
On Logics for Coalgebraic Simulation

Corina Ĉırstea1

School of Electronics and Computer Science
University of Southampton

Abstract

We investigate logics for coalgebraic simulation from a compositional perspective. Specifically, we
show that the expressiveness of an inductively-defined language for coalgebras w.r.t. a given notion
of simulation comes as a consequence of an expressivity condition between the language constructor
used to define the language for coalgebras, and the relator used to define the notion of simulation.
This result can be instantiated to obtain Baltag’s logics for coalgebraic simulation, as well as a logic
which captures simulation on unlabelled probabilistic transition systems. Moreover, our approach
is compositional w.r.t. coalgebraic types. This allows us to derive logics which capture other notions
of simulation, including trace inclusion on labelled transition systems, and simulation on discrete
Markov processes.

Keywords: coalgebra, simulation, modal logic

1 Introduction

Simulations are widely used in computer science, typically to prove refinement
relations between dynamical systems. The connection between simulations
and coalgebra was probably first noted in [13] (see also [8]), where the objec-
tive was to prove refinement relations between recursively-defined programs.
This connection was further investigated in [1], where logics capturing sim-
ulation were also studied. Additional properties of coalgebraic simulations,
including a characterization of the similarity relation on the final coalgebra,
were subsequently proved in [10].

The method used in [1] to define logics for simulation builds on, and at the
same time generalizes the approach described in [12] for defining expressive

1 Email: cc2@ecs.soton.ac.uk

Electronic Notes in Theoretical Computer Science 106 (2004) 63–90

1571-0661 © 2004 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.02.026
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82193059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:cc2@ecs.soton.ac.uk
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

logics for bisimulation. The resulting logics are generic in coalgebraic types,
and employ a single modal operator derived directly from the coalgebraic
signature. These logics are, however, difficult to use in actual specification, as
their syntax does not reflect the structure of the underlying types.

The present paper describes a compositional method for defining logics
which capture simulation. This method allows logics for combinations of coal-
gebraic types to be derived from logics for the types being combined. Thus, the
structure of the underlying types is reflected in the modal operators employed
by the resulting logics.

A similar approach to defining logics was taken in [5], where logics captur-
ing bisimulation were investigated from a compositional perspective. Specif-
ically, it was shown in [5] that the expressiveness w.r.t. bisimulation of an
inductively-defined language for coalgebras follows from an expressivity con-
dition referring to one step in the definition of the language. In the case of
logics for simulation, the situation is more complex. On the one hand, ways
to combine notions of simulation for different coalgebraic types are needed.
On the other hand, the sought logics must be tailored to particular notions
of simulation, and therefore the expressivity condition used in [5] must be
adapted accordingly.

The paper is structured as follows. In Section 2, we recall the coalge-
braic approach to defining simulation. In Section 3, we provide an alternative
characterization of monotonic relators, the concept underlying the definition of
coalgebraic simulation [13,8], and use this characterization to define a notion of
simulation for unlabelled probabilistic transition systems. Next, in Section 4,
we propose an inductive method for defining logics which capture simulation,
much in the spirit of [5]. Using this method, the expressiveness of a logic
for simulation comes as a consequence of an expressivity condition between a
language constructor and a monotonic relator. This method can be applied
to obtain the logics defined in [1], as well as a logic capturing simulation on
unlabelled probabilistic transition systems. Finally, in Section 5, we show that
our method for defining logics for simulation is compositional w.r.t. coalge-
braic types. Operations on coalgebraic types, including functor composition,
product, coproduct and exponentiation are shown to induce corresponding op-
erations on monotonic relators on the one hand, and on language constructors
on the other. Moreover, the resulting operations are shown to preserve the
previously-mentioned expressivity condition. This allows us to derive logics
which capture trace inclusion on labelled transition systems and simulation on
discrete Markov processes, respectively. In the latter case, the logic obtained
is essentially the logic considered in [7]. Thus, in this case, we obtain both a
coalgebraic characterization of simulation on discrete Markov processes, and

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–9064

an alternative proof of expressiveness of the logic in [7] w.r.t. simulation.

2 Preliminaries

Here we fix the notation for subsequent sections, recall some basic definitions
and results concerning relations and respectively coalgebras, and summarize
the coalgebraic approach to defining simulation.

2.1 Relations

We write Rel for the category having objects given by tuples 〈A, B, R〉 with
R ⊆ A×B, and arrows from 〈A, B, R〉 to 〈C, D, S〉 given by pairs 〈f, g〉 with
f : A → C and g : B → D such that (f × g)(R) ⊆ S.

Remark 2.1 This is not the only way of defining a category of relations. One
can also consider the category having, as objects, pairs consisting of a set and
a binary relation on it, and as arrows, functions between sets which preserve
the relations. Yet another possibility is to consider the category having sets
as objects and relations as arrows. All these categories are usually denoted
Rel. Our own definition of Rel follows [10].

Given a relation R ⊆ A × B, we write πR
1 and πR

2 for π1 ◦ ι : R → A and
π2 ◦ ι : R → B, respectively, where π1 : A × B → A and π2 : A × B → B are
the product projections, and where ι : R → A×B is the inclusion map. Also,
we write R

op
for the converse of a relation R, and Grf ⊆ A×B for the relation

defining the graph of a function f : A → B. The composition of relations
R ⊆ A × B and S ⊆ B × C is denoted S ◦ R ⊆ A × C.

We let U : Rel → Set × Set denote the functor taking relations to the
underlying sets. Then, U is a fibration 2 . For, given f : A → C, g : B → D and
S ⊆ C × D, letting a R b if and only if f(a) S g(b) makes 〈f, g〉 : 〈A, B, R〉 →
〈C, D, S〉 a cartesian map. The cartesian maps of U are thus the relation-
reflecting maps in Rel.

We also let Preord denote the category of preorders and monotonic maps.
Then, Preord is (isomorphic to) a sub-category of Rel. Moreover, if V :
Preord → Set takes preorders to the underlying sets, then V is a fibration.
The cartesian maps of V are the order-reflecting maps in Preord.

The following also holds:

Proposition 2.2 Rel and Preord are complete categories.

2 See [3] for a definition of this notion.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–90 65

Limits in Rel and Preord are constructed from limits in Set and limits in
certain fibres of U and V, respectively.

2.2 Coalgebras

For an endofunctor T : C → C, a T-coalgebra is a pair 〈C, γ〉 with γ : C → TC
a C-arrow. Also, a T-coalgebra homomorphism from 〈C, γ〉 to 〈D, δ〉 is a C-
arrow f : C → D such that Tf ◦ γ = δ ◦ f . In what follows, we will consider
coalgebras over the categories Set, Rel and Preord.

Example 2.3 A-labelled, image-finite transition systems can be modelled as
coalgebras of the functor (Pω)A, where Pω : Set → Set takes a set to the set of
its finite subsets and a function to its direct image, and XA denotes the set of
functions A → X. The functors Pω and (Pω)A preserve weak pullbacks and
are ω-accessible 3 .

Example 2.4 A-labelled probabilistic transition systems can be modelled as
coalgebras of the functor (1 + Dω)A : Set → Set, where Dω : Set → Set is the
finite probability distribution functor , defined by:

DωX = {µ : X → [0, 1] | supp(µ) finite ,
∑

x∈X

µ(x) = 1 } for X ∈ |Set|

with supp(µ) = { x ∈ X | µ(x) �= 0 } for µ : X → [0, 1], and:

(Dωf)(µ)(y) = µ[f−1({y})] for f : X → Y , µ ∈ DωX , and y ∈ Y

with µ[Z] =
∑
x∈Z

µ(x) for µ : X → [0, 1] and Z ⊆ X. The functor Dω preserves

weak pullbacks (see e.g. [12]), and so do the functors 1 + Dω and (1 + Dω)A.
Also, all these functors are ω-accessible.

Given T : Set → Set, a T-bisimulation between T-coalgebras 〈C, γ〉 and
〈D, δ〉 is a relation R ⊆ C × D carrying a T-coalgebra structure ρ : R → TR
which makes πR

1 : R → C and πR
2 : R → D T-coalgebra homomorphisms. The

largest T-bisimulation between 〈C, γ〉 and 〈D, δ〉 is called T-bisimilarity and
is denoted �.

Example 2.5 A notion of bisimulation equivalence for probabilistic transi-
tion systems was defined in [11]. Moreover, it was shown in [6] that this
notion is essentially the same as (1 + Dω)A-bisimulation. The following char-
acterization of 1+Dω-bisimulation was also given in [6]: a relation R ⊆ C×D

3 For a regular cardinal κ, an endofunctor is κ-accessible if it preserves κ-filtered colimits.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–9066

is a 1 + Dω-bisimulation between 〈C, γ〉 and 〈D, δ〉 if and only if c R d im-
plies γ(c)[X] = δ(d)[Y] 4 for any X ⊆ C and Y ⊆ D such that (πR

1)−1(X) =
(πR

2)−1(Y).

For an endofunctor T : C → C on a complete category, the final sequence
of T is an ordinal-indexed sequence (Zα) of C-objects, together with a family
(pα

β : Zα → Zβ)β≤α of C-arrows, subject to the following conditions:

(i) Zα+1 = TZα

(ii) pα+1
β+1 = Tpα

β for β ≤ α

(iii) pα
α = 1Zα

(iv) pα
γ = pβ

γ ◦ pα
β for γ ≤ β ≤ α

(v) if α is a limit ordinal, the cone Zα, (pα
β)β<α for (pβ

γ)γ≤β<α is limiting.

