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Abstract

For a nonnegative n × n matrix A, we find that there is a polynomial f (x) ∈ R[x] such that
f (A) is a positive matrix of rank one if and only if A is irreducible. Furthermore, we show
that the lowest degree such polynomial f (x) with trf (A) = n is unique. Thus, generalizing
the well-known definition of the Hoffman polynomial of a strongly connected regular digraph,
for any irreducible nonnegative n × n matrix A, we are led to define its Hoffman polynomial
to be the polynomial f (x) of minimum degree satisfying that f (A) is positive and has rank
1 and trace n. The Hoffman polynomial of a strongly connected digraph is defined to be the
Hoffman polynomial of its adjacency matrix. We collect in this paper some basic results and
open problems related to the concept of Hoffman polynomials.
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1. Introduction

We consider finite digraphs admitting loops and multiple arcs and we view graphs
as symmetric digraphs. For a digraph �, let A(�) be its adjacency matrix. For any
integer n > 0 we write Jn for the n × n matrix of all ones and jn the n × 1 vector of all
ones, respectively, and we will omit the subscript n where unambiguous. Hoffman’s
Theorem is a well-known result in algebraic graph theory and has been collected into
many textbooks; see [3, Proposition 3.2], [4, p. 271], [9, Theorem 5.1.3, 5.3.1], [13,
Theorem 3.7], [36, Theorem 31.13], and [42, Theorem 8.6.23]. It goes as follows:

Theorem 1.1 [27]

(i) There exists a polynomial f (x) such that

f (A(�)) = J (1)

if and only if the digraph � is strongly connected and regular.
(ii) For a strongly connected r-regular digraph �, the unique polynomial of least

degree satisfying Eq. (1) is H�(x) = |V (�)|q(x)
q(r)

where (x − r)q(x) is the mini-
mal polynomial of A(�).

(iii) The valence r of the strongly connected regular digraph � is the greatest real
root of H�(x) = |V (�)|.

In light of Theorem 1.1, for any strongly connected regular digraph � the unique
polynomial f (x) of lowest degree satisfying J = f (A(�)) is called its Hoffman poly-
nomial [9]. There has been a great deal of work concerning this interesting concept.

For instance, Dress and Stevanović [15] establish some Hoffman-type identities
for the class of harmonic and semiharmonic graphs. Teranishi generalizes Hoffman
identities to non-regular graphs through the use of the Laplacian [40]. Hou and Tian
present some generalizations of Hoffman identities by means of main eigenvalues
[28].

Another direction is the computation of the Hoffman polynomial of the tensor
product of a cycle and a De Bruijn digraph, which is done by Comellas et al. [10] in
their course of calculating the spectra of wrapped butterfly digraphs. Using the same
technique as [10], Comellas and Mitjana [11] obtain the Hoffman polynomial and
then the spectrum of any cycle prefix digraph. Wang et al. determine the Hoffman
polynomials and spectra of some more general regular strongly connected digraphs
using a much more direct approach [41].

Much work about Hoffman polynomials is carried out in the guise of solving
matrix equations (see Sections 3, 7 and 8). This includes the work of enumeration,
representation and classification of strongly regular graphs and strongly regular di-
graphs, which corresponds to degree two Hoffman polynomials; see our Example
8.2 and [24,30]; [36, Chapter 21] and references therein. For more on the study of
digraphs with Hoffman polynomials xk or xk + xk+�, we refer to [33,43–45,47,48].
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Refs. [20,43] discuss some type of Hoffman polynomials whose corresponding di-
graphs will always have a line digraph structure. We also mention that it is
reported in [46,49] that both the wrapped butterfly digraphs and the De Bruijn
digraphs are characterized by their Hoffman polynomials and some simple rank
condition.

