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We establish that for n>3 and p > 1, the elliptic equation Au + K(x)u’ =0 in R”
possesses separated positive entire solutions of infinite multiplicity, provided that a
locally Holder continuous function K >0 in R"\ {0}, satisfies K(x) = O(|x|”) at x = 0
for some o> —2, and K(x) = c|x| 72 + 0(|x|”’[log [x]]?) near co for some constants
¢>0 and ¢ > 0. In the radial case K(x) = with /> -2 and t>0, or K(x) =

I
(1+|x)
and show that if n and p are large enough, the equation possesses a positive radial
solution with initial value « at 0 for each o > 0 and a unique positive radial singular
solution among which any two solutions do not intersect. © 2002 Elsevier Science (USA)

Key Words: semilinear elliptic equations; separated positive solutions; infinite
multiplicity; singular solutions.

1+le‘

> with 2> 0, we investigate separation phenomena of positive radial solutions,

1. INTRODUCTION

In this paper, we study the elliptic equation
Au+ K(x)u’ =0, (1.1)

where n>3, A =51 is the Laplace operator, p > 1, and K is a locally

i=1 6
Holder continuous functlon in R"\{0}. By an entire solution of (1.1), we
mean a positive weak solution of (1.1) in R” satisfying (1.1) pointwise in
R"\ {0}.

There have been many works on (1.1) which occurs frequently in
Riemannian geometry and mathematical physics. We refer the interested
readers to [3,4, 11-13, 17-19] and the references therein.

The fundamental questions are about the multiplicity of positive solutions
and their characteristic properties. The equation shows different frames
according to many cases of K and the exponent p. This paper presents
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sufficient conditions verifying infinite multiplicity of positive solutions, and
explains solutions in terms of separation. In such perspective, we review
related works as follows. It was Ni [17] in 1982 who first studied (1.1)
systematically. In case |K(x)|< C(1 + |x|') for some /< — 2, Ni showed that
(1.1) with p > 1 possesses infinitely many positive solutions bounded away
from 0. From his proof of this problem, we emphasize that any two
solutions among them do not intersect (or are separated). In [6], Gui treated
the opposite case K behaving like |x|" at oo for /> —2, and established
infinite multiplicity of separated positive solutions for (1.1) under the
following conditions:

(K1) K>0 is a locally Hélder continuous function in R"\ {0},
(K2) K(x) = O(|x|°) at x = 0 for some o > —2,
and an integral condition controlling the deviation of K at co from c|x|’ for

some ¢ >0, /[ > —2 when p>=p(n,[), where

(n—2)> =2(1+2)(n+1)+2(1+2) A/ (n+1)* —(n—2)* .
pe=pen,1) = (=20~ 10-21 if n>10+4/,

00 if n<10+41.

Moreover, each solution u satisfies the following asymptotic behavior:
lim |x|"u(x) = L,
|x|—>00

where m = ]% and
i

11
L=Lnp,lc)= [m(n -2 m);} . (1.2)

Recently, motivated by a work [2] on infinite multiplicity for the
inhomogeneous equation

Au+uv’ +f =0,

Bae et al. [1] studied again (1.1) with p>p.(n,[), and improved Gui’s result.
In particular, infinite multiplicity of separated positive solutions for (1.1) is
verified when K satisfies (K1), (K2) and the following condition:

Kx) =cx'+ o(x|™%)  at |x| = o0

for some d > n — 2(n,p,l) — m(p + 1), where

(n—2=2m) + /(1 — 2= 2mP — 41+ 2)(n = 2 — m)
. .

;“2 = /12(napa l) =
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The quadratic polynomial P(z) =z> — (n —2 —2m)z+ (I +2)(n — 2 — m)
has two positive real roots 1; </, if and only if n > 10 + 4/ and p>=p,.. These
two numbers 4;, 4, play important roles in describing the asymptotic
behavior at co of solutions in case K(x) = c|x|' (see [7, 10]).

On the basis of the above-mentioned Ni’s result and the observation,
pe(n,l) > 1 as | —» —2, it is assumed that (1.1) possesses separated positive
solutions of infinite multiplicity when K(x) has a similar behavior to ¢|x| >
at 0co. The first objective of this paper is to study this borderline problem,
and to establish infinite multiplicity for any p > 1. Before stating our result,
we summarize two known facts concerning the case. In [12], Li and
Ni established that if a nonnegative radial function K in R”, satisfies
K(r) = O(r°) at r = 0 for some ¢=>0, r*K(r) — ¢>0 as r — oo, and

lim sup r(log r)[r>K(r <L,
m sup r(log ) K(r)], =21
then there exists o* >0 such that for each o€ (0,o*], (1.1) with 1<p<
(n+ 2+ 20)/(n — 2) has a positive radial solution u, with u,(0) = o. For the
nonradial case, Gui [5] proved

THEOREM A. If Cy <(1 + |x|)*K(x) < C> for some C> = Cy > 0 and K(x) =
cx72 + O(x|™%) at |x| = 0o for some d > 2, then (1.1) with p>1 possesses
infinitely many separated positive entire solutions with the asymptotic behavior

‘llim’ (log |xN"" Du(x) = L, (1.3)
where
>
n— P=
L= L(nspa _25 C) - |:(p — 1)C:| (14)

In the former, K is radially symmetric while in the latter, K is positive.
Moreover, K has no singularity at the origin in both cases. Without these
conditions on K, we establish infinite multiplicity for (1.1) through an
analysis on asymptotic behavior near infinity.