The final sequence of T is uniquely defined by these conditions.

Remark 2.6 Given T : C → C as above, one can define, for each T-coalgebra
〈C, γ〉, a cone (γα : C → Zα) over the final sequence of T:

• γα = Tγβ ◦ γ, if α = β + 1;

• γα is the unique C-arrow satisfying pα
β ◦ γα = γβ for each β < α, if α is a

limit ordinal.

Then, T-coalgebra homomorphisms f : 〈C, γ〉 → 〈D, δ〉 define morphisms of
cones f : (γα : C → Zα) → (δα : D → Zα). That is, δα ◦ f = γα for any α.

Under some mild constraints on C and T, the final sequence of T can be
used to construct a final T-coalgebra.

Proposition 2.7 ([14]) If T : C → C is an accessible endofunctor on a locally
presentable category 5 , and if T preserves monics, then the final sequence of T
stabilizes at some α 6 , and moreover, Zα is the carrier of a final T-coalgebra.

Moreover, in the case of ω-accessible endofunctors on Set, the cardinal α
of Proposition 2.7 is at most ω + ω.

Proposition 2.8 ([14]) If T : Set → Set is ω-accessible, then the map pω+ω+1
ω+ω :

Zω+ω+1 → Zω+ω is an isomorphism, whereas the maps pω+n+1
ω+n : Zω+n+1 →

Zω+n with n = 0, 1, . . . are all injective.

4 By convention, γ(c)[X] = 0 if γ(c) ∈ ι1(1).
5 Each of the categories Set, Rel and Preord are locally ω-presentable.
6 That is, pα+1

α : Zα+1 → Zα is an isomorphism.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–90 67

2.3 Simulations

Notions of simulation between coalgebras have been studied in [13,8,1,10]. A
summary of these approaches is given in the following. For this, we fix an
endofunctor T : Set → Set.

The concept which lies at the heart of defining simulations is that of a
relator. A (T-)relator [13] is a mapping from relations to relations, taking
relations on A×B to relations on TA× TB. A monotonic (T-)relator [13] is
required to satisfy some additional constraints, including preservation of in-
clusions between relations and preservation of relational composition. These
constraints result in monotonic T-relators being essentially the same as endo-
functors Γ : Rel → Rel satisfying:

(i) U ◦ Γ = (T × T) ◦ U;

(ii) =TA ⊆ Γ(=A);

(iii) Γ(S ◦ R) = Γ(S) ◦ Γ(R) for any R ⊆ A × B and S ⊆ B × C.

In the sequel, we will identify monotonic relators with such endofunctors.

A generic example of a relator is the minimal relator induced by T [13],
denoted Γm : Rel → Rel, and defined by:

Γm(R) = 〈TπR
1 , TπR

2 〉(TR) ⊆ TA × TB for R ⊆ A × B

The minimal relator induced by T is monotonic if and only if T preserves
weak pullbacks. Although not explicitly stated in [13], this observation is an
immediate consequence of the results in [13, Section 2.2]. Irrespective of the
preservation of weak pullbacks by T, the minimal relator is contained in any
monotonic relator Γ, that is, Γm(R) ⊆ Γ(R) for any relation R. Moreover, any
monotonic relator Γ can be defined in terms of its action on equality relations
and of Γm:

Γ(R) = Γ(=B) ◦ Γm(R) ◦ Γ(=A) for any R ⊆ A × B (1)

Given a T-relator Γ : Rel → Rel, the transposed relator Γ∼ takes a relation
R ⊆ A × B to the relation (Γ(Rop))op ⊆ TA × TB.

Example 2.9 The minimal Pω-relator Γm : Rel → Rel takes a relation R ⊆
A × B to the relation Γm(R) ⊆ PωA × PωB defined by:

X Γm(R) Y iff (∀x ∈ X.∃ y ∈ Y. xR y and ∀ y ∈ Y.∃x ∈ X. xR y)

for X ∈ PωA, Y ∈ PωB. Another Pω-relator Γ⊇ : Rel → Rel can be defined
by:

X Γ⊇(R) Y iff ∀ y ∈ Y.∃x ∈ X. xR y

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–9068

Both Γm and Γ⊇ are monotonic relators. Moreover, Γ⊇(R) =⊇B ◦Γm(R)◦ ⊇A,
where ⊇A and ⊇B are the containment relations on PωA and PωB, respec-
tively. We also note that Γ⊇ preserves monics and is ω-accessible. (This
observation will be used later in the paper.) Finally, the transposed relator
Γ⊆ = (Γ⊇)∼ is given by:

X Γ⊆(R) Y iff ∀x ∈ X.∃ y ∈ Y. xR y

[13] also shows the existence of a one-to-one correspondence between mono-
tonic relators and so-called monotonic extensions of T. These are functors
 : Set → Preord such that:

(i) V◦= T;

(ii) if A ⊆ B then u A v iff u B v for any u, v ∈ TA;

(iii) (monotonicity) the following holds for f : A → C, g : B → C, u ∈ TA
and v ∈ TB:

(Tf)(u) (Tg)(v) ⇒ u (Γ�{ (a, b) ∈ A × B | f(a) = g(b) }) v (2)

where Γ� : Rel → Rel denotes the relator induced by , defined by:

Γ�(R) =B ◦Γm(R) ◦ A for R ⊆ A × B

Monotonic extensions induce monotonic relators, and moreover, any mono-
tonic relator Γ arises from a unique monotonic extension Γ, given by:

Γ,A = Γ(=A) for A ∈ |Set| (3)

Finally, any monotonic relator Γ restricts to an endofunctor on Preord, itself
denoted Γ.

Example 2.10 The functor ⊇: Set → Preord taking a set A to the contain-
ment relation ⊇A on PωA defines a monotonic extension of Pω. The corre-
sponding monotonic relator is Γ⊇, as defined in Example 2.9.

The following is a reformulation of the definition of simulation given in [13]
(see also [10]).

Definition 2.11 Let Γ : Rel → Rel be a monotonic relator. A Γ-simulation
between T-coalgebras 〈C, γ〉 and 〈D, δ〉 is a Γ-coalgebra 〈〈C, D, R〉, 〈γ, δ〉〉.
The largest Γ-simulation between 〈C, γ〉 and 〈D, δ〉 is called Γ-similarity and
is denoted �. If c ∈ C, d ∈ D are such that c � d, we say that c simulates d.

A Γ-simulation between 〈C, γ〉 and 〈D, δ〉 is thus given by a relation R ⊆
C × D such that c R d implies γ(c) Γ(R) δ(d) for any c ∈ C and d ∈ D.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–90 69

By taking the relator Γ of Definition 2.11 to be the minimal relator induced
by T, we recover the definition of a T-bisimulation: a relation R ⊆ C ×D is a
T-bisimulation between 〈C, γ〉 and 〈D, δ〉 if γ(c) 〈TπR

1 , TπR
2 〉(TR) δ(d) holds

whenever c R d.

Example 2.12 Let Γm and Γ⊇ be as in Example 2.9. Then, Γm-simulations
are the same as Pω-bisimulations. Also, a relation R ⊆ C × D is a Γ⊇-
simulation between Pω-coalgebras 〈C, γ〉 and 〈D, δ〉 if, whenever c R d and
d′ ∈ δ(d), there exists c′ ∈ γ(c) such that c′ R d′.

Remark 2.13 A notion of weak monotonic relator was also defined in [1],
based on ideas from [13]. This notion is similar to that of a monotonic relator,
only in [1] a different category of relations, having sets as objects and relations
as arrows, was considered. In this setting, the notion of relator does not
depend on an endofunctor T : Set → Set. Instead, the fact that Set is a sub-
category of the above-mentioned category of relations can be used to define
what it means for a weak monotonic relator to extend an endofunctor T. A
result in [4] then shows that a minimal relator extending T exists precisely
when T preserves weak pullbacks. A notion of simulation induced by a weak
monotonic relator was also defined in [1]. This notion is essentially the same
as that of Definition 2.11. However, since the two definitions involve different
categories of relations, it is not possible to directly transfer results between
the two approaches.

In [10], functors : Set → Preord satisfying V◦= T were taken as prim-
itive, and lax relation lifting functors Rel�(T) : Rel → Rel, defined similarly
to the relators Γ�, were considered. The difference w.r.t. [13] is that only
the first condition in the definition of monotonic extensions was required of
the functors : Set → Preord. As a result, the induced lax relation lifting
functors are not necessarily monotonic relators. However, once monotonicity
is assumed, the setting of [10] coincides with that of [13].

It is shown in [10] that monotonicity of a relator Γ results in Γ-similarity
enjoying some nice properties.

Proposition 2.14 ([10]) The following hold for a monotonic relator Γ :
Rel → Rel:

(i) Γ-similarity on a T-coalgebra 〈C, γ〉 is a preorder on C;

(ii) given T-coalgebra homomorphisms f : 〈A, α〉 → 〈B, β〉 and g : 〈C, γ〉 →
〈D, δ〉, a � c if and only if f(a) � g(c), for a ∈ A and c ∈ C;

(iii) similarity on the final T-coalgebra is the final Γ-coalgebra.