Along the lines of research mentioned above, the present authors are concerned
with those polynomials that send a nonnegative irreducible matrix to a positive rank
one matrix. Note that each positive rank one matrix can be written as the product
of a positive column vector and a positive row vector. Indeed, we shall show that
for any digraph � with adjacency matrix A, there is a polynomial f (x) ∈ R[x] such
that f (A) = ξζ� for two positive column vectors ζ and ξ if and only if � is strongly
connected and ζ and ξ are respectively left and right Perron eigenvectors of A. Parallel
to the definition of Hoffman polynomials of strongly connected regular digraphs
[27] and the construction of Hoffman-type identities by Dress and Stevanović [15],
the previously asserted fact motivates us to introduce the Hoffman polynomial for
any irreducible nonnegative matrix, including the adjacency matrix of a strongly
connected digraph. This paper is to address some simple results around this extended
definition of Hoffman polynomial. We will generalize some corresponding results
on Hoffman polynomials of strongly connected regular digraphs to not necessarily
regular ones and we will also present some open problems.

This paper is organized as follows. The definition and some basic properties of
Hoffman polynomials are established in Section 2. In Section 3 we point out the
connection between some types of matrix equations and the Hoffman polynomi-
als. Section 4 is devoted to the Hoffman polynomials of the tensor products of two
digraphs. In Section 5 we take up the relationship between the Hoffman polynomials
of two matrices which are elementarily equivalent. Then in Section 6 we deal with
a class of special digraphs which are specified by some Hoffman-type identities. We
continue to consider some questions on Hoffman polynomials with at most two terms
in Section 7. Finally, we close this paper in Section 8 by collecting miscellaneous
results which illustrate how the concept of Hoffman polynomial can be recognized
in the literature.

2. Hoffman polynomial

First we introduce some elementary notation. As usual, let Rn denote the set of
real column vectors of dimension n and let Matn(R) (Matn(R+)) denote the set of
(nonnegative) real n × n matrices. We use the notation I for the identity matrix. For
a matrix A, let Sp(A) represent the set of eigenvalues of A and mA(x) represent
the minimal polynomial of A. Sometimes we write A > 0 (A � 0) if A is a positive
(nonnegative) matrix. For a square nonnegative integer matrix A, �(A) stands for the
digraph which has A as its adjacency matrix. For an irreducible nonnegative matrix
A, the Perron–Frobenius theory tells us that A has a unique positive eigenvalue λA,
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which has algebraic multiplicity one and will be called the Perron eigenvalue of A.
Accordingly, we define

qA(x) = mA(x)

x − λA

(2)

and

HA(x) = nqA(x)

qA(λA)
, (3)

where n is the size of A. We also recall the fact that any irreducible nonnegative
matrix A possesses a positive right eigenvector and a positive left eigenvector, which
are both unique up to multiplication by a positive scalar and will be referred to as
a right Perron eigenvector and a left Perron eigenvector of A, respectively, and the
associated eigenvalue of a Perron eigenvector is just the Perron eigenvalue λA. If
ζ� and ξ are respectively left and right Perron eigenvectors of A, then we call (ζ, ξ)

a Perron pair of A. For a given digraph �, let V (�), E(�) and A(�) denote its
vertex set, arc set and adjacency matrix, respectively. If � is a strongly connected
digraph, we know that A(�) is a nonnegative irreducible matrix and thus we often
do not distinguish strongly connected digraphs from nonnegative irreducible integer
matrices. For instance, this allows us to refer to the Perron eigenvalue and the minimal
polynomial of � and use the notation λ� and m�(x), respectively.

We now come to some facts on irreducible matrices.

Theorem 2.1. Let ζ, ξ ∈ Rn and A ∈ Matn(R+). If ζ, ξ > 0 and there is a polyno-
mial f (x) ∈ R[x] such that f (A) = ξζ�, then A is irreducible and (ζ, ξ) is a Perron
pair of A.

