ ds

4aprn�2
Z r

0

sKðsÞ ds

51

and ru0
aðrÞ ! 0 as r ! 0: Hence, we have eaT VtðTÞ > 0; a contradiction. ]

If (3.2) is true on ½0;1Þ; then ua is a positive solution and rmuaðrÞ is strictly
increasing as r increases. In fact, the two conditions that r�lKðrÞ is non-
increasing and p5pcðn; lÞ; guarantee that this relation is satisfied in the
entire space and (1.6) has the structure of Type SS.

Theorem 3.2. Let p5pcðn; lÞ with l > �2: Suppose that KðrÞ satisfies (K)
and r�lKðrÞ is non-increasing. Then, for each 05a51; (1.6) possesses a

slowly decaying solution ua with uað0Þ ¼ a such that rmuaðrÞ is strictly

increasing and (3.2) holds on ½0;1Þ; where L ¼ Lðn; p; l; 1Þ:

Proof. Condition (3.1) follows immediately from (K) and

Z r

0

sKðsÞ ds5
Z r

r=2
s�lKðsÞs1þl ds5

1

2þ l
1�

1

22þl

� �
r2KðrÞ:

Let a > 0 and V ðtÞ :¼ rmuaðrÞ; t ¼ log r: Then, V satisfies (3.3). Setting

T ¼ supft j kV p�15Lp�1 on ð�1; tÞg;

we see by Proposition 3.1 that V is positive on ð�1; TÞ: Suppose that
T5þ1 and kðTÞV ðTÞp�1 ¼ Lp�1: By the proof of Proposition 3.1, eatVt is
strictly increasing on ð�1; TÞ and VtðtÞ > 0 for t4T : We follow the
argument in the proof of Proposition 3.7 in [19] to reach a contradiction. Let
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qðV Þ ¼ VtðtÞ: Then, qðV Þ > 0 on ð0; ½ 1
kðTÞ 


1=ðp�1ÞL
; qðV Þ ! 0 as V ! 0þ; and

dq

dV
¼ �a þ

Lp�1V � kðtÞV p

q
:

Therefore, for every m40, the line q ¼ mð½ 1
kðTÞ 


1=ðp�1ÞL � V Þ intersects

the graph of qðV Þ. Let ðVm; qðVmÞÞ be the intersection with

the smallest V -coordinate for each m > 0: Then, we have dq
dV

5� m at Vm

and

dq

dV
ðVmÞ ¼ �a þ

Lp�1Vm � kðtÞVp
m

mð½ 1
kðTÞ 


1=ðp�1ÞL � VmÞ
:

Since kðtÞ is non-increasing, e.g., kðtÞ5kðTÞ for t4T ; we have

�m4 � a þ
kðTÞVmð 1

kðTÞL
p�1 � Vp�1

m Þ

mð½ 1
kðTÞ 


1=ðp�1ÞL � VmÞ

¼ � a þ
ðp � 1ÞkðTÞVm %VVp�2

m

m
for some %VVm 2 Vm;

L

½kðTÞ
1=ðp�1Þ

� �

5 � a þ
ðp � 1ÞLp�1

m
;

i.e., for all m > 0;

m2 � amþ ðp � 1ÞLp�1 > 0: ð3:5Þ

From (3.5) and p5pc4nþ2þ2l
n�2 , we observe that a40 and the determinant of

the quadratic form in (3.5) is negative; a2 � 4ðp � 1ÞLp�150 which,
however, contradicts p5pc: This shows that kVp�15Lp�1 on ð�1;þ1Þ
and (3.2) holds for r > 0: Consequently, eatVtðtÞ > 0 for all t 2 R: Therefore,
rmuaðrÞ is strictly increasing and ua is a slowly decaying solution. ]

We are now ready to prove Theorem 1.2 (and the structure of Type SS).
To obtain the separation property in Theorem C, Liu et al. multiplied two
solutions by rm and took the ratio of them. This approach requires the strict
inequality: p > pcðn; lÞ: Taking the difference of two solutions multiplied by
rm rather than the ratio, we circumvent this difficulty. Here, relation (3.2) is
essentially employed.

Proof of Theorem 1.2. It follows from Theorem 3.2 that for each a > 0;
ua is a slowly decaying solution. For a > 0; let VaðtÞ :¼ rmuaðrÞ; t ¼ log r:
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Setting YðtÞ :¼ VbðtÞ � VaðtÞ for b > a > 0 given, we see that Y is positive
near �1 and satisfies

Ytt þ aYt þ ðp � 1ÞLp�1Yþ GðtÞ ¼ 0; ð3:6Þ

where

GðtÞ :¼ �pLp�1YðtÞ þ e�ltKðetÞðV p
b � V p

a Þ:

Suppose that there exists T 2 R such that YðtÞ > 0 on ð�1; TÞ and YðTÞ ¼
0: It follows from (3.2) that for t5T ;