Remark 2.15 By taking f and g in (ii) of Proposition 2.14 to be the unique

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–9070

homomorphisms !α : 〈A, α〉 → 〈Z, ζ〉 and !γ : 〈C, γ〉 → 〈Z, ζ〉 into the final T-
coalgebra, we obtain that Γ-similarity between 〈A, α〉 and 〈C, γ〉 is the domain
of the cartesian map 〈!α, !γ〉 induced by the Γ-similarity relation on the final
T-coalgebra. This observation, together with (iii) of Proposition 2.14, will
later allow us to define logics which capture Γ-similarity.

3 Monotonic Relators Revisited

Here we give an alternative characterization of monotonic relators. This char-
acterization will prove more convenient for our purposes; in particular, it will
allow us to define a notion of simulation for probabilistic transition systems.
The alternative characterization has a more categorical flavour than the orig-
inal definition, as it replaces the preservation of relational composition by a
monotonic relator by preservation of a property of arrows in Rel.

Proposition 3.1 Let T : Set → Set, and let Γ : Rel → Rel be such that:

(i) U ◦ Γ = (T × T) ◦ U;

(ii) =TA ⊆ Γ(=A).

Then, Γ is a monotonic relator if and only if Γ preserves cartesian maps.

Proof. Any monotonic relator Γ is uniquely determined by its induced mono-
tonic extension Γ , defined by (3). It therefore suffices to prove that, in the
presence of (i) and (ii) above, condition (2) of Section 2.3 is equivalent to the
preservation by Γ of cartesian maps.

We begin by noting that (2) is equivalent to Γ preserving cartesian maps
of form 〈f, g〉 : 〈A, B, R〉 → 〈C, C, =C〉. Thus, one half of the previously-
mentioned equivalence follows immediately. To prove the other half, assume
that Γ is a monotonic relator. Then, observe that by taking g = 1C and
respectively f = 1C in (2), we obtain:

ΓGr(f) =Γ,C ◦Gr(Tf) Γ(Gr(g)
op

) = Gr(Tg)
op ◦ Γ,C (4)

Now let 〈f, g〉 : 〈A, B, R〉 → 〈C, D, S〉 be a cartesian map. Thus, R = Gr(g)
op ◦

S ◦ Gr(f). The fact that 〈Tf, Tg〉 : 〈TA, TB, ΓR〉 → 〈TC, TD, ΓS〉 is itself a
cartesian map, i.e. ΓR = Gr(Tg)

op ◦ ΓS ◦ Gr(Tf), follows from:

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–90 71

ΓR =

Γ(Gr(g)
op

) ◦ ΓS ◦ Γ(Gr(f)) = (4)

Gr(Tg)
op ◦ Γ,D ◦ΓS ◦ Γ,C ◦Gr(Tf) = (1)

Gr(Tg)
op ◦ Γ,D ◦ Γ,D ◦ΓmS ◦ Γ,C ◦ Γ,C ◦Gr(Tf) =

Gr(Tg)
op ◦ Γ,D ◦ΓmS ◦ Γ,C ◦Gr(Tf) = (1)

Gr(Tg)
op ◦ ΓS ◦ Gr(Tf)

The first of the above equalities uses the preservation of relational composition
by Γ, whereas the fourth equality exploits the fact that Γ,C and Γ,D are
preorders. Hence, Γ preserves cartesian maps. This concludes the proof. �

Thus, monotonic relators can alternatively be defined as functors satisfying
(i) and (ii) of Proposition 3.1 and preserving cartesian maps. This observation
will be used extensively in what follows.

Remark 3.2 It is also possible to give a fully categorical characterization of
monotonic relators, namely by replacing condition (ii) of Proposition 3.1 by
the requirement that Γ restricts to an endofunctor on Preord. However, for
the purposes of this paper, the characterization provided by Proposition 3.1
is the most useful one.

Remark 3.3 The proof of Proposition 3.1 also gives:

Γ(Gr(g)
op

) ◦ ΓS = Gr(Tg)
op ◦ ΓS ΓS ◦ Γ(Gr(f)) = ΓS ◦ Gr(Tf)

for any f : A → C, g : B → D and S ⊆ C × D.

Since all the relators considered in the following are monotonic, from now
on we will simply use the term (T-)relator to refer to a monotonic (T-)relator.

We now define a relator for probabilistic transition systems, and investigate
the notion of simulation induced by this relator.

3.1 Probabilistic Simulation

In defining a notion of simulation for unlabelled probabilistic transition sys-
tems (modelled as 1+Dω-coalgebras), it will prove convenient to work with an
endofunctor slightly more general than 1 + Dω. Specifically, we will consider
the finite sub-probability distribution functor Sω : Set → Set, defined by:

SωX = {µ : X → [0, 1] | supp(µ) finite ,
∑

x∈X

µ(x) ≤ 1 } for X ∈ |Set|

(Sωf)(µ)(y) = µ[f−1({y})] for f : X → Y , µ ∈ SωX , and y ∈ Y.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–9072

The coalgebraic type Sω is a generalization of the coalgebraic type 1 +Dω, in
a sense made precise in the following.

Remark 3.4 Any 1 + Dω-coalgebra can be regarded as an Sω-coalgebra. To
see this, let η : 1 + Dω ⇒ Sω be the natural transformation given by:

ηX(ι1(∗))(x) = 0 for x ∈ X

ηX(ι2(µ)) = µ

with X ∈ |Set|. Then, η induces a functor Uη : Coalg(1 + Dω) → Coalg(Sω),
which takes a 1 + Dω-coalgebra 〈C, γ〉 to the Sω-coalgebra 〈C, ηC ◦ γ〉.

By using Sω to model unlabelled probabilistic transition systems, we pro-
vide a unified treatment of terminal states (i.e. states for which no transition
is possible) and non-terminal ones.

Proposition 3.5 Sω preserves weak pullbacks and is ω-accessible.

An Sω-relator can now be defined by relaxing the conditions in the char-
acterization of 1 + Dω-bisimulation (see Example 2.5).

Definition 3.6 Let Γω : Rel → Rel be such that:

• Γω takes R ⊆ A × B to ΓωR ⊆ SωA × SωB, where µ (ΓωR) ν if and only if
µ[X] ≥ ν[Y] for any X ⊆ A and Y ⊆ B such that (πR

1)−1(X) ⊇ (πR
2)−1(Y);

• Γω takes 〈f, g〉 : 〈A, B, R〉 → 〈C, D, S〉 to 〈Sωf,Sωg〉.
To see that Γω is well-defined on arrows, let 〈f, g〉 be as above, let µ ∈ SωA,

ν ∈ SωB be such that µ (ΓωR) ν, and let U ⊆ C, V ⊆ D be such that
(πS

1)−1(U) ⊇ (πS
2)−1(V). An easy calculation shows that (πR

1)−1(f−1(U)) ⊇
(πR

2)−1(g−1(V)). This, together with µ (ΓωR) ν now gives (Sωf)(µ)[U] ≥
(Sωg)(ν)[V]. Thus, (Sωf)(µ) (ΓωS) (Sωg)(ν).

Proposition 3.7 Γω is a relator.

Proof. The first two requirements in the definition of a relator (see e.g. (i)
and (ii) of Proposition 3.1) are immediately verified. To see that Γω preserves
cartesian maps, let 〈f, g〉 : 〈A, B, R〉 → 〈C, D, S〉 be a relation-reflecting map,
let µ ∈ SωA, ν ∈ SωB be such that (Sωf)(µ) (ΓωS) (Sωg)(ν), and let X ⊆ A,
Y ⊆ B be such that (πR

1)−1(X) ⊇ (πR
2)−1(Y). Also, let U = { c ∈ C | c =

f(a)implies a ∈ X } and V = g(Y). Then, X ⊇ f−1(U), g−1(V) ⊇ Y , and
(πS

1)−1(U) ⊇ (πS
2)−1(V). (Sωf)(µ) (ΓωS) (Sωg)(ν) now gives (Sωf)(µ)[U] ≥

(Sωg)(ν)[V], and therefore µ[X] ≥ µ[f−1(U)] ≥ ν[g−1(V)] ≥ ν[Y]. We have
thus proved that µ (ΓωR) ν. �

We now characterize the restriction of Γω to Preord.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–90 73

Proposition 3.8 Let R be a preorder on A, and let µ, ν ∈ SωA. Then:

µ (ΓωR) ν iff µ[Y] ≥ ν[Y] for any R
op

-closed Y ⊆ A (5)

Proof. We begin by noting that, if X, Y ⊆ A, then (πR
1)−1(X) ⊇ (πR

2)−1(Y)
translates to X ⊇ Y , where Y = { a ∈ A | ∃ y ∈ Y. a R y }. Also, the reflexivity
and transitivity of R

op
give Y ⊇ Y and Y R

op
-closed 7 . First, let Y ⊆ A be

an R
op
-closed set. Then, (πR

1)−1(Y) ⊇ (πR
2)−1(Y) (as Y ⊇ Y), and hence, by

the definition of Γω, µ[Y] ≥ ν[Y]. Next, let X, Y ⊆ A be such that X ⊇ Y .
Then, since Y is R

op
-closed, it follows by (5) that µ[Y] ≥ ν[Y]. We also have

µ[X] ≥ µ[Y] (as X ⊇ Y) and ν[Y] ≥ ν[Y] (as Y ⊇ Y). Hence, µ[X] ≥ ν[Y].�

Next, we investigate the notion of simulation induced by Γω. For simplicity,
we consider Γω-simulation on a single Sω-coalgebra 〈C, γ〉. In this case, a
relation R ⊆ C × C is a Γω-simulation if, whenever c R d and X ⊆ C is
R

op
-closed, we have γ(c)[X] ≥ γ(d)[X]. The condition that X is R

op
-closed

amounts to X being closed under simulation, that is, if x ∈ X and y simulates
x, then also y ∈ X. The requirement γ(c)[X] ≥ γ(d)[X] asks that a one-step
transition from c is at least as likely to end in a state in X as a one-step
transition from d is, whenever X is closed under simulation.