THEOREM 1.1. Let p> 1. If K satisfies (K1), (K2) and
K(x) = x| + O(x] "[log |x[]%), (1.5)

near |x| = oo for some constants ¢>0 and q>0. Then, (1.1) possesses
infinitely many separated positive entire solutions with the asymptotic behavior
(1.3). In case K is radial, there exist separated positive radial solutions u,
indexed continuously by all small initial data o > 0.
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The question, whether [log |x|]? in (1.5) can be replaced by the form |x|?
with 0 <g<mn — 2, is not yet answered.

To prove Theorem 1.1, we make use of the particular barrier method
initiated by Gui [5, 6] and modified in [1, 2]. In order to activate this method
efficiently, one needs detailed information on the asymptotic behavior of the
difference of positive solutions to the specific equation (1.1) with K(x) =
¢|x|"? near oo. The first step is to investigate the asymptotic behavior.
Afterwards, by employing Green’s identity, we construct infinitely many
pairs of super- and sub-solutions of the given equation (1.1). By standard
techniques showing the existence of positive solutions, Theorem 1.1 is
verified.

In case K is radial, we obtain a continuous family of separated positive
radial solutions in proving Theorem 1.1 as a by-product, if initial data are
small enough. The next question is whether these separation phenomena are
valid up to co. More generally, we study this question under a monotonicity
assumption on K(r). The initial value problem for positive radial solutions is

—1
W'+ ”T U+ K =0,  w(0)=a>0. (1.6)
This has a unique solution u € C>((0, &)) N C([0, ¢)) for & > 0 small under the
following condition:
(K) K is a nonnegative radial function in C((0, c0)) with K#0 and

/ rK(r) dr < oo.

0

(See [18, Propositions 4.1 and 4.2].) We denote the unique solution by u,(r)
and call u, a slowly decaying solution if u,(r) > 0 on (0, 00) and " 2u,(r) —
o0 as r — 00. Note that under (K), " u,(r) is increasing as r increases if
uy >0 on (0, 00). The structure of Type S is as follows:

(1.6) has a slowly decaying solution u,(r) for every o > 0.

For this structure, Ni and Yotsutani showed the following in [18,
Theorem 6].

THEOREM B.  Let p=>"252 with [ > —2. If K satisfies (K), K(r) = O(r') at
r=0and (r'K(r)) <0, 20 in (0, 00), then for every o> 0, (1.6) has a positive
solution u, on (0,00) and

o0
/ Ku’,’;r"’1 dr = o00.
0

Moreover, if p> % and (r'K(r)) = 0, then this still holds.
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For solution structures including various types, we refer the interested
readers to [9, 18,20,21]. To specify asymptotic behavior at oo, r'K(r) —
¢>0 as r - 00, can be added to the assumptions of Theorem B, with the
result that by [10, Theorem 1], each solution u, satisfies

lim u,(r) = L(n,p, 1, ¢). (1.7)

As the simplest form, the Lane—Emden equation or Emden—Fowler
equation from astrophysics:

Au+ clx'w? = 0, (1.8)

in R", where [ > -2, p> %*22’ and ¢ > 0, gives an insight into the structure
of Type S. As seen in Theorem B, (1.8) has the structure of Type S. Let v, be
a positive radial solution v, with v,(0) = o for each « > 0. Then, v, satisfies
(1.7). Furthermore, any two positive radial solutions of (1.8) cannot intersect
each other if and only if p=p.(n,[) with I > —2. (See Propositions 3.5 and 3.7
in [19].) Therefore, we expect that if p>p.(n,[), then the structure, under
proper conditions on K(r), is of Type SS:

(1.6) has the structure of Type S, and any two positive solutions are
separated.

There have been several similar studies on separation structure (see
[1,2,5-7,16]). The structure of Type SS is closely related with the stability
of positive solutions, which are translated as positive steady states of
the corresponding parabolic equations. In [7,8], Gui et al. observed that
the critical exponent p = p.(n,0) is the dividing line of “instability” in
case p<p.(n,0) and “‘stability” in case p=p.(n,0) in a certain sense.

In a recent paper [16], Liu et al. studied the structure of Type SS and
proved the following

TaeoreM C. Let p > p.(n,1) with 1> —2. Suppose that K € C'((0,0))
satisfies

i(r_lK(r)) <0, r e (0, 00)
dr

and
lim rK(r) = ko > 0, lim ¥ 'K(@r) = ¢ > 0.
r— r—0o0

Then, (1.6) has the structure of Type SS. Moreover, there is a unique singular
solution U(r) that for each positive radial solution u, of (1.6), r"u,(r) —
L(n,p,l,¢) as r —» oo and ¥"U(r) - L(n,p,l, ko) as r - 0,

L(n,p,1,1)
KT

u,(r)<U(r) < (1.9)
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The second objective of this paper is to include the case p = p(n, /) and to

|’

X > _0 ¢
T for some / 2 and

search for the structure of Type SS when K(x) =

120, or K(x) = % for some 4 > 0. Our result covers these two cases.

THEOREM 1.2. Let p=p.(n,l) with > —=2. Assume that K satisfies (K)
and r~'K(r) is non-increasing in r € (0,00). Then, (1.6) has the structure of
Type SS and possesses a singular solution U(r) as the monotone limit of
positive regular solutions u,(r) satisfying (1.9).