GðtÞ5 � pLp�1YðtÞ þ e�ltKðetÞYðtÞpV
p�1
b

¼ � pYðtÞðLp�1 � e�ltKðetÞ½rmubðrÞ
p�1Þ

4 0:

Let q be a positive solution of the equation

qtt þ aqt þ ðp � 1ÞLp�1q ¼ 0 ð3:7Þ

such that eatðjqj þ jqtjÞ ! 0 as t ! �1: Multiplying (3.6) by q; (3.7) by Y;
and taking the difference, we have

ðYtq �YqtÞt þ aðYtq �YqtÞ þ qGðtÞ ¼ 0: ð3:8Þ

Multiplying (3.8) by eat and integrating over ð�1; TÞ; we obtain

eaTYtðTÞqðTÞ ¼ �
Z T

�1
easqðsÞGðsÞ ds > 0:

Thus, YtðTÞ > 0; which is impossible. Therefore, Vb > Va: Then, we
conclude that ub > ua > 0 in Rn for b > a > 0; and (1.6) has the structure of
Type SS.
Since any solution ua has uniform bounds by (3.2) on any compact set in

ð0;1Þ; the existence of a singular solution of (1.6) follows in a standard
method. We present a simple way to obtain the existence. Combining (3.2)
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and the fact that r�lKðrÞ is non-increasing, we have

�u0
aðrÞ ¼

1

rn�1

Z r

0

KðsÞup
aðsÞs

n�1 ds

4
Lp

rn�1

Z r

0

s
n�1�

2p
p�1KðsÞ

�1
p�1 ds

4
Lp

rn�1 r
l

p�1 KðrÞ
�1

p�1

Z r

0

s
n�1�

2p
p�1�

l
p�1 ds

¼
ðp � 1ÞLp

½ðn � 2Þp � ðn þ lÞ
½rpþ1KðrÞ

1

p�1

:

Hence, u0
a is uniformly bounded on any compact subset of ð0;1Þ in a and

consequently, fuag is equicontinuous on any compact subset. Since ua is
monotonically increasing, it follows from the Arzelà–Ascoli Theorem that
UðrÞ :¼ lima!1 uaðrÞ is well-defined and continuous on ð0;1Þ and for each
a > 0;

uaðrÞ5UðrÞ4
Lðn; p; l; 1Þ

½r2KðrÞ

1

p�1

:

Let BR;r ¼ fr5r ¼ jxj5Rg: Consider the following boundary problem:

Du þ KðrÞUp ¼ 0; uj@BR;r
¼ U :

For each a > 0; by the maximum principle, u � ua > 0 and thus, u � U50 in
BR;r: Letting fe ¼ eer; we have Dðu � ua þ feÞ > 0 in BR;r for any fixed R; r
and e if a is large enough. Letting a ! 1 and then e ! 0; we have u � U40:
Hence, u ¼ U in BR;r and u ¼ U on ð0;1Þ: Therefore, U is a singular
solution of (1.6) and the proof of Theorem 1.2 is complete. ]

Remarks. (a) Let p > nþ2þ2s
n�2 with s > �2: If limr!0 r�sKðrÞ ¼ k0 > 0 and

Z
0

d

dr
ðr�sKðrÞÞ

� �
þ
51;

then (1.6) has at most one positive radial singular solution U and if it exists,

lim
r!0

r
sþ2
p�1 UðrÞ ¼ Lðn; p;s; k0Þ:

(See Corollary 4.3 in [16].)
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(b) Let p > nþ2þ2l
n�2 with l > �2: If limr!1 r�lKðrÞ ¼ c > 0 and

Z 1 d

dr
ðr�lKðrÞÞ

� �
þ
51;

then every positive radial solution u of (1.6) near 1 has the asymptotic
behavior

lim
r!1

rmuðrÞ ¼ Lðn; p; l; cÞ or 0:

(See Theorem 1 in [10].)
(c) Let p > 1: If limr!1 r2KðrÞ ¼ c > 0 and

Z 1 d

dr
ðr2KðrÞÞ

� �þ
51;

then every positive radial solution u of (1.6) near 1 has the asymptotic
behavior

lim
r!1

ðlog rÞ
1

p�1 uðrÞ ¼ Lðn; p;�2; cÞ or 0:

(See Theorem 2 in [10].)
(d) In Corollaries 1.3 and 1.4, the asymptotic behaviors when KðrÞ � rd

at 1 for some d5� 2; follow easily from (a)–(c). For the case of l � t
5� 2 in Corollary 1.3, we have

uaðjxjÞ ¼ ca þ
1

ðn � 2Þon

Z
Rn

jyjl

jx � yjn�2ð1þ jyjtÞ
up
aðyÞ dy;

where on denotes the surface area of the unit sphere in Rn: (See Lemmas 2.3,
2.6 and 2.8 in [12] with minor modifications.) Theorem 2.9 in [12] implies
ca > 0: Indeed, if ca ¼ 0; then uðrÞ ¼ Oðrn�2Þ at 1; a contradiction. Then, by
Theorem 2.13 in [12], the desired asymptotic behavior in Corollary 1.3 is
obtained. Since ua is monotonically increasing to U ; we see that by the
Monotone Convergence Theorem,

UðjxjÞ ¼ c1 þ
1

ðn � 2Þon

Z
Rn

jyjl

jx � yjn�2ð1þ jyjtÞ
UpðyÞ dy:

Since p5pcðn; lÞ > nþl
n�2 and rmUðrÞ converges to Lðn; p; l; 1Þ at 0; U also has

the corresponding asymptotic behavior.
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(e) Theorem B implies that (1.10) and (1.12) have the structure of Type S

if p5nþ2þ2l
n�2 and p51þ 2l

n�2 ; respectively.