Proof. If A is reducible, then all of the powers of A will have certain fixed positions
occupied by zeros and thus f (A) cannot be a positive matrix. Therefore, the first claim
comes from the fact that ξζ� is a positive matrix. Clearly, any Perron eigenvector
of A is still a positive eigenvector of f (A) and hence a Perron eigenvector of f (A).
Observe that ζ� is a left Perron eigenvector of ξζ� and ξ a right Perron eigenvector
of ξζ�. The remaining claims now follow from the uniqueness of Perron eigenvectors
of a nonnegative irreducible matrix. �

Theorem 2.2. Assume that A is a nonnegative irreducible matrix with a Perron pair
(ζ, ξ). Then there is a polynomial f (x) ∈ R[x] such that f (A) = ξζ�.

Proof. Recall thatmA(x) is the monic polynomial of the lowest degree that annihilates
A. On the one hand, this gives

qA(A) /= 0. (4)

On the other hand, it implies

(A − λAI)qA(A) = 0 (5)
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and

qA(A)(A − λAI) = 0. (6)

The Perron–Frobenius theory says that λA is a simple root of the characteristic poly-
nomial of A and it has ζ� and ξ as its corresponding left eigenvector and right
eigenvector, respectively. Thus, we deduce from Eq. (5) that all columns of qA(A)

are multiples of ξ and derive from Eq. (6) that all rows of qA(A) are multiples of
ζ�. This shows that qA(A) is a multiple of ξζ�. Considering Eq. (4), we can further
assert that qA(A) = αξζ� for some α ∈ R\{0}. The proof is now complete by putting
f (x) = α−1qA(x). �

We pause here to introduce three sets of polynomials for any nonnegative irreduc-
ible n × n matrix A:

F1(A)={f (x) : f (A) > 0, rank f (A) = 1, f (λA) = n}, (7)

F2(A)={f (x) : f (A) = ξζ�, ζ, ξ > 0, ζ�ξ = n}, (8)

F3(A)={f (x) : f (A) > 0, rank f (A) = 1, trf (A) = n}. (9)

Lemma 2.3. F1(A) = F2(A) = F3(A).

Proof. f (A) > 0 together with rankf (A) = 1 is equivalent to f (A) = ξζ� for some
column vectors ζ, ξ > 0. By Theorem 2.1, ξ must be a right Perron eigenvector of
A. Thus the first equality is a result of f (λA)ξ = f (A)ξ whereas the second equality
follows from trξζ� = trζ�ξ = ζ�ξ . �

Lemma 2.3 illustrates that F1(A),F2(A) and F3(A) are simply three differ-
ent representations of the same set, which we will then call F(A). Note that when
referring to F(A) later, we will freely use any of these three descriptions.

Theorem 2.4. Let A be a nonnegative irreducible matrix of order n. Then all polyno-
mials inF(A) are multiples of HA(x) and HA(x) is the unique polynomial belonging
to F(A) of lowest degree.

Proof. First note that qA(λA) /= 0 as λA is a simple root of mA(x). According to the
proof of Theorem 2.2, HA(A) = ξζ� where (ζ, ξ) is a Perron pair of A. This says
that HA(A) is positive and of rank one. Also, it is trivial to see that HA(λA) = n,
which then proves that HA(x) ∈ F1(A) = F(A).

Next, for any f (x) ∈ F(A) = F2(A) we know that f (A) is a multiple of HA(A),
taking into account Theorem 2.1. This demonstrates that (x − λAI)f (x) annihi-
lates A and hence HA(x) | f (x). Therefore, HA(x) is of lowest degree in F(A).
If f (x) ∈ F1(A) has the same degree with HA(x), then we know f (x) = cHA(x)
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for some constant c. Clearly, Eq. (7) implies that c = 1 and thus the conclusion is
proved. �

Remark 2.5. Let A be ann × nnonnegative irreducible matrix. Then by Theorem 2.4,
we know that F(A) = { g(x)

g(λA)
HA(x) : g(x) ∈ R(x), g(A)HA(A) > 0 or g(A)HA

(A) < 0}. Especially, when A has a constant line sum, F(A) becomes { g(x)
g(λA)

HA(x) :
g(x) ∈ R(x), g(λA) /= 0} and thus RF(A) is just the ideal generated by HA(x) in
R(x). It is interesting to investigate if any similar thing can be said about F(A) when
A does not have a constant line sum.