Importantly, the structure of Type SS is established without the
convergence of 'K (r) to a positive constant as r tends to co. For example,
the case in which /K (r) behaves like »~* at oo for some 7>>0, can be solved.
Moreover, (1.9) provides upper bounds of the family {u,} on compact
regions in (0, 00), which lead immediately to the existence of a positive radial
singular solution. Theorem 1.2 can be applied directly to the typical
equation

I’
1+ [x[f

Au + w =0 in R”,

where / > —2 and >0 as follows:

COROLLARY 1.3. Let 1> =2, t=0 and p=p.(n,1)(>"252). Then, the
equation
!

1+

1
u"—l—nTu’—F W =0,  u0) =a>0, (1.10)

has the structure of Type SS and possesses a unique singular solution U(r) that
for every o> 0,

1
1+ ]p-1
uy(r) < U(r)< {WT] L(n,p,I,1)
and
42
ﬁrr(]) =1 U(r) = L(n,p, 1, 1).
Moreover,

=142
lim r 7= wu,(r)(or U(r)) = L(n,p,l — 1,1) if [—1>-=2,

r—00

ango (log r)lil_‘ua(r)(or U(r)) = L(n,p,—2,1) if l—1=-2,
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and at oo,
Pt if —2>1—1>—n,
u,(r)(or U(r)) — cy(or ¢o) ~ { P "logr if | —1=—n,
P2 if l—1< —n,

where lim,_, o t,(r)(or U(r)) = c,(or ¢s)>0. Here, “f ~ g at c0” means
that there exist two positive constants Cy, Cy such that C1g <f < Cpg near 0.

Uniqueness part of singular solutions was proved in [16] while the
asymptotic behaviors in Corollary 1.3 can be proved by some results in
[10, 12]. The precise statements to guarantee these two parts in Corollary 1.3
shall be given in Section 3.

In 1986, Batt et al. [3] proposed the equation

-2
|x|

_ ; 3

where 4 > 0. This model with 4 = 2 was formulated in 1930 by Matukuma to
describe the dynamics of globular cluster of stars in R®. Here, u>0
represents the gravitational potential, ¢ = — 4171 Au is the density and
fRz o(x)dx is the total mass. Since the globular cluster has the radial
symmetry, positive radial entire solutions are of particular interest. On
Matukuma equation, it is known that if 1<p<35, then u, is a slowly
decaying solution only for small & > 0, while if p > 5, the structure is of Type
S. (See Theorems 5 and 6 in [18].) We remark a consequence of Theorem 1.1:
For p>1 and 1 > 0, any two positive radial solutions of (1.11) are separated
if initial data are small enough. Applying Theorem 1.2 to (1.11), we establish
the following

COROLLARY 1.4. Let 2>0 and p=p.(n,i.—2)>1+2). Then, the
equation

n—1, A2

P
r +(1 Tyt

u' + =0, w(0) =o>0, (1.12)
has the structure of Type SS and possesses a unique singular solution U(r) that
for every o> 0,

1
p—1

L(nzp);L - 23 1)3

P
u (< U(r) < atﬂ

e
lirré =L U(r) = L(n,p, 7 — 2,1),
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and

113)1C (log ;’)1ﬁ u,(r)(or U(r)) = L(n,p,—2,1).

We observe that in R®, if 0</1<% and p>=p.(3,4—2), (1.12) has the
structure of Type SS and moreover, possesses a unique singular solution.
The additional assumption p > 1 4+ 2 implies that the mass sum on the unit
ball is finite.

This paper is organized as follows. The asymptotic behavior of positive
radial solutions of (1.1) with K(x) = ¢|x| " near oo is studied in Section 2
and then, we prove Theorem 1.1 and apply multiplicity results to
Riemannian geometry. In Section 3, we prove Theorem 1.2 and make
several remarks.

2. INFINITE MULTIPLICITY

In this section, we consider the case that K(x) behaves like |x| ™% at oo.
Before studying the nonradial case, we analyze the radial case in detail.
Then, we proceed similar arguments as in [1, 2, 6] in order to prove infinite
multiplicity for general cases. It will turn out that the asymptotic behavior of
the difference of two positive radial solutions of

Au+ c|x| 2w’ =0 2.1

near oo for some c¢>0, plays a central role in establishing infinite
multiplicity for (1.1).

2.1. In this subsection, we consider the asymptotic behavior of positive
radial solutions of (2.1). We first recall the following asymptotic behavior
(see [10, Lemma 5.1]).

LEmMA 2.1. Let p>1, ¢ >0 andu be a positive radial solution of (2.1). If
lim (logr)"/? Du(r) = L,
r—00

then

_ L _ pLlog(clogr) 1
"0 Gog (p1)2<n2)(1ogr>"/<"””((logr)f’“"”)’ -

near oo, where L = L(n,p,—2,¢) is given by (1.4).

Another ingredient is that any two positive radial solutions of (2.1) do not
intersect infinitely. To prove this, we need Lemma 4.1 in [2].
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LEMMA 2.2.  Suppose that W satisfies
W'+ @)W +P()W <(or=) 0
in [T,400), where ® >0 and
Y() <t o) +10/(p).

Then, W does not change sign for t large.

The difference of two positive radial solutions of (2.1) displays the
following asymptotic behavior.