The restriction of Γω to Preord satisfies the hypotheses of Proposition 2.7.

Proposition 3.9 Γω : Preord → Preord preserves monics and is ω-accessible.

Proof (Sketch). The key observation for proving ω-accessibility is that, for
µ, ν ∈ SωA, we have:

µ (ΓωR) ν iff µ�Z (Γω(R�Z×Z)) ν�Z

where Z = supp(µ) ∪ supp(ν), and µ�Z , ν�Z ∈ Sω(A ∩ Z). �

Remark 3.10 A notion of simulation for probabilistic transition systems has
also been defined in [7], namely as a preorder R on the set S of states of a
probabilistic transition system, such that s R t implies τa(s, X) ≤ τa(t, X) for
any R-closed X ⊆ S (with τa(s, X) giving the probability of reaching a state
in X via an a-labelled transition from s). It then follows by the previous
characterization of Γω : Preord → Preord that R is a simulation preorder
according to [7] (in the unlabelled case) if and only if R

op
is a simulation

preorder w.r.t. Γω.

7 Given a preorder 〈A, R〉, a subset Y ⊆ A is R
op

-closed if y ∈ Y and a R y imply a ∈ Y .

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–9074

4 Logics for Simulation

We now describe an inductive method for defining logics which capture sim-
ulation. We use a notion of language constructor to capture one step in the
definition of a language for coalgebras, and show that the expressiveness of
the resulting language w.r.t. a given notion of simulation follows from an ex-
pressivity condition involving the language constructor and the given relator.

4.1 Basic Definitions

The notion of language, as defined below, will be needed when defining lan-
guage constructors. A variant of this notion was used in [5].

Definition 4.1 A language is a tuple 〈X,L, |=〉, with X a set (the semantic
domain), L a set (of formulae) containing a distinguished element �, and
|=⊆ X × L a binary relation such that X × {�} ⊆ |= .

A map between languages 〈X,L, |=〉 and 〈X ′,L′, |=′〉 is a pair 〈f, l〉,
with f : X ′ → X and l : L → L′ being such that:

(i) l(�) = �,

(ii) f(x′) |= ϕ if and only if x′ |=′ l(ϕ), for x′ ∈ X ′ and ϕ ∈ L.

The category of languages and maps between them is denoted Lang.

Thus, the only propositional structure which is required of a language is the
formula �, interpreted as true. Additional propositional structure, including
conjunction and disjunction, will be required in concrete examples.

Given a language 〈X,L, |=〉 and a formula ϕ ∈ L, we write �ϕ� for the set
{ x ∈ X | x |= ϕ }.
Remark 4.2 Any language 〈X,L, |=〉 induces a logical map s : X → PL,
defined by s(x) = {ϕ ∈ L | x |= ϕ } for x ∈ X. Then, condition (ii) defining
maps between languages is equivalent to s ◦ f = P̂l ◦ s′, where P̂ : Set → Set
is the contravariant powerset functor.

We let E : Lang → Set
op

denote the functor taking languages to their
semantic domains, and maps between languages to the underlying functions
between the semantic domains. The next two results have been proved in [5]
for a slightly different notion of language, but they also hold in the present
setting.

Lemma 4.3 E is a cofibration 8 .

8 See [3] for a definition.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–90 75

Proof (Sketch). Given 〈X,L, |=〉 and f : X ′ → X, let |=′ ⊆ X ′×L be given
by x′ |=′ ϕ if and only if f(x′) |= ϕ. Then, 〈f, 1L〉 : 〈X,L, |=〉 → 〈X ′,L, |=′〉 is
a cocartesian map. �

Proposition 4.4 Lang is cocomplete.

Proof (Sketch). Colimits in Lang are constructed from colimits in Set
op

and
colimits in certain fibres of E. �

For instance, an initial object in Lang is given by the language 〈1, {�}, |=〉
with |= = 1× {�}. Proposition 4.4 will later allows us to join languages with
different (but related) semantic domains.

We now use the notion of language constructor (a variant of which was
introduced in [5]) to formalise one step in the definition of a language for
coalgebras.

Definition 4.5 Let T : Set → Set be an arbitrary endofunctor. A language
constructor for T is an endofunctor F : Lang → Lang satisfying E ◦ F =
T

op ◦ E.

Thus, a language constructor takes a language of form 〈X,L, |=〉 to a
language of form 〈TX,L′, |=′〉.
Example 4.6 Let F⊇ : Lang → Lang denote the language constructor for Pω

which takes 〈X,L, |=〉 to 〈PωX, ({�} ∪ {�ϕ | ϕ ∈ L})∧, |=′〉, where ()∧ de-
notes closure under binary conjunctions, and where |=′ is the natural extension
of the relation defined by:

Y |=′ �ϕ iff ∃ y ∈ Y. y |= ϕ (Y ∈ PωX , ϕ ∈ L)

to formulae containing conjunctions.

In [5], we were interested in the ability of (the formulae of) a language
to characterize elements of the underlying semantic domain. Here, we are
interested in characterizing certain relations on the semantic domain.

Definition 4.7 Let 〈X,L, |=〉 be a language, and let 〈X, R〉 be a preorder.
Given x, y ∈ X, we write y ≥L x if y |= ϕ whenever x |= ϕ, with ϕ ∈ L.
Then, 〈X,L, |=〉 is called adequate for 〈X, R〉 if R ⊆≥L, and expressive
for 〈X, R〉 if, in addition, R ⊇≥L.

Thus, adequacy of a language 〈X,L, |=〉 for a preorder 〈X, R〉 amounts to
the logical map s : X → PL defining a map s : 〈X, R〉 → 〈PL,⊇〉 in Preord,
whereas expressiveness of 〈X,L, |=〉 for 〈X, R〉 amounts to s being a cartesian
(or order-reflecting) map.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–9076

Definition 4.8 Let Γ : Rel → Rel be a T-relator. A language constructor
for T preserves expressiveness w.r.t. Γ if it takes a language 〈X,L, |=〉
expressive for 〈X, R〉 to a language 〈TX,L′, |=′〉 expressive for 〈TX, ΓR〉.
Example 4.9 It is relatively easy to check that the language constructor F⊇
from Example 4.6 preserves expressiveness w.r.t. Γ⊇. The only challenge is to
define a formula φ ∈ L′ which holds in Z but not in Y , whenever Y (Γ⊇R) Z
does not hold (having assumed that L is expressive w.r.t. R). First, the fact
that Y (Γ⊇R) Z does not hold gives z ∈ Z such that y R z does not hold for
any y ∈ Y . The expressiveness of L w.r.t. R then gives, for each y ∈ Y , a
formula ϕy such that z |= ϕy but y �|= ϕy. Then, the formula �(

∧
y∈Y

ϕy) holds

in Z but not in Y .

The next two subsections contain two more examples of language construc-
tors. We first consider a language constructor which mirrors the construction
of Baltag’s logics for coalgebraic simulation [1], and prove that it preserves
expressiveness w.r.t. the underlying relator. We then define a language con-
structor for probabilistic transition systems, and prove that it preserves ex-
pressiveness w.r.t. the relator defined in Section 3.1.

4.2 Baltag’s Logics for Coalgebraic Simulation

Let T : Set → Set be a functor which preserves inclusions, and let Γ : Rel → Rel
be a T-relator. Also, let FΓ : Lang → Lang be defined by:

• FΓ takes 〈X,L, |=〉 to 〈TX, (TL)
V

, (Γ|=)
V〉, where (TL)

V

denotes the clo-
sure of TL under arbitrary conjunctions, and (Γ|=)

V

is the natural extension
of Γ|= to formulae containing conjunctions. We let � =

∧ ∅ ∈ (TL)
V

.

• FΓ takes 〈f, l〉 : 〈X1,L1, |=1〉 → 〈X2,L2, |=2〉 to 〈Tf, (Tl)
V〉, where (Tl)

V

:
(TL1)

V → (TL2)
V

denotes the unique extension of Tl to a function preserv-
ing conjunctions.

For FΓ to be well-defined, we must prove that:

(Tf)(t) (Γ|=1) φ iff t (Γ|=2) (Tl)(φ) (6)

for any 〈f, l〉 : 〈X1,L1, |=1〉 → 〈X2,L2, |=2〉, any t ∈ TX2 and any φ ∈ (TL1)
V

.

Lemma 4.10 Let 〈X,L, |=〉 be a language with logical map s : X → PL, and
let e : TP̂ ⇒ P̂T be given by eX(U) = { t ∈ TX | U (Γ�) t } for X ∈ |Set| and
U ∈ TPX 9 . Then:

9 Here, � denotes the converse of the membership relation.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–90 77

(i) e is a natural transformation;

(ii) The logical map s′ : TX → PTL induced by (Γ|=) ⊆ TX × TL is given
by eL ◦ Ts.