Theorem 2.6. For any n × n nonnegative irreducible matrix A, its Perron eigenvalue
λA is the greatest real root of HA(x) = n.

Proof. Theorem 2.4 says that HA(x) ∈ F1(A), establishing the fact HA(λA) = n.
Now suppose µ > λA and we turn to prove |HA(µ)| > |HA(λA)| = n, which will
surely end the proof. Our task further reduces to deducing |qA(µ)| > |qA(λA)|.
Let qA(x) = ∏

λ∈Sp(A)\{λA}(x − λ)�λ(A). Because λA is the Perron eigenvalue of A,
for each λ ∈ Sp(A)\{λA} it follows that |λ| < λA and hence |µ − λ| > |λA − λ|.
The proof is then finished by noting that |qA(µ)| = ∏

λ∈Sp(A)\{λA} |µ − λ|�λ(A) >∏
λ∈Sp(A)\{λA} |λA − λ|�λ(A) = |qA(λA)|. �

The period of a nonnegative square matrix A is the greatest common divisor of
those integers k � 1 for which trAk > 0. The matrix ξζ� appearing in the definition
of F2(A) is related to the matrix A as follows.

Theorem 2.7 [35, Exercise 4.5.14]. Let A be an n × n nonnegative irreducible matrix
with Perron eigenvalue λ and period p. Let (ζ, ξ) be a Perron pair of A which is
normalized so that ζ�ξ = n. Then we have

lim
k→+∞

(
I + A

λ
+ · · · + Ap−1

λp−1

)
Ak

λk
= ξζ�

n
.

We also remark that when A is a (0, 1) irreducible matrix the matrix ξζ� is involved
with the measure of maximal entropy for a subshift of finite type associated with A
[31, p. 166].

So far, for a nonnegative irreducible matrix A we have found that the polyno-
mial HA(x) defined by Eq. (3) does play some interesting role. We will call it the
Hoffman polynomial of A. Correspondingly, the Hoffman polynomial of a strongly
connected digraph � is defined to be the Hoffman polynomial of its adjacency matrix
and is denoted by H�(x). This extends the definition of Hoffman polynomials for
strongly connected regular digraphs, as can be seen from the following generalization
of Theorem 1.1.
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Theorem 2.8. Let � be a finite digraph on n vertices and A = A(�). Then the fol-
lowing hold.

(i) � is strongly connected if and only if there is a polynomial f (x) ∈ R[x]
such that f (A) has rank one and is positive, namely if and only if
F(A) /= ∅.

(ii) When � is strongly connected, H�(x) is the unique polynomial of lowest degree
in F(A).

(iii) When � is strongly connected, H�(x) = n has λA as its greatest real root.

Proof. Follows directly from Theorems 2.1, 2.2, 2.4 and 2.6. �

Example 2.9. Although the minimal polynomial and the Hoffman polynomial are
closely related concepts, they are not uniquely determined by each other. By way of
example, consider the adjacency matrix B of the binary De Bruijn digraph B(2, 3)
[47]. Since B3 = J , both B and B

⊗
B have x3 as their Hoffman polynomial

(Example 4.4). But the minimal polynomials of B and B
⊗

B are different. Indeed,
they even have different Perron eigenvalues. In the other direction, we look at the
matrix A described in Example 5.16 below. We see that x3 is the common minimal
polynomial of A and B while HA(x) = 5

8x3 /= x3 = HB(x).

The next result summarizes the relationship among HA(x), mA(x) and the size n
of a nonnegative irreducible matrix A.