PROPOSITION 2.3.  Let p> 1 and vy, vy be two positive radial solutions of
(2.1). Suppose that

lim (log /" Vo,(r) = L(n, p, —2,¢) = lim (logr)/? Vu,(r).  (2.3)
r—00 r—00
Then,
lim (log r)/[va(r) — v1(r)] = 0

for any d > 0.

Proof. Set W(t) = Va(t) — Vi(t), t =logr, where Vi(t) = vi(r), i =1,2.
Then, by (2.2)

W) = o(r PP~ D)y at+ oo (2.4)
and thus,
+00
/ W2(s) ds < 0. (2.5)
Moreover, W satisfies
Wy+m—2)W;+ ()W =0, (2.6)
where
yr_p? .
ht) = F it Va(2) # Vi (0),
peV?™ i V() = V().

Since pe min{ V1, V21~ <h(f)<pcmax{V, V>, we have from (2.3),

lim th(r) = pin=2) (2.7)

t—>+00 p—1
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By Lemma 2.2, W does not change sign for ¢ large. We may assume that
W(t)>0 on [T,+00) for some 7 >0. From (2.6), we have W ()<
e (=2=Dy(T) for t> T. Since v;(r) goes to 0 as r tends to oo, v; and
V; are decreasing eventually near oo and +o00, respectively. Hence,
near 400,

_peVaVy = Vil = peVa = Vig&™!

he T <0 (2.8)

for some V| <& V,. Multiplying (2.6) by W, and integrating over [z, ¢] for
1> T large enough that (2.8) holds for =1, we have

t

— F W+ 1) WZ(S)}

! -/ t [(n 2 30) — S ()W) s,

T

which combined with (2.4), (2.7) and (2.8) implies

+00 +00
W? < oo, / (—hy)W? < 0. (2.9)
T T
Then,
. 2 o
Jim Wi =0 (2.10)
and
1

5 Wi(r) + % h(t)W(t) = / o [(n — )WA(s) — %hs(s) Ws)| ds.  (2.11)

Multiplying (2.6) by W and integrating over [, +00), we obtain from (2.4)
and (2.10),

u 20N ™ 208 112
WEWR) + 5= W@ = | W) - Wiolds.  (2.12)

Again, multiplying (2.6) by W, and integrating over [t,+00), we observe
that

+00 +00
/ sW; <00, / (—shy)W?* < oo. (2.13)
Moreover, it follows that
. 2 _
Jim (W5 =0 (2.14)

since by (2.4) and (2.7),
t11+m th(yW?(t) = 0.
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Then,
Lewk (o) + L ch(nyW?(z)

- [ Uwayas— 2 [ o h($)]W*(s) d.
7/1 {(n2)s§}WY(s)s§/T [shi(s) + h()]W2(s) ds.  (2.15)

Multiplying (2.6) by ¢W, integrating over [z, +00), and using (2.4), (2.10)
and (2.13), we have

WD) Wi(t) — % W(t) + ¥rW2(r)

/+oo n—2 5 5
= [{sh(s) — T} W= (s) — sW; (s)} ds. (2.16)

Integrating (2.11) over [t,+00) such that for t>17;, W(¢) > 0 and A7) <0,
and using (2.5), (2.8) and (2.9), we have
1

+00
3 / [W2(7) + h(x) W (1)] dx

_ / o / o~ [(n )W) ;hs(s)Wz(s)] dsdi<oo,  (2.17)

which implies

+00 400 400 400
/ W2(s) ds dt < o0, / / [—hy()W? dsdr<oo. (2.18)

Integrating (2.12) over [, +00), we have
1 ) +00
5 W) -5

3 W2(t) dt

T

= / - / +OQ[Wf(s)—h(s)W%s)]arsarf, (2.19)

which combined with (2.5) and (2.18) implies

+00 +00
/ / h(s)W?(s) ds dt < . (2.20)

Integrating (2.15) over [tr1,+00), we have from (2.5), (2.7), (2.13)
and (2.20),

+00 +00 +00 +00
/ / sW?ds dt < oo, / / [—shy(s)W?dsdi<oo (2.21)
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and

! / m[f W2(1) + th(t)W3(z)] dt

2
[ oot

— % {shs(s) + h(s)} Wz(s)] ds dr. (2.22)

Integrating (2.16) over [t1, ], we have

E Wz(r)];—i— /t [” . 2 1] W2(1) dt

_ / t / +OoHsh(s) —”;2}W2(s) —st(s)] ds dr.

By (2.4), (2.7) and (2.21),

71 T —2
S - [ | { .
/+oo /+oo , n— 2 5
= [SVVS (s) — {sh(s) — T}W (s)} dsdr, (2.23)

which implies

T— 1} W2(t) dr

+00 +00
/ W2(s) ds dt < oc. (2.24)
Indeed,
/H /m{sm) —nz;z} W(s) ds dv /M {ngz“ 1} v
= /ﬂo {Sh(s) - %} W2(s)(s — 11) ds — /MC [”’ ; s 1} i

:/Ho{sh(s) —n+2}sW3(s)ds+ /+oo [l -1 {sh(s) — %H W2(s) ds

and sh(s) — n + 2 converges to Z%f as s — +00. Then, (2.24) follows. Again,
it follows from (2.17), (2.19), (2.22) and (2.23) that

+00 +00 +00
/ / / sW2(s)ds dt dty < o0
T2 T T
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and
+00 +00  p+00
/ / W2(s) ds dt dt) < oo.
T T T

Iterating the above process, we obtain

+00 +00 +00
/ / con W2(s)dsdrtdry ---dtg < oo (2.25)
‘L'(/ Td,] T

and
+00 +00 +00
/ / W) dsdtdry - - dtg_, <0
Td Td—1 T

for any positive integer d. Note that by Fubini’s Theorem,

+00 +00 +00 K +00
/ Wf(s) ds a’r:/ / Wsz(s) dtvds = Wf(s)(s—rl)ds<oo.
T T T Tl

T

Hence, applying this modification repeatedly to (2.25), we have the
equivalent form

+00
/ sTW? ds < cc.