Proof. We note that, for f : X → Y , � ◦Gr(P̂f) = Gr(f)
op ◦ �. Preservation

of relational composition by Γ together with Remark 3.3 then give (Γ�) ◦
Gr(TP̂f) = Gr(Tf)

op ◦ (Γ�), i.e. (TP̂f)(V) (Γ�) t if and only if V (Γ�) (Tf)(t),
for V ∈ TP̂Y and t ∈ TX. But this is equivalent to eX ◦ TP̂f = P̂Tf ◦ eY .
Hence, e is natural.

We also note that the definition of s makes 〈s, 1L〉 : 〈X,L, |=〉 → 〈PL,L,�〉
a cartesian map. Preservation of cartesian maps by Γ then gives t (Γ|=) φ if
and only (Ts)(t) (Γ�) φ, for t ∈ TX and φ ∈ TL. That is, φ ∈ s′(t) if and
only if φ ∈ eL((Ts)(t)). Hence, s′ = eL ◦ Ts. �

We now return to proving (6). Here we only consider the case when φ ∈ TL.
(The remaining case follows by induction.) In this case, (6) is equivalent
to s′1 ◦ Tf = P̂Tl ◦ s′2 (see Remark 4.2), where s′1 : TX1 → PTL1 and
s′2 : TX2 → PTL2 are the logical maps induced by Γ|=1 and Γ|=2. By (ii) of
Lemma 4.10, this is equivalent to eL1 ◦ Ts1 ◦ Tf = P̂Tl ◦ eL2 ◦ Ts2, which, in
turn, is a consequence of (i) of Lemma 4.10 and of Remark 4.2. Thus, FΓ is
well-defined.

Proposition 4.11 FΓ preserves expressiveness w.r.t. Γ.

Proof. We begin by showing that, if 〈X,L, |=〉 is adequate for 〈X, R〉, then
〈TX, TL, Γ|=〉 is adequate for 〈TX, ΓR〉 (and hence so is FΓ〈X,L, |=〉). The
adequacy of 〈X,L, |=〉 for 〈X, R〉 translates to |= ◦R ⊆ |=. The preservation
of inclusions by T and of relational composition by Γ then give (Γ|=)◦ (ΓR) ⊆
(Γ|=). That is, 〈TX, TL, Γ|=〉 is adequate for 〈TX, ΓR〉.

Now assume that 〈X,L, |=〉 is expressive for 〈X, R〉, i.e. R =≥L. Following
[1], we define θ : X → L by θ(x) =

∧
ϕ∈L,x|=ϕ

ϕ. Then:

y R x iff y ≥L x iff y |= θ(x) iff y (Gr(θ)
op◦ |=) x (7)

The definition of θ also gives Gr(θ) ⊆ |=, and hence:

Gr(Tθ) ⊆ (Γ=L) ◦ Gr(Tθ) = Γ(Gr(θ)) ⊆ (Γ|=) (8)

The first inclusion follows from the definition of a relator (alternatively see
(ii) of Proposition 3.1), the subsequent equality follows by (4), and the final
inclusion follows from the preservation of inclusions by T and Γ. We then
have:

ΓR = (ΓGr(θ)
op

) ◦ (Γ|=) = Gr(Tθ)
op ◦ (Γ|=) ⊇ ≥TL

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–9078

The first equality follows from (7) using the preservation of relational com-
position by Γ, while the second equality follows by Remark 3.3. To prove
the containment relation, let v ≥TL u. Then, u (Γ |=) (Tθ)(u) (by (8)),
and hence v (Γ|=) (Tθ)(u). This, together with (Tθ)(u) Gr(Tθ)

op
u now yields

v (Gr(Tθ)
op ◦ (Γ |=)) u. We have therefore proved that ΓR ⊇≥TL. Hence,

〈TX, TL, Γ|=〉 is expressive for 〈TX, ΓR〉. �

Thus, for an inclusion-preserving endofunctor T : Set → Set and a T-
relator Γ : Rel → Rel, the language constructor FΓ formalises one step in the
definition of a language for T-coalgebras.

4.3 Probabilistic Transition Systems

Let Γω : Rel → Rel be as in Section 3.1, and define Fω : Lang → Lang by:

• Fω takes 〈X,L, |=〉 to 〈SωX,L′, |=′〉, where L′ = ({�} ∪ {�pϕ | p ∈ Q ∩
[0, 1] , ϕ ∈ L})∧,∨ (with ()∧,∨ denoting closure under binary conjunctions
and disjunctions), and where |=′ is the natural extension of the relation
defined by:

µ |=′ �pϕ iff µ[�ϕ�] ≥ p

to formulae containing conjunctions and disjunctions.

• Fω takes 〈f, l〉 : 〈X1,L1, |=1〉 → 〈X2,L2, |=2〉 to 〈Sωf, l′〉, where l′ : L′
1 → L′

2

takes �pϕ to �pl(ϕ) and distributes over conjunctions and disjunctions.

Thus, a formula of form �pϕ holds for a finite sub-probability distribution µ
if a state satisfying ϕ is reached via µ with probability at least p.

Remark 4.2 can be used to show that Fω is well-defined on arrows.

Proposition 4.12 Fω preserves expressiveness w.r.t. Γω.

Proof. First, assume 〈X,L, |=〉 is adequate for 〈X, R〉. We immediately infer
that �ϕ� is R

op
-closed for any ϕ ∈ L. To show that 〈SωX,L′, |=′〉 is adequate

for 〈SωX, ΓωR〉, let µ, ν ∈ SωX be such that µ (ΓωR) ν. The proof of the fact
that ν |= φ implies µ |= φ for all φ ∈ L′ (and hence µ ≥L′ ν) is by induction
on φ. The non-trivial case is when φ is of form �pϕ with ϕ ∈ L. In this case,
ν |= φ translates to ν[�ϕ�] ≥ p. Also, since �ϕ� is R

op
-closed, it follows that

µ[�ϕ�] ≥ ν[�ϕ�]. Hence, µ[�ϕ�] ≥ p, that is, µ |= φ.

Now assume 〈X,L, |=〉 is expressive for 〈X, R〉. To show that 〈SωX,L′, |=′〉
is expressive for 〈SωX, ΓωR〉, we must prove that µ[Y] ≥ ν[Y] for any R

op
-

closed Y ⊆ X, whenever µ, ν ∈ SωX are such that µ ≥L′ ν. We can assume
that Y �= ∅ (otherwise µ[Y] = ν[Y] = 0 and we are done). We note that,
for any R

op
-closed ∅ �= Y ⊆ X, Y =

⋃
y∈Y

⋂
y|=ϕ

�ϕ�: the left-to-right inclusion is

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–90 79

immediate, whereas the right-to-left inclusion follows from the expressiveness
of 〈X,L, |=〉 for 〈X, R〉 together with Y being R

op
-closed. Thus, if both Y

and the sets {ϕ | ϕ ∈ L, y |= ϕ } with y ∈ Y are finite, the formulae
�pϕY , with p ∈ Q ∩ [0, ν[Y]] and ϕY =

∨
y∈Y

∧
y|=ϕ

ϕ can be used to show that

µ[Y] ≥ ν[Y]. For, ν |= �pϕY yields µ |= �pϕY for any p ∈ Q ∩ [0, ν[Y]].
That is, µ[Y] = µ[�ϕY �] ≥ p for any p ∈ Q ∩ [0, ν[Y]]. This, in turn, gives
µ[Y] ≥ ν[Y].

However, the previously-mentioned sets are not, in general, finite. Nev-
ertheless, it is possible to define a formula ϕ ∈ L with the property that
µ[Y] = µ[�ϕ�] and ν[Y] = ν[�ϕ�]. Then, the above reasoning can be ap-
plied to the formulae �pϕ with p ∈ Q ∩ [0, ν[Y]]. In order to define ϕ,
let Z = supp(µ) ∪ supp(ν), and let ≡ denote the equivalence relation on L
given by ϕ1 ≡ ϕ2 if and only if �ϕ1� ∩ Z = �ϕ2� ∩ Z. Since Z is finite,
there are only finitely-many equivalence classes w.r.t. ≡. For y ∈ Y , let
Φy = {ϕ ∈ L | y |= ϕ }, and let Φ0

y ⊆ Φy consist of a set of representatives for
Φy. Then, for z ∈ Z, z |= ϕ for all ϕ ∈ Φy if and only z |= ϕ for all ϕ ∈ Φ0

y.
Now let Φ = { ∧

ϕ∈Φ0
y

ϕ | y ∈ Y }, and let Φ0 ⊆ Φ consists of a set of represen-

tatives for Φ. Then, for z ∈ Z, z |= φ for some φ ∈ Φ if and only if z |= φ
for some φ ∈ Φ0. One can therefore infer that, for z ∈ Z, z ∈ Y if and only
if z |= ∨

φ∈Φ0

φ. This, in turn, gives µ[Y] = µ[�
∨

φ∈Φ0

φ�] and ν[Y] = ν[�
∨

φ∈Φ0

φ�].