Proposition 2.10. Let A be an n × n nonnegative irreducible matrix. Then the fol-
lowing hold:

(i) HA(x) is determined by mA(x) and n;
(ii) n is determined by HA(x) and mA(x);

(iii) mA(x) is determined by n and HA(x).

Proof. (i) HA(x) is defined by qA(x), λA and n. But qA(x) and λA are uniquely
determined by mA(x).

(ii) Note that n = HA(λA) and λA is the largest real root of mA(x).
(iii) By Theorem 2.6, we know that λA is determined by HA(x) and n. We also

note that qA(x) is the monic polynomial obtained by dividing HA(x) by its leading
coefficient. Since mA(x) = (x − λA)qA(x), we conclude that HA(x) together with n
uniquely determines mA(x). �

There are two types of very natural questions concerning the concept of Hoff-
man polynomials. The first is how to determine the Hoffman polynomials of given
irreducible matrices or strongly connected digraphs. This also includes the question
of determining the relationship between Hoffman polynomials of different matrices
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(digraphs) related in various ways. Our work in Sections 3, 4 and 5 is along this
direction. The dual question is to decide for a given polynomial all those matrices
(digraphs) which have it as their Hoffman polynomials. This includes the existence
question, construction question, classification question and enumeration question.
Clearly, this research has much to do with solving matrix equations. We will carry
some elementary discussion on this question in Sections 6, 7 and 8.

3. Matrix equation

Suppose we are given two positive vectors ζ and ξ of length n such that ζ�ξ = n.
Then for a given polynomial f, consider the matrix equation

f (A) = T (10)

for an unknown n × n nonnegative integer matrix A, where T = ξζ�. In some situa-
tions, the task of solving Eq. (10) turns out to be the same as determining all digraphs
which have f (x) as their Hoffman polynomials. The main theme of this section is to
investigate the form off (x)which guarantees that deg f (x) = ming(x)∈F(A) deg g(x)

holds for each solution A to Eq. (10). This kind of result has appeared in characterizing
Kautz digraphs [43].

Theorem 3.1. Let � be a digraph on n vertices with adjacency matrix A and ζ ∈ Rn

a positive vector satisfying j�ζ = n. If A is a solution to Eq. (10) where T = jζ�
and n > 1 + λA + · · · + λ

deg f −1
A , then H�(x) = f (x). The same result holds when

T = jζ� is replaced by T = ζ j�.

Proof. We only prove the first reading. By Theorem 2.1, we know that A has j as a
right Perron eigenvector and thus Ai has constant row sum λi

A for each nonnegative
integer i. This asserts that each row of Ai has at most λi

A nonzero entries. But each
row of a positive n × n matrix has exactly n positive entries. Consequently, due to
the assumption that n > 1 + λA + · · · + λ

deg f −1
A , we have deg g � deg f for any

polynomial g(x) with g(A) > 0. Making use of Theorem 2.4 then completes the
proof. �

Corollary 3.2. Let f (x) be a polynomial with nonnegative coefficients and whose
leading coefficient is not less than 1. Suppose � is a digraph whose adjacency matrix
A satisfies f (A) = J. If � is not a cycle, then H�(x) = f (x).

Proof. By Theorem 1.1, � is regular. As it is not a cycle, we can assume that it has
constant degree λA = λ > 1. It is easy to see that � has a total of n = f (λ) vertices.
Say the degree of f (x) is k. Then we have n = f (λ) � λk > 1 + λA + · · · + λk−1

A

and so Theorem 3.1 gives the assertion. �
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4. Tensor product

In this section we discuss the computation of the Hoffman polynomial of the
tensor product of two nonnegative irreducible matrices. Given two digraphs �1 and
�2, their tensor product �1 ⊗ �2 is defined to be the digraph with V (�1 ⊗ �2) =
V (�1) × V (�2) and E(�1 ⊗ �2) has (x1, x2)(y1, y2) as an element of multiplicity
m1m2, where mi is the multiplicity of (xi, yi) in E(�i ), i = 1, 2. That is, A(�1 ⊗
�2) = A(�1) ⊗ A(�2).