Td

Then, for 7 large,
+00

W@l = Wi(s) ds

+00
- / s W) ds

T

T

+00 1/2 +00
< [/ s ds} [/ 524 WS2 ds]

[(2d — 1)1-25!71]1/2’

1/2

where

+00 1/2
Cy= {/ s24 WS2 ds] < 00.
T

That is,

2

C
2(d—1) 2. d
T | W (7)] SGd- e
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Therefore, we conclude that
lim “'W()=0

1—+00

for any integer d > 1, which completes the proof of Proposition 2.3. 1

The assumptions on K at co in Theorem 1.1 comes from Proposition 2.3,
which is one of the major elements to prove Theorem 1.1.

2.2. In order to prove infinite multiplicity for general cases, we first
consider positive radial solutions of (1.6) with a radial function K. In
particular, K(r) satisfies the following condition:

(K3) [T IK(r) — er 2" (log r) ™ dr < o0 for some ¢ >0, a > 0.

For our convenience, we fix a family {u,} of separated positive radial
solutions of (1.6) indexed by « € (0,a*] for some o* >0 such that ,(0) =
o, U, is monotonically increasing on (0, «*] and

lim (log )"~ Vi, (r) = L(n,p, —2,¢), (2.26)

where K is a smooth positive radial function K satisfying

K(r) = for 0<r<1

1472

and
_ ¢
K@) = for r=2.
,

(See [5, Theorem 5.1 and Lemmas 5.3, 5.6] for the existence.) It follows from
Proposition 2.3 that for each o € (0, ®),

Fo(r) = it,#(r) — ,(r) = o([log r]™%)  as r - o0 (2.27)

for any d > 0.
To prove the existence of separated positive radial solutions, which are
indexed continuously by initial data, we need the following

LEMMA 2.4.  Assume that K#0 holds (K). Suppose that there exist three
solutions uy,ug,u, of (1.6) such that 0 <u, <ug<u, in [0, R) for some R e
(0, 00). Then, for each a << f, (1.6) possesses a positive radial solution us in
B satisfying

0 <uy(r) <us(r) <up(r)

for 0<r<R.
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(See Lemma 2.5 in [1].) Now, we prove infinite multiplicity in the radial
case.

PROPOSITION 2.5. Let p> 1. Assume that K satisfies (K) and (K3) for
some ¢ >0, a> 0. Then, there exists a positive constant y* = y*(p, K) such that
Sor each y € (0,7*], (1.6) possesses a positive radial solution u, with u,(0) =y
with the asymptotic behavior

lim (logr) "% Vu,(r) = L(n,p, —2,¢) (2.28)

and no two of them can intersect.
Proof. For each 0<a<ua*, F, > 0 satisfies (2.27) for any d > 0, and
AF, = _K((aa*)p - L-t{':)g _pkagilF(x'

For all y >0, there exists a unique positive solution u, of (1.6) locally.
First, we claim that for given 0<f<o*, there exists 0<y<f such that
for every O0<y<y, u,<up in B(R,) whenever u,>0 in B(R,) for
some R, > 0.

Suppose that for any 0<7y<f, there exists 0 <y<7 such that u; >0 in
B(Rj), wy(r) = up(r) — uz(r) > 0 on [0, R;) but wy(R;) = 0 for some R; > 0.
Then, wy satisfies

Aw; = —Kitz + Ku‘;
in B(Ry). Fix f<a<o*. Applying Green’s identity, we have
0< / (w5 AF, — F, Awy)
B(R;)
< / {—pKit),"'wyF, + KilF, — Kl F,}
B(R;)
< / {—pKit~'w;F, +p12ﬁ§71w5Fa + (K - K F,}
B(R;)
and

p / [ —ag‘l]waFag / (K — KW F,.
B(Ry)

B(Ry)

Since iz > 0 in R" and u; <% on [0, R;], we may assume that for small § > 0,
R;>1 and w;>4ug(1) in By. Hence, for small 7> 0 and thus, for small
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0<y<y, we have

) [ @t -gkns [ &-xgE @)
B(1)

B(Ry)

< | &-Rir.
B(Ry)

where k4 = max(+k,0). However, this is impossible because from (2.26),
(K3), (2.27) with d > a — 5%, and the Dominated Convergence Theorem,
the right-hand side of (2.29) goes to 0 as 7 — 0 while the left-hand side is a
fixed positive constant, which verifies the claim. Therefore, there exists 0 <
7<p such that for all 0<y<7, 0<u, <ug in B(R,).