(f) For Eq. (1.11) and related topics, e.g., asymptotic behavior, radial
symmetry, existence of a positive solution carrying a finite total mass, we
refer the readers to [9, 11, 13–15, 18, 21].

REFERENCES

1. S. Bae, T. K. Chang, and D. H. Pahk, Infinite multiplicity of positive entire solutions for a

semilinear elliptic equation, J. Differential Equations 181 (2002), 367–387.

2. S. Bae and W.-M. Ni, Existence and infinite multiplicity for an inhomogeneous semilinear

elliptic equation on Rn; Math. Ann. 320 (2001), 191–210.

3. J. Batt, W. Faltenbacher, and E. Horst, Stationary spherically symmetric models in stellar

dynamics, Arch. Rational Mech. Anal. 93 (1986), 159–183.

4. W.-Y. Ding and W.-M. Ni, On the elliptic equation Du þ Kuðnþ2Þ=ðn�2Þ ¼ 0 and related

topics, Duke Math. J. 52 (1985), 485–506.

5. C. Gui, Positive entire solutions of the equation Du þ f ðx; uÞ ¼ 0; J. Differential Equations

99 (1992), 245–280.

6. C. Gui, On positive entire solutions of the elliptic equation Du þ KðxÞup ¼ 0 and its

applications to Riemannian geometry, Proc. Roy. Soc. Edinburgh 126A (1996), 225–237.

7. C. Gui, W.-M. Ni, and X. Wang, On the stability and instability of positive steady states of

a semilinear heat equation in Rn; Comm. Pure Appl. Math. 45 (1992), 1153–1181.

8. C. Gui, W.-M. Ni, and X. Wang, Further study on a nonlinear heat equation, J. Differential

Equations 169 (2001), 588–613.

9. N. Kawano, E. Yanagida, and S. Yotsutani, Structure theorems for positive radial

solutions to Du þ KðjxjÞup ¼ 0 in Rn; Funkcial. Ekvac. 36 (1993), 557–579.

10. Y. Li, Asymptotic behavior of positive solutions of equation Du þ KðxÞup ¼ 0 in Rn;
J. Differential Equations 95 (1992), 304–330.

11. Y. Li, On the positive solutions of the Matukuma equation, Duke Math. J. 70 (1993),

575–589.

12. Y. Li and W.-M. Ni, On conformal scalar curvature equation in Rn; Duke Math. J. 57

(1988), 895–924.

13. Y. Li and W.-M. Ni, On the existence and symmetry properties of finite total mass solutions

of the Matukuma equation, the Eddington equation and their generalizations, Arch.

Rational Mech. Anal. 108 (1989), 175–194.

14. Y. Li and W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions

of semilinear elliptic equations in Rn I. Asymptotic behavior, Arch. Rational Mech. Anal.

118 (1992), 195–222.

15. Y. Li and W.-M. Ni, On the asymptotic behavior and radial symmetry of positive solutions

of semilinear elliptic equations in Rn: II: Radial symmetry, Arch. Rational Mech. Anal. 118

(1992), 223–243.

16. Y. Liu, Y. Li and Y. Deng, Separation property of solutions for a semilinear elliptic

equation, J. Differential Equations 163 (2000), 381–406.

17. W.-M. Ni, On the elliptic equation Du þ KðxÞuðnþ2Þ=ðn�2Þ ¼ 0; its generalizations, and

applications in geometry, Indiana Univ. Math. J. 31 (1982), 493–529.

18. W.-M. Ni and S. Yotsutani, Semilinear elliptic equations of Matukuma-type and related

topics, Japan J. Appl. Math. 5 (1988), 1–32.



BAE AND CHANG250
19. X. Wang, On Cauchy problems for reaction–diffusion equations, Trans. Amer. Math. Soc.

337 (1993), 549–590.

20. E. Yanagida and S. Yotsutani, Classification of the structure of positive radial solutions to

Du þ KðjxjÞup ¼ 0 in Rn; Arch. Rational Mech. Anal. 124 (1993), 239–259.

21. E. Yanagida and S. Yotsutani, Global structure of positive solutions to equations of

Matukuma type, Arch. Rational Mech. Anal. 134 (1996), 199–226.


	1. INTRODUCTION
	2. INFINITE MULTIPLICITY
	3. STRUCTURE OF TYPE SS
	REFERENCES