For any positive integer m, we use the shorthand [m] for the set {1, . . . , m}
throughout the paper. We use Cp to denote the directed cycle of length p. The least
common multiple of two positive integers p and q is written as [p, q]. Recall that
the elementary divisors of A ∈ Matn(C) are in one-to-one correspondence with the
Jordan blocks of A. Here is a classical result on elementary divisors.

Theorem 4.1 [8, Theorem 4.6; 37, Theorem 1]. Let A, B ∈ Matn(R). The complete
list of elementary divisors of A ⊗ B in C[x] is as follows. To each pair consisting of
an elementary divisor (x − a)p of A and an elementary divisor (x − b)q of B, there
correspond the following elementary divisors of A ⊗ B:

(i) When a /= 0 and b /= 0,

(x − ab)p+q−(2k−1) for k ∈ [min{p, q}];
(ii) When a /= 0 and b = 0,

xq (p times);
(iii) When a = 0 and b /= 0,

xp (q times);
(iv) When a = 0 and b = 0,

xk (twice) for k ∈ [min{p, q} − 1];
xmin{p,q} (|p − q| + 1 times).

Theorem 4.1 translates immediately to corresponding properties of minimal poly-
nomials, yielding the following.

Theorem 4.2. Let A, B ∈ Matn(R). If

mA(x) =
s∏

i=0

(x − ai)
pi and mB(x) =

t∏
j=0

(x − bj )
qj ,

where a0 = 0, ai /= aj for 0 � i /= j � s, and b0 = 0, bi /= bj for 0 � i /= j � t,

then

mA⊗B(x) =
u∏

k=0

(x − ck)
rk ,
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where c0, . . . , cu enumerate all different values taken by aibj , 0 � i � s, 0 � j �
t, c0 = 0, r0 = max{p0, q0}, and rk = max{� + f − 1 : a�bf = ck} for k ∈ [u].

Armed with Proposition 2.10 and Theorem 4.2, we arrive at the following.

Theorem 4.3. Given two nonnegative irreducible matrices A and B, their Hoffman
polynomials together with their sizes determine the Hoffman polynomial of A ⊗ B.

In the remaining part of this section, we apply Theorem 4.3 to the adjacency
matrices of some strongly connected digraphs and list the computation results.

Example 4.4 [10,41]. Suppose � is a digraph with A(�)k = Jrk for some r > 0. Then
it follows from Corollary 3.2 that H�(x) = xk and so HCp⊗�(x) = HCp

(
x
r

)
H�(x).

Example 4.5 [41]. Let � be a digraph with A(�)k = Jrk+1 − Irk+1 for some r > 0.
Then Corollary 3.2 implies H�(x) = 1 + xk and thus

HCp⊗�(x) =
{

HCp

(
x
r

)
H�(x) if p|k;

rk+1
r [p,k]−(−1)[p,k] (x

[p,k] − (−1)[p,k])HCp

(
x
r

)
if p�k.

Example 4.6. Suppose � and � are digraphs with H�(x) = n1
1+r1+r2

1
(1 + x + x2)

and H�(x) = n2
1+r2+r2

2
(1 + x + x2), respectively, where ni and ri are some positive

integers, i ∈ [2]. Then

H�⊗�(x) =



x3−1
r3
1 r3

2 −1
H�

(
x
r2

)
H�

(
x
r1

)
if r1 /= r2;

n1(x
3−1)

r6−1
H�

(
x
r

) = n2(x
3−1)

r6−1
H�

(
x
r

)
if r1 = r2 = r.