Then, µ ≥L′ ν together with ν |= �p

∨
φ∈Φ0

φ gives µ |= �p

∨
φ∈Φ0

φ, or equiva-

lently µ[Y] ≥ p, for all p ∈ Q ∩ [0, ν[Y]]. Hence, µ[Y] ≥ ν[Y]. �

4.4 Logics for Coalgebraic Simulation

We now fix an endofunctor T : Set → Set and a T-relator Γ : Rel → Rel, and
let � = �Γ denote the similarity relation induced by Γ. We are interested in
languages for T-coalgebras which capture Γ-similarity.

Definition 4.13 A language for T-coalgebras is a pair 〈L, |=〉 with L a
set and |= = (|=γ) a |Coalg(T)|-indexed family of relations |=γ ⊆ C × L for
γ : C → TC, such that:

f(c) |=δ ϕ iff c |=γ ϕ for any f : 〈C, γ〉 → 〈D, δ〉 , c ∈ C , ϕ ∈ L .

Given 〈L, |=〉 and T-coalgebras 〈C, γ〉 and 〈D, δ〉, we say that c ∈ C logically
simulates d ∈ D (and write c ≥L d) if c |=γ ϕ whenever d |=δ ϕ, for any
ϕ ∈ L. 〈L, |=〉 is said to capture Γ-similarity if, for any T-coalgebras 〈C, γ〉
and 〈D, δ〉, the logical simulation relation ≥L⊆ C × D coincides with the

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–9080

Γ-similarity relation �⊆ C × D.

Remark 4.14 Let α be a regular cardinal. Then, any language of form
〈Zα,Lα, |=α〉 induces a language 〈Lα, |=〉 for T-coalgebras, with c |=γ ϕ if
and only if γα(c) |=α ϕ, for any T-coalgebra 〈C, γ〉, c ∈ C and ϕ ∈ L (where
γα : C → Zα is as in Remark 2.6). The fact that coalgebra homomorphisms
f : 〈C, γ〉 → 〈D, δ〉 define morphisms of cones f : (γα) → (δα) ensures the
correctness of this definition.

Now assume that T admits a final coalgebra 〈F, ζ〉, and recall from Re-
mark 2.15 that, if c and d are as in Definition 4.13, then c � d if and only
if !γ(c) � !δ(d). Also, Definition 4.13 gives c ≥L d if and only if !γ(c) ≥L
!δ(d). Thus, in order to define a language for T-coalgebras which captures
Γ-similarity, it suffices to define a language of form 〈F,L, |=〉 which is expres-
sive for 〈F, �〉. But by (iii) of Proposition 2.14, 〈〈F, F, �〉, 〈ζ, ζ〉〉 is a final
Γ-coalgebra. This leads us to consider the final sequence of Γ : Rel → Rel.

Proposition 4.15 The final sequence of Γ belongs to Preord.

Proof (Sketch). The statement follows by transfinite induction. Proposi-
tion 2.2 is used in the case of limit ordinals. �

As a result, the final sequence of Γ coincides with the final sequence of the
restriction of Γ to Preord. This justifies the following definition.

Definition 4.16 The relation sequence induced by Γ is the final sequence
of Γ : Preord → Preord.

An immediate observation is that the Set-sequence underlying the relation
sequence induced by Γ is the final sequence of T. Thus, the relation sequence
induced by Γ can be written (〈Zα, �α〉), (pα

β : 〈Zα, �α〉 → 〈Zβ, �β〉)β≤α.

The next step is to define, for each element Zα in the final sequence of T,
an expressive language for 〈Zα, �α〉. A similar definition was given in [5].

Definition 4.17 Let F : Lang → Lang be a language constructor for T. The
language sequence induced by F is the initial sequence 10 of F .

Again, the Set-sequence underlying the language sequence induced by F
is the final sequence of T. We therefore write (〈Zα,Lα, |=α〉), (〈pα

β , ιαβ〉 :
〈Zβ,Lβ, |=β〉 → 〈Zα,Lα, |=α〉)β≤α for the language sequence induced by F ,
and sα : Zα → PLα for the logical map induced by 〈Zα,Lα, |=α〉.

The next result concerns the expressiveness of languages in the language
sequence induced by F w.r.t. relations in the relation sequence induced by Γ.

10 The initial sequence of an endofunctor is defined similarly to its final sequence.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–90 81

Theorem 4.18 If F preserves expressiveness w.r.t. Γ, then 〈Zα,Lα, |=α〉 is
expressive for 〈Zα, �α〉, for any ordinal α.

Proof. The proof is by induction on α. If α = β + 1, the expressiveness of
〈Zα,Lα, |=α〉 for 〈Zα, �α〉 follows from the expressiveness of 〈Zβ,Lβ, |=β〉 for
〈Zβ, �β〉 together with the preservation of expressiveness by F .

Now let α be a limit ordinal, and assume that 〈Zβ,Lβ, |=β〉 is expressive for
〈Zβ, �β〉, for any β < α. To show that 〈Zα,Lα, |=α〉 is adequate for 〈Zα, �α〉,
let x, y ∈ Zα be such that y �α x. Then, for β < α, pα

β(y) �β pα
β(x), and hence,

using the adequacy of 〈Zβ,Lβ, |=β〉 for 〈Zβ, �β〉, sβ(pα
β(y)) ⊇ sβ(pα

β(x)). Then,

Remark 4.2 gives (P̂ιαβ)(sα(y)) ⊇ (P̂ιαβ)(sα(x)) for β < α. Now let ϕ ∈ sα(x).
Since the cocone (ιαβ)β<α is colimiting, we have ϕ = ιαβ(ψ) for some β < α and
some ψ ∈ Lβ. Then, ψ ∈ sβ(pα

β(x)), and hence ψ ∈ sβ(pα
β(y)) (or equivalently,

ψ ∈ (P̂ιαβ)(sα(y))). This now gives ϕ = ιαβ(ψ) ∈ sα(y). Hence, sα(y) ⊇ sα(x).

To show that 〈Zα,Lα, |=α〉 is expressive for 〈Zα, �α〉, let x, y ∈ Zα be such
that sα(y) ⊇ sα(x). Then, for β < α, Remark 4.2 gives sβ(pα

β(y)) ⊇ sβ(pα
β(x)),

while the expressiveness of 〈Zβ,Lβ, |=β〉 for 〈Zβ, �β〉 gives pα
β(y) �β pα

β(x).
The fact that the cone (pα

β)β<α is limiting now gives y �α x. �

Our aim is to derive a language for T-coalgebras which captures �.

Definition 4.19 Assume that the final sequence of Γ stabilizes at α. The
language induced by 〈F , Γ〉 is the language 〈Lα, |=〉, as defined in Re-
mark 4.14 11 .

Example 4.20 Let Γ⊇ and F⊇ be as in Examples 2.9 and 4.6, respectively.
Since Γ⊇ preserves monics and is ω-accessible, it follows by Proposition 2.7
that its final sequence stabilizes. Moreover, the initial sequence of the endo-
functor L : Set → Set taking L to ({�} ∪ {�ϕ | ϕ ∈ L})∧ stabilises at ω. (L
defines the syntax part of F⊇.) As a result, the language induced by 〈F⊇, Γ⊇〉
coincides with the following fragment of the standard modal language:

ϕ ::= � | �ϕ | ϕ ∧ ψ

The coalgebraic semantics of this fragment is defined by:

c |=γ �ϕ iff ∃ d ∈ γ(c). d |= ϕ

(and the usual clauses for � and ∧).

Example 4.21 Let FΓ be as in Section 4.2. The language induced by 〈FΓ, Γ〉
coincides with a fragment of the language defined in [1], only containing �
11 Here, 〈Zα,Lα, |=α〉 is the α-indexed element of the language sequence induced by F .

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–9082

and
∧

as propositional connectives. Its coalgebraic semantics agrees with [1].

Example 4.22 Let Γω and Fω be as in Sections 3.1 and 4.3. Using an argu-
ment similar to the one in Example 4.20, we obtain that the language induced
by 〈Fω, Γω〉 has syntax given by:

ϕ ::= � | �pϕ | ϕ ∧ ψ | ϕ ∨ ψ

and semantics given by:

c |=γ �pϕ iff γ(c)[�ϕ�γ] ≥ p

where �ϕ�γ = { c ∈ C | c |=γ ϕ }. This language coincides with the unlabelled
version of the language considered in [7].

The next result allows us to derive languages which capture Γ-similarity
from language constructors which preserve expressiveness w.r.t. Γ.

Corollary 4.23 Let Γ and F be as in Theorem 4.18, and assume that Γ
preserves monics and is accessible 12 . Then, the language induced by 〈F , Γ〉
captures �.

Proof. Let 〈C, γ〉 and 〈D, δ〉 be T-coalgebras, and let c ∈ C and d ∈ D.
Then:

c � d iff !γ(c) � !δ(d) iff !γ(c) �α !δ(d) iff !γ(c) ≥Lα!δ(d) iff c ≥Lα d

The above equivalences follow from Remark 2.15, (iii) of Proposition 2.14,
Theorem 4.18 and Definition 4.13, respectively. �

By instantiating 〈F , Γ〉 with 〈FΓ, Γ〉 and 〈Fω, Γω〉, we obtain alternative
proofs of the expressiveness w.r.t. similarity of the logics defined in [1] and [7]
(in the unlabelled case), respectively.