Regarding R, as the supremum of the set { R>0]|u, >0 in Bgr}, we
observe that R, — 0o as y —» 0" because for 0<r<R,,

uy(r):"/+/ u, ds
0
r s n—1
. / / (f) Ko (¢) di ds
0 Jo \S !
R, R,
>y - V”/ K (1) U st ds] dt
0 t

w1 R,
> y[l 7 / tK(7) dt]. (2.30)
n— 2 0

If liminf, ¢+ R, <00, then from (K) and (2.30), u,(R;) > 0 for some y >0
small, which contradicts the definition of R,. Moreover, it follows
that for given R >0, there exists 0<j<7 such that for 0<y<7, u, >0
in BR.

For 0<f<a*, let Iz be the set of 0 <y<7y(p) satisfying

p/ (i " — ' 1F
B(1)

P > (K — K) ul"'Fp.
1+ |xf /B(R» e

2
Then, I5>(0,y;) for some y5 >0 since from (2.26), (K3) and (2.27) with
d>a—1, the right-hand side goes to 0 as y - 0 by the Dominated
Convergence Theorem while the left-hand side is bounded below a positive
constant which is irrelevant to y when y > 0 is small.
It follows from (2.30) that there exists 0 <7<y, such that for all 0 <y <7,
R,>1 and u,(r)=3y on [0, 1].
We now claim that for small 0 <y <7 so that u},(r)>%y for 0<r<1, there
exists 0 <n <y entailing u, > i, in R". Suppose that there exists 0 <y, <7j
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such that for each 0<# <7y, there exists r, > 0 satisfying W,(r) = u; (r) —
ity(r)> 0 in [0, r,) and v, (r,) = 0. From Green’s identity,

0< (MA/,7 AF/; - F/; AMA/ﬂ)
B()‘,,)
< / [—pKbyity ' Fy + Kil? Fy — Kt Fy]
B(ry)

and

[ ok =g [ R - Rad, iy
y Iy

=

< | (K—K).i Fp.
B(ry)

Since u, is monotonically decreasing to 0 as n decreases to 0 and thus
i, — 0 uniformly on [0,R] for any fixed R>0, we may assume that
ry > 1 and W,(r)=37, — u,(r)=>17, in By if n>0 is small enough. Then,
we have

p 74 Pyl - % n—
A RS / (K - R),ul ' Fy,
B(1) B(R,))

which is impossible because 7, € I5. Therefore, for each 0 < <o*, there exist
B>y >n>0 satisfying i, <u, <iig in R".

Repeating the above arguments, we find a decreasing sequence {u, } of
positive solutions of (1.6) such that there exists a positive decreasing
sequence {a;} going to 0 as i —» 0 with 0 <o; <o™ and

U > Uy, > Uy, > 1y, >0 in R"
for each i>1. By (2.26), every u, has the asymptotic behavior (2.28). On the
other hand, it follows from Lemma 2.4 that for every y; >y > 9,11, /22,
exists globally and u, >u, >u,  in R". Therefore, we conclude that there
exists y* > 0 such that for 0<y<y*, u, >0 in R" and u, is monotonic with
respect to y, which completes the proof. 1

Considering the general case, we assume the following condition:

(K4) The infimum K;(r) and the supremum K,(r) of K(x) on
{x = (x1, x2): |x2| =r} are continuous functions on (0,00) and
Jo rKa(r) dr < 00.
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A direct application of Proposition 2.5 leads to the following assertion.

THEOREM 2.6. Let p>1 and N =3. Assume that K satisfies (K1), (K2),
(K4), and for some constants ¢ >0 and a> 0,

/ |Ki(r) — er 2N " Ylog r) ™ dr < oo, i=1,2, (2.31)
1

where  Ki(r) = inf |-, K(x1, x2), Ka(r) = supjy,—, K(x1, x2). Then, (1.1)
possesses infinitely many positive entire solutions such that

Jim  (log 2P Vu(xy, x2) = LN, p, =2, ¢) (2.32)
X2 | =00

uniformly in x; € R™N and any two of them do not intersect.

Proof.  Applying Proposition 2.5 to K; and K5, we have positive radial
solution wy, w» of Aw + Kjw? = 0 in RY and positive radial solution vy, v, of
Av + Ky? = 0 in RY satisfying

flye > U1 > iy > W1 >y, > U2 > iy, >wy in RY,

where u,,,i,,, 4, are solutions of (1.6) with K = K. Since #i(x1, x2) ==
vi(jx2]) and Wi(x, x2) .= wi(|x2|) are super-solutions and sub-solutions of
(1.1) in R™ {0}, respectively, by the standard super- and sub-solution
method there exist solutions #; of (1.1) in R"\ {0} such that

17,‘214,‘2117,‘, i= 1,2.

Then, each u; is a weak solution of (1.1) in R” and an entire solution in
C2(R"\{0}) n C(R") (see [6,17]). Repeating the above procedure, we
construct infinitely many ordered positive entire solutions entailing the
asymptotic behavior (2.32). 1

From Theorem 2.6, Theorem 1.1 follows immediately as a typical case.