Example 4.7. Let A = A(�) =

0 1 0

1 0 1
0 1 0


. Then mA(x) = x(x − √

2)(x + √
2)

and HA(x) = 3
4x(x + √

2). A simple computation gives that mC3⊗�(x) = x(x3 −
2
√

2)(x3 + 2
√

2) and so HC3⊗�(x) = 9
48x(x2 + √

2x + 2)(x3 + 2
√

2) = 3
8x(x3 +

2
√

2)HC3

(
x√
2

)
.

5. Elementary equivalence

Just as in Section 4, to facilitate the computation of Hoffman polynomials, we
continue to investigate relationships between Hoffman polynomials of different
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irreducible matrices. We discuss in Section 5.1 the Hoffman polynomials of ele-
mentarily equivalent matrices. In Section 5.2 we study a special kind of elementary
equivalence, namely that between a matrix and a splitting or an amalgamation of it.
This provides us with a useful technique of reducing the computation of the Hoffman
polynomial of a matrix to the calculation of the Hoffman polynomial of a matrix of
smaller size. The digraph version of split and amalgamation operation is introduced
in Section 5.3. At last, we present an interesting application of this computation
technique in Section 5.4.

5.1. Elementary equivalence of matrices

Let A and B be nonnegative matrices. An elementary equivalence from A to B
over R+ [35, Definition 7.2.1] is a pair (R, S) of rectangular nonnegative matrices
satisfying

A = RS and B = SR.

In this case we write (R, S) : A ≈R+ B. Call a matrix row-nontrivial if it has no zero
row and call a matrix column-nontrivial if it has no zero column.

Theorem 5.1. Let A and B be two matrices such that (R, S) : A ≈R+ B for a column-
nontrivial nonnegative matrix R and a row-nontrivial nonnegative matrix S. If there
is a polynomial f (x) ∈ R[x] such that

f (A) = ξζ� for some ζ, ξ > 0, (11)

then

Bf (B) = yx� for some x, y > 0. (12)

Conversely, if we further assume that R is of full row rank and S is of full column
rank, then Eq. (11) follows from Eq. (12).

Proof. Assume that Eq. (11) holds. Let x� = ζ�R and y = Sξ . We clearly have
x > 0 and y > 0, as a result of our assumption on ζ, ξ, R and S. Now we can obtain
Eq. (12) through the following calculation:

Bf (B) = SRf (SR) by B = SR

= Sf (RS)R

= Sf (A)R by A = RS

= Sξζ�R by Eq. (11)

= yx�.

For the converse direction, first note that applying Theorem 2.1 to Eq. (12) yields
By = λBy and x�B = λBx�. Consequently,

λ2
Byx� = Byx�B = SRyx�SR. (13)

Next observe that a matrix of full row (column) rank must be row-nontrivial (col-
umn-nontrivial). This says that R is a row-nontrivial nonnegative matrix and S is a
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column-nontrivial nonnegative matrix. Thus we are allowed to derive from x, y > 0
that

ξ = 1

λB

Ry and ζ� = 1

λB

x�S (14)

are both positive vectors. We can now write down

Sf (A)R = Sf (RS)R by A = RS

= SRf (SR)

= Bf (B) by B = SR

= yx� by Eq. (12)

= 1

λ2
B

S(Ryx�S)R by Eq. (13)

= Sξζ�R by Eq. (14). (15)

By an appeal to the fact that S is of full column rank and R is of full row rank, we
conclude from Eq. (15) that f (A) = ξζ�, proving the result. �

The previous theorem will play a key role in our work of determining Hoffman
polynomials. But to proceed, we had better first look at a simple result.

Lemma 5.2. For any irreducible nonnegative matrix A, x|HA(x) if and only if
det A = 0.

Proof. det A = 0 is equivalent to x|mA(x). Since the Perron eigenvalue must be
positive, Eq. (2) together with Eq. (3) shows that x|mA(x) if and only if x|HA(x).
Combining these, the lemma follows. �

Theorem 5.3. Let A be an irreducible nonnegative n × n matrix. If B is an m × m

matrix such that (R, S) : A ≈R+ B for a column-nontrivial nonnegative matrix R and
a row-nontrivial nonnegative matrix S. Then the following hold.