We conclude this section with some results concerning the final sequence
of a T-relator Γ, in case the hypotheses of Corollary 4.23 are satisfied.

Proposition 4.24 Let Γ and F be as in Corollary 4.23 13 . Furthermore,
assume that there exists a functor L : Set → Set such that F takes 〈X,L, |=〉
to a language of form 〈TX, LL, |=′〉, for each 〈X,L, |=〉 ∈ |Lang|. If the final
sequence of T stabilises at α, and the initial sequence of L stabilises at β ≤ α,
then the final sequence of Γ also stabilises at α.

12 Hence, by Proposition 2.7, the relation sequence induced by Γ stabilizes at some α.
13 In particular, F preserves expressiveness w.r.t. Γ.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–90 83

Proof. The construction of colimits in Lang results in the final sequence of F
being of form (〈Lα, Zα, |=α〉), (〈ιαβ , pα

β〉), where (Lα), (ιαβ) is the initial sequence
of L, and (Zα), (pα

β) is the final sequence of T. Moreover, the additional con-
straints on T and L together with the definition of arrows in Lang ensure that
the final sequence of F also stabilises at α.

On the other hand, by Theorem 4.18, ≥Lα and ≥Lα+1 capture �α and
�α+1, respectively. Hence, for x, y ∈ Zα+1, the following holds:

x �α+1 y iff x ≥Lα+1 y iff pα+1
α (x) ≥Lα pα+1

α (y) iff pα+1
α (x) �α pα+1

α (y)

with the second equivalence following from the fact that 〈ια+1
α , pα+1

α 〉 defines
an isomorphism in Lang. As a result, pα+1

α : 〈Zα+1, �α+1〉 → 〈Zα, �α〉 is an
isomorphism in Rel, and hence the final sequence of Γ stabilises at α. �

Thus, Proposition 4.24 allows us to make statements about the degree of
accessibility of a T-relator Γ, by exhibiting a language constructor for T which
preserves expressiveness w.r.t. Γ. All the examples considered in this paper
are such that the functor L of Proposition 4.24 exists.

We now assume that T is ω-accessible. Then, as noted in [14], the final
sequence of T stabilises at ω+ω. Moreover, the maps pω+n+1

ω+n with n = 0, 1, . . .
are all injective. Combining this observation with Proposition 4.24 yields the
following result.

Corollary 4.25 Let T : Set → Set be an ω-accessible endofunctor, let Γ :
Rel → Rel, F : Lang → Lang and L : Set → Set be as in Proposition 4.24, and
assume that L is ω-accessible. Then:

(i) The final sequence of Γ stabilises at ω + ω.

(ii) The maps pω+n+1
ω+n : 〈Zω+n+1, �ω+n+1〉 → 〈Zω+n+1, �ω+n+1〉 with n =

0, 1, . . . are order-reflecting.

Proof. The fact that L is ω-accessible results in its initial sequence stabilising
at ω. The first statement then follows immediately from Proposition 4.24. The
second statement follows by an argument similar to the one in the proof of
Proposition 4.24. �

Thus, under the hypotheses of Corollary 4.25, the last ω-steps in the final
sequence of Γ are determined by the corresponding steps in the final sequence
of T. The induced language for coalgebras is not influenced by these steps.

If Γ⊇ and Γω are as in Example 2.9 and Section 3.1, respectively, it follows
from Corollary 4.25 that their final sequences stabilise at ω + ω.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–9084

5 Compositionality

In this section we show that various operations on coalgebraic types induce
operations on relators on the one hand, and on language constructors on the
other. Moreover, the expressiveness of language constructors w.r.t. given rela-
tors is preserved by the induced operations. As a result, notions of similarity
for complex coalgebraic types, as well as logics capturing them can be derived
in a compositional manner.

We begin by recalling the definition of products and coproducts in Rel.
If Ri ⊆ Xi × Yi with i = 1, 2, then R1×R2 ⊆ (X1 × X2) × (Y1 × Y2) and
R1+R2 ⊆ (X1 + X2) × (Y1 + Y2) are given by:

(x1, x2) (R1×R2) (y1, y2) iff x1 R1 y1 and x2 R2 y2

ιi(xi) (R1+R2) ιj(yj) iff i = j and xi Ri yi

with xi ∈ Xi and yi ∈ Yi, for i = 1, 2. Similarly to products, one can define,
for each relation R1 ⊆ X1 × Y1, a relation (R1)

A ⊆ (X1)
A × (Y1)

A by:

(xa)a∈A (R1)
A (ya)a∈A iff xa R1 ya for all a ∈ A

with xa ∈ X1 for a ∈ A. The above operations on relations can be used to
derive (T1 × T2)-, (T1 + T2)- and (T1)

A-relators from T1- and T2-relators.

Definition 5.1 Let Γ1 and Γ2 be relators for T1 and T2, respectively. Define
Γ1 ⊕ Γ2 , Γ1 ⊗ Γ2 , (Γ1)

A : Rel → Rel by:

• R ⊆ X× Y � Γ1⊕Γ2 �� Γ1(R) + Γ2(R) ⊆ (T1+T2)X× (T1+T2)Y

• R ⊆ X× Y � Γ1⊗Γ2 �� Γ1(R) × Γ2(R) ⊆ (T1×T2)X× (T1×T2)Y

• R ⊆ X× Y �(Γ1)A
�� Γ1(R)A ⊆ (T1X)A× (T1Y)A .

In addition, relators can be combined using functor composition.

Proposition 5.2 Γ1◦Γ2 , Γ1⊕Γ2 , Γ1⊗Γ2 , (Γ1)
A are relators for T1◦T2 , T1+

T2 , T1 × T2 and (T1)
A, respectively.

This allows us to derive relators (and therefore notions of simulation) for
combinations of coalgebraic types from relators for the types being combined.

Example 5.3 Let Γ⊇ be as in Example 2.9. A relation R ⊆ C×D is a (Γ⊇)A-
simulation between (Pω)A-coalgebras 〈C, γ〉 and 〈D, δ〉 if, whenever c R d and
d′ ∈ δ(d)(a) for some a ∈ A, there exists c′ ∈ γ(c)(a) such that c′ R d′. More-
over, it is shown in [10] that (Γ⊇)A-similarity coincides with trace inclusion:

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–90 85

c � d if and only if traces(c) ⊇ traces(d), where, for c ∈ C, traces(c) con-
sists of all finite sequences (a1, . . . , an) of elements of A, such that there exist
c0, c1, . . . , cn ∈ C with c0 = c and ci ∈ γ(ci−1)(ai) for i = 1, . . . , n.

Example 5.4 Let Γω be as in Section 3.1. A relation R ⊆ C ×C is a (Γω)A-
simulation on an (Sω)A-coalgebra 〈C, γ〉 if, whenever c R d, a ∈ A and X ⊆
C is R

op
-closed, we have γ(c)(a)[X] ≥ γ(d)(a)[X]. Thus, (Γω)A-simulation

coincides with the notion of simulation defined in [7] (see Remark 3.10).

Next, we show how language constructors for combinations of coalgebraic
types can be obtained by combining language constructors for the component
types.

Definition 5.5 Let F1 and F2 be language constructors for T1 and T2, re-
spectively. Define F1 ⊕ F2 , F1 ⊗F2 , (F1)

A : Lang → Lang by 14 15 :

• 〈X,L, |=〉 � F1⊕F2 �� 〈 (T1+T2)X, { 〈κi〉ϕ |ϕ ∈ Li } , (Gr(ι1)◦|=1◦Gr(ι−1
1)) ∪

(Gr(ι2)◦|=2◦Gr(ι−1
2)) 〉

• 〈X,L, |=〉 � F1⊗F2 �� 〈 (T1× T2)X, { [πi]ϕ | ϕ ∈ Li } , (Gr(ι1)◦|=1◦Gr(π1)) ∪
(Gr(ι2)◦|=2◦Gr(π2)) 〉

• 〈X,L, |=〉 � (F1)A
�� 〈 (T1X)A, { [a]ϕ | ϕ ∈ L1 } ,

⋃
a∈A

(Gr(ιa)◦|=1◦Gr(πa)) 〉

if 〈X,L, |=〉 � Fi �� 〈TiX , Li , |=i 〉 for i = 1, 2.

We note that the modal operators [πi] and 〈κi〉 with i = 1, 2 and [a] with
a ∈ A are similar to the ones used in [9].

Remark 5.6 Since the set of formulae of (F1⊕F2)〈X,L, |=〉 is (isomorphic to)
the coproduct L1 + L2, the associated satisfaction relation could equivalently
be defined as the coproduct |=1 + |=2 in Rel. We have chosen the more complex
formulation in Definition 5.5 for coherence with the definitions of F1⊗F2 and
(F1)

A. An alternative approach to defining F1⊗F2 and (F1)
A would be to take

L1×L2 and (L1)
A as sets of formulae in (F1⊗F2)〈X,L, |=〉 and (F1)

A〈X,L, |=
〉, respectively, in which case the corresponding satisfaction relations would be
given by |=1 × |=2 and (|=1)

A, respectively. The reason for not taking this
approach is that, for A infinite, this yields infinitary modal operators.

Language constructors can also be combined using functor composition.