We interpret the result of Theorem 2.6 in the context of Riemannian
geometry. Let (M,g) be an n-dimensional Riemannian manifold and K
be a given function. The scalar curvature problem is to find a metric g;
on M conformal to g such that the corresponding scalar curvature to
g1 is K. The introduction of >0 by g; = u*/"2g, n>3, brings out the
equation

|38}

An— 1 w2
%Agu ~du+ K2 =0, (2.33)

where A, denotes the Laplace—Beltrami operator on M in the g metric and k
is the scalar curvature of (M,g). If M =R" and g=5, dxf is the
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standard metric, then (2.33) reduces to
n+2 .
Au + K(x)uﬁd =0 in R".
When p = %, Theorem 2.6 is translated as follows:

THEOREM 2.7. Let N >=3. Assume that K holds (K1), (K2), (K4) and
(2.31) for some constants ¢ >0 and a > 0. Then, there exist infinitely many
Riemannian metrics g, on R" with the following properties:

(1) K is the scalar curvature of g;
(i) gy is conformal to the standard metric g on R";

(ii1) gy is complete.

3. STRUCTURE OF TYPE SS

In this section, we prove Theorem 1.2. For all « > 0, we consider not only
the existence of slow decaying solutions but also their separation properties.
First, we make an interesting observation.

ProrosiTION 3.1. Let > —2 and p >%§. Assume that K satisfies (K)
and

lim PK(r) = 0. (3.1)

Then, every solution u, of (1.6) with u,(0) = o > 0 remains positive as long as
the relation

PR (ry< 17! (3.2)
holds from r = 0, where L = L(n,p,[,1) is given by (1.2).
Proof. Let V(¢) .= r"u,(r), t =1logr. Then, V satisfies
Vi+aV,— L7V + k()VP =0, (3.3)
where a = n — 2 — 2m and k(1) = e "K(e"). It follows from (3.1) that

dim k(OV(y" = lim 2K () = 0

and thus, kV?~! < I7~! near —oco. Suppose that there exists 7" such that V is
positive and kV?~'<I’~' on (—o0, T), but V(T)=0. Then, by (3.3),
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we have

Vi+aV,=LP ' —k@V?HV >0 on (—oo, T). (3.4)
Multiplying (3.4) by e¢* and integrating from 7 to T, we obtain

eTV(T) > V(1)

= mr* M, (r) + 1L ()

which goes to 0 as r — 0 since

=1 _ ' nflK 4 d
T (r) /Os ($)ul(s) ds

<oc1’r"_2/ sK(s) ds
0

< 0

and ru/(r) - 0 as r — 0. Hence, we have " V,(T) > 0, a contradiction. 1

If (3.2) is true on [0, 00), then u, is a positive solution and r"u,(r) is strictly
increasing as r increases. In fact, the two conditions that »~/K(r) is non-
increasing and p=>p.(n,[), guarantee that this relation is satisfied in the
entire space and (1.6) has the structure of Type SS.

THEOREM 3.2. Let p=p.(n,l) with [ > —2. Suppose that K(r) satisfies (K)
and r~'K(r) is non-increasing. Then, for each 0<o<oo, (1.6) possesses a
slowly decaying solution u, with u,(0) = o such that r"u,(r) is strictly
increasing and (3.2) holds on [0, 0), where L = L(n,p,1,1).

Proof. Condition (3.1) follows immediately from (K) and

r r 1 1
/0 sK(s)ds>= /r/2 s K(s)s' ! ds>2—+l [1 - ﬁ] P K(r).

Let o >0 and V(¢) = r"u,(r), t =logr. Then, V satisfies (3.3). Setting

T =sup{t|kV? ' <I7! on (—00,1)},
we see by Proposition 3.1 that V' is positive on (—oo, T). Suppose that
T < + oo and k(T)V(TY ' = L7~'. By the proof of Proposition 3.1, eV, is

strictly increasing on (—oo, T) and V(t)>0 for t<7T. We follow the
argument in the proof of Proposition 3.7 in [19] to reach a contradiction. Let
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q(V) = V,(¢). Then, ¢(¥)> 0 on (0, [ﬁ]l/@*“q, g(V) > 0as V — 0", and
dqg L'V — k(t) VP

av q '

Therefore, for every p>0, the line ¢ = u([ﬁ]l/ ?=DL — V) intersects

the graph of ¢q(V). Let (V,,q(V,) be the intersection with

the smallest V'-coordinate for each > 0. Then, we have 5—1‘1/2 —pat v,
and

L=, — kv
Wil "L = V)

dq
W VH) = —a -+

Since k(¢) is non-increasing, e.g., k(1) =k(T) for t< T, we have

KVl 2™ = Vi

—Us —a+ _
)L = V)
— Di(T)V, VP2 . L
:_a+(p VW for some V#E(Vmﬁ)
u [e(T)]/ 7
— !
< _a"’uy
u

ie., forall >0,
W —ap+(p— DL >0. (3.5)

From (3.5) and p>pc>%, we observe that a>0 and the determinant of
the quadratic form in (3.5) is negative; a®> —4(p — 1)L’~' <0 which,
however, contradicts p>p.. This shows that kV?~! <I7~! on (—o00,+00)
and (3.2) holds for r > 0. Consequently, e* V,(r) > 0 for all ¢ € R. Therefore,
r"u,(r) is strictly increasing and u, is a slowly decaying solution. 1

We are now ready to prove Theorem 1.2 (and the structure of Type SS).
To obtain the separation property in Theorem C, Liu et al. multiplied two
solutions by " and took the ratio of them. This approach requires the strict
inequality: p > p.(n,l). Taking the difference of two solutions multiplied by
" rather than the ratio, we circumvent this difficulty. Here, relation (3.2) is
essentially employed.

Proof of Theorem 1.2. 1t follows from Theorem 3.2 that for each o > 0,
u, is a slowly decaying solution. For o >0, let V,(¢) .= r"u,(r), t =logr.