14 Similar operations on language constructors were defined in [5].
15 In each case, the formula �, with the required interpretation, is also added to the resulting
language.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–9086

Proposition 5.7 F1◦F2 , F1⊕F2 , F1⊗F2 , (F1)
A are language constructors

for T1 ◦ T2 , T1 + T2 , T1 × T2 and (T1)
A, respectively.

Example 5.8 Let F⊇ be as in Example 4.6. Then, (F⊇)A takes a language
〈X,L, |=〉 to the language 〈 (PωX)A , L′ , |=′ 〉, where L′ is generated in two
steps by the following syntax:

L′ � ϕ′ ::= � | [a]ρ (ρ ∈ L0)

L0 � ρ ::= � | �ϕ | ρ1 ∧ ρ2 (ϕ ∈ L)

and where |=′ ⊆ (PωX)A ×L′ is defined in two steps by:

f |=′ [a]ρ iff f(a) |=0 ρ (f ∈ Pω(X)A)

Y |=0 �φ iff ∃x ∈ Y. x |= ϕ (Y ∈ Pω(X))

Since the modal operator [a] distributes over conjunctions, the language in-
duced by 〈(F⊇)A, (Γ⊇)A〉 is equivalent to a fragment of Hennessy-Milner logic
(with [a]� being semantically equivalent to �, and with [a]�ϕ being seman-
tically equivalent to 〈a〉ϕ′ whenever ϕ is semantically equivalent to ϕ′).

Example 5.9 Let Fω be as in Section 4.3. It then follows by an argument
similar to the one in Example 5.8 that the language induced by 〈(Fω)A, (Γω)A〉
is equivalent to a fragment of the language used in [7] (with a formula of form
[a]�pϕ corresponding to a formula of form 〈a〉pϕ

′).

Our next result shows that the expressivity condition required to derive ex-
pressive logics for simulation is preserved by the previously-defined operations
on relators and language constructors, respectively.

Proposition 5.10 If Fi preserves expressiveness w.r.t. Γi, for i = 1, 2, then
F1 ◦ F2, F1 ⊕ F2, F1 ⊗ F2 and (F1)

A preserve expressiveness w.r.t. Γ1 ◦ Γ2,
Γ1 ⊕ Γ2, Γ1 ⊗ Γ2 and (Γ1)

A, respectively.

Proof (Sketch). In the case of F1 ◦ F2, the statement follows immediately
from the definition of preservation of expressiveness w.r.t. a relator. Of the
remaining cases, we only consider that of coproducts. (The other two are
treated similarly.) Let 〈X,L, |=〉 be expressive for 〈X, R〉. Hence, Fi〈X,L, |=
〉 = 〈TiX,Li, |=i〉 is expressive for 〈TiX, ΓiR〉. Now let i, j ∈ {1, 2}, ti ∈ TiX
and sj ∈ TjX. If i �= j, the fact that ιi(ti) and ιj(sj) are not related by
Γ1R + Γ2R is witnessed by the formula 〈κj〉�, which holds in ιj(sj) but not
in ιi(ti). If i = j, the fact that ιi(ti) and ιi(si) are not related by Γ1R × Γ2R
(and therefore ti and si are not related by ΓiR) is witnessed by the formula
〈κi〉ϕi, where ϕi holds in si but not in ti. �

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–90 87

Example 5.11 Taking 〈F , Γ〉 = 〈(F⊇)A, (Γ⊇)A〉 in Corollary 4.23 yields a
language which characterizes trace inclusion. Its syntax is given by:

L � ϕ ::= � | [a]ρ (ρ ∈ L0)

L0 � ρ ::= � | �ϕ | ρ1 ∧ ρ2 (ϕ ∈ L)

while its coalgebraic semantics is defined inductively by:

f |= [a]ρ iff f(a) |=0 ρ (f ∈ Pω(C)A)

Y |=0 �ϕ iff ∃ c ∈ Y. c |=γ ϕ (Y ∈ Pω(C))

c |=γ ϕ iff γ(c) |= ϕ (c ∈ C)

with 〈C, γ〉 a (Pω)A-coalgebra.

Example 5.12 Similarly, taking 〈F , Γ〉 = 〈(Fω)A, (Γω)A〉 yields a language
which characterizes probabilistic simulation. Its syntax is given by:

L � ϕ ::= � | [a]ρ (ρ ∈ L0)

L0 � ρ ::= � | �pϕ | ρ1 ∧ ρ2 | ρ1 ∨ ρ2 (ϕ ∈ L)

while its coalgebraic semantics is defined inductively by:

f |= [a]ρ iff f(a) |=0 ρ (f ∈ Sω(C)A)

µ |=0 �pϕ iff µ[�ϕ�γ] ≥ p (µ ∈ Sω(C))

c |=γ ϕ iff γ(c) |= ϕ (c ∈ C)

with 〈C, γ〉 an (Sω)A-coalgebra.

Finally, it is also possible to define language constructors for constant and
identity functors: in the case of the constant functor X �→ A, the language
constructor provides an atomic formula a for each a ∈ A, whereas in the case
of the identity functor, the language constructor is itself the identity (on Lang).
Each of these language constructors preserves expressiveness w.r.t. the corre-
sponding minimal relator. As a result, the compositional techniques described
in this section can be applied to any functor T of form:

T ::= A | Id | Pω | Sω | T1 ◦ T2 | T1 + T2 | T1 × T2 | (T1)
A

in order to derive both a notion of simulation for T-coalgebras, and a logic
which captures this notion of simulation. This yields notions of simulation and
corresponding logics for a variety of probabilistic system types (see e.g. [2] for
a survey of probabilistic system types studied in the literature).

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–9088

6 Conclusions

We have presented an inductive method for defining logics which capture
simulation. We used relators to define notions of simulation for coalgebraic
types, language constructors to formalise one step in the definition of languages
for coalgebras, and an expressivity condition involving a language constructor
and a relator to ensure the expressiveness of the induced languages w.r.t. the
induced notions of simulation. This method was applied to obtain Baltag’s
logics for coalgebraic simulation, as well as logics capturing simulation on
unlabelled (probabilistic) transition systems.

We have also shown that various operations on coalgebraic signatures in-
duce corresponding operations on relators as well as on language constructors,
with the expressivity condition being preserved by the induced operations.
This has resulted in compositional techniques for defining notions of simula-
tion and logics which capture simulation. Such techniques were used to obtain
a coalgebraic characterization of simulation on discrete Markov processes, as
well as a logic which captures this notion of simulation.

Our approach can also be used to derive notions of simulation and suitable
logics for other probabilistic system types, including types which combine
nondeterminism and probability (through a combination of Pω and Sω in the
signature functor). The study of the resulting logics and of their relevance to
system specification is the subject of ongoing work.

References

[1] A. Baltag. A logic for coalgebraic simulation. In H. Reichel, editor, Coalgebraic Methods in
Computer Science, volume 33 of Electronic Notes in Theoretical Computer Science. Elsevier,
2000.

[2] F. Bartels, A. Sokolova, and E. de Vink. A hierarchy of probabilistic system types. In H.P.
Gumm, editor, Coalgebraic Methods in Computer Science, volume 82.1 of Electronic Notes in
Theoretical Computer Science, 2003.

[3] F. Borceux. Handbook of Categorical Algebra, volume II. Cambridge University Press,
Cambridge, 1994.

[4] A. Carboni, G.M. Kelly, and R.J. Wood. A 2-categorical approach to change of base and
geometric morphisms I. Technical Report 90-1, Department of Pure Mathematics, University
of Sidney, 1990.

[5] C. Ĉırstea. On expressivity and compositionality in logics for coalgebras. In H.P. Gumm,
editor, Coalgebraic Methods in Computer Science, volume 82.1 of Electronic Notes in
Theoretical Computer Science. Elsevier, 2003.

[6] E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition systems: a
coalgebraic approach. Theoretical Computer Science, 221:271–293, 1999.

[7] J. Desharnais. A logical characterisation of simulation for labelled Markov chains. In
Proceedings of PROBMIV’99. University of Birmingham, 1999. Technical Report CS-99-8.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–90 89

[8] W.H. Hesselink and A. Thijs. Fixpoint semantics and simulation. Theoretical Computer
Science, 238:275–311, 2000.

[9] B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Theoretical
Informatics and Applications, 35, 2001.

[10] B. Jacobs and J. Hughes. Simulations in coalgebra. In H.P. Gumm, editor, Coalgebraic
Methods in Computer Science, volume 82.1 of Electronic Notes in Theoretical Computer
Science. Elsevier, 2003.

[11] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information and
Computation, 94:1–28, 1991.

[12] L.S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–317, 1999.

[13] A. Thijs. Simulation and Fixpoint Semantics. PhD thesis, Rijksuniversiteit Groningen, 1996.

[14] J. Worrell. Terminal sequences for accessible endofunctors. In B. Jacobs and J. Rutten,
editors, Coalgebraic Methods in Computer Science, volume 19 of Electronic Notes in Theoretical
Computer Science. Elsevier, 1999.

C. Cîrstea / Electronic Notes in Theoretical Computer Science 106 (2004) 63–9090

	Introduction
	Preliminaries
	Relations
	Coalgebras
	Simulations

	Monotonic Relators Revisited
	Probabilistic Simulation

	Logics for Simulation
	Basic Definitions
	Baltag's Logics for Coalgebraic Simulation
	Probabilistic Transition Systems
	Logics for Coalgebraic Simulation

	Compositionality
	Conclusions
	References