246 BAE AND CHANG

Setting O(7) :== Vp(t) — V,(?) for f>a >0 given, we see that © is positive
near —oo and satisfies

Ou+a0,+(p— DI 'O+G(r) =0, (3.6)
where
G(1) = —pL’'O(1) + ¢ "K(e)(V] = VD).

Suppose that there exists 7" € R such that ®(¢) > 0 on (—o0, T) and O(T) =
0. It follows from (3.2) that for t< T,

G < —pL’'O®1) + e "K(eHOWp V™

= — PO — K up(nF )
< 0.

Let g be a positive solution of the equation
qu+aq +@— DL 'g=0 (3.7)

such that e“(|q| + |¢;]) = 0 as t > —o0. Multiplying (3.6) by ¢, (3.7) by O,
and taking the difference, we have

(©,9 — Ogq,), + a(©,g — Og,) + qG(t) = 0. (3.8)

Multiplying (3.8) by ¢* and integrating over (—oo, T), we obtain

T

e TOT)¢(T) = —/ e“q(s)G(s) ds > 0.

—00

Thus, ©,T)>0, which is impossible. Therefore, V3> V,. Then, we
conclude that ug > u, >0 in R” for > o> 0, and (1.6) has the structure of
Type SS.

Since any solution u, has uniform bounds by (3.2) on any compact set in
(0, 00), the existence of a singular solution of (1.6) follows in a standard
method. We present a simple way to obtain the existence. Combining (3.2)
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and the fact that r~/K(r) is non-increasing, we have

—u(r) =r,% /0 " K s)s" ! ds

) o4 2P =
< / s T K (s ds
0

T
Ly L I e A I
<mrP*1 K(ry-1 / s p-bop-ldy
0
(- 1nHL»
= -
[(n—2)p = (n+ DI K(r)pp~!

Hence, u, is uniformly bounded on any compact subset of (0, 00) in « and
consequently, {u,} is equicontinuous on any compact subset. Since u, is
monotonically increasing, it follows from the Arzela—Ascoli Theorem that
U(r) = lim,_,  u,(r) is well-defined and continuous on (0, c0) and for each
>0,

L(n,p,1,1)
PP T

u,(r)< U<

Let Br, = {p<r = |x|<R}. Consider the following boundary problem:
Au+ K(r)UP =0, Ulop,, = U.

For each o > 0, by the maximum principle, u — u, > 0 and thus, u — U >0 in

Bgr,. Letting ¢, = ee", we have A(u — u, + ¢,) > 0 in Bg, for any fixed R, p

and ¢ if o is large enough. Letting o — oo and then ¢ — 0, we have u — U <0.

Hence, u= U in Bg, and u= U on (0,00). Therefore, U is a singular
solution of (1.6) and the proof of Theorem 1.2 is complete. 1

Remarks. (a) Let p > 2820 with ¢ > —2. If lim,o r "K(r) = ko > 0 and
d
15 oxo] <.
0 dl" +
then (1.6) has at most one positive radial singular solution U and if it exists,
a2
lir% =1 U(r) = L(n, p, 0, ko).
r—

(See Corollary 4.3 in [16].)
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(b) Let p > 2420 with /> —2. If lim, oo 1 'K(r) = ¢ > 0 and

/‘[%oﬂKmﬂ+<m,

then every positive radial solution u of (1.6) near co has the asymptotic
behavior

lim u(r) = L(n,p,l,¢) or 0.
Fr—00

(See Theorem 1 in [10].)
(c) Let p> 1. If lim, o, 7*K(r) = ¢ > 0 and

ufﬁjv%vﬂ+<m,

then every positive radial solution u of (1.6) near oo has the asymptotic
behavior

1
lim (logry—1u(r) = L(n,p,—2,c¢) or 0.

(See Theorem 2 in [10].)

(d) In Corollaries 1.3 and 1.4, the asymptotic behaviors when K(r) ~ ¢
at oo for some d>= — 2, follow easily from (a)—(c). For the case of / — ¢
< — 2 in Corollary 1.3, we have

I '
U, (|x|) = ¢y + ug 4 ,
( |) (n— Z)Cl)n /R” lx — y|)172(1 + |y|r) (y) 'y

where o, denotes the surface area of the unit sphere in R”. (See Lemmas 2.3,
2.6 and 2.8 in [12] with minor modifications.) Theorem 2.9 in [12] implies
¢y > 0. Indeed, if ¢, = 0, then u(r) = O("~?) at 00, a contradiction. Then, by
Theorem 2.13 in [12], the desired asymptotic behavior in Corollary 1.3 is
obtained. Since u, is monotonically increasing to U, we see that by the
Monotone Convergence Theorem,

U(lxl) = ¢ +

1 / ! U0 dy.
(n— 2w, Jrr |x — y" (1 + )

Since p=p.(n,[) > Z—jé and " U(r) converges to L(n,p,l,1) at 0, U also has
the corresponding asymptotic behavior.
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(e) Theorem B implies that (1.10) and (1.12) have the structure of Type S
p=>m22and p>1 4 24 respectively.

(f) For Eq. (1.11) and related topics, e.g., asymptotic behavior, radial

symmetry, existence of a positive solution carrying a finite total mass, we

Ie

13.

14.

15.

16.

18.

fer the readers to [9,11, 13-15, 18, 21].
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