(i) B is also an irreducible nonnegative matrix and HB(x) takes one of the following
three values: mλB

n
HA(x)

x
, m

n
HA(x), or m

nλA
xHA(x). (Note that λA = λB.)

(ii) If det A det B /= 0, then m = n and A and B are similar and hence HB(x) =
HA(x); while if det A det B = 0, we have

HB(x) =
{

mλB

n
HA(x)

x
, if det B /= 0 and det A = 0;

m
nλA

xHA(x), if det B = 0 and det A /= 0.

(iii) If we further assume that R is of full row rank and S is of full column rank, then

HB(x) =
{

HA(x), if det B /= 0 (or equivalently, m = n);
m

nλA
xHA(x), if det B = 0 (or equivalently, m > n).
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Proof. Looking at Eq. (7), the first claim is immediate from Theorems 2.1, 2.4 and
5.1. In view of Lemma 5.2 and the first claim, we come to the second assertion as
well. We now prove the last reading. Since R is of full row rank and S is of full column
rank, we obtain that A is nonsingular. If det B /= 0, the assertion follows from claim
(ii). If det B = 0, then f (x) = HB(x)

x
is a polynomial on account of Lemma 5.2. It

then follows from the last assertion of Theorem 5.1 that f (A) is a positive matrix of
rank 1. Therefore, we can use Theorem 2.8 to deduce that

deg HA(x) � deg f (x) = deg HB(x) − 1.

Finally, observe that the desired result follows from claim (i), completing the
proof. �

Remark 5.4. It is known that if matrices A and B satisfy A = RS and B = SR for
some matrices R and S, then mB(x) is one of mA(x), xmA(x), or mA(x)

x
[2]. In partic-

ular, we have λA = λB for such pair of matrices. But can we say more about which
possibility will occur, mB(x) = mA(x), mB(x) = xmA(x), or mB(x) = mA(x)

x
? In

terms of Eqs. (2) and (3), Theorem 5.3 can give some answers to this question. Note
that we will find several more relations similar to those in Theorem 5.3 later and this
observation applies as well.

5.2. Splitting and amalgamation of matrices

To make the results obtained in last subsection more useful for practical calculation,
we will introduce an important kind of elementary equivalence here.

A row (column) amalgamation matrix is a (0, 1) matrix with exactly one 1 in each
column (row) and at least one 1 in each row (column). We mention that in symbolic
dynamics, a row amalgamation matrix is called a division matrix while a column
amalgamation matrix is named simply as an amalgamation matrix [35, Definitions
2.4.13, 8.2.4] and they both play important roles in the course of classifying dynamical
systems. We write � : [m] = ∪n

i=1�i for a partition � of [m] into pairwise disjoint
nonempty subsets �1, . . . ,�n. We define the characteristic matrix of � as the n × m

matrix whose ith row is the characteristic vector of �i over [m]; we will use the nota-
tion χ(�) for it. Clearly, a row amalgamation matrix is nothing but the characteristic
matrix of a partition and a column amalgamation matrix is just the transpose of a row
amalgamation matrix.

We use B(i, j), B(i, ·) and B(·, j) to represent the (i, j) entry, the ith row and
the jth column of a matrix B, respectively. Suppose B is a matrix of m columns. A
good column partition of B is a partition � of [m] into pairwise disjoint nonempty
subsets �1, . . . ,�n, such that for each i ∈ [n] the columns of B with indexes in �i

are identical. We always have two extremal good column partitions: the full column
partition�of B whereB(·, u) = B(·, v) if and only if {u, v} lies in�i for some i ∈ [n],
and the trivial column partition � where n = m and each �i is a singleton set. We can
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perform as follows a row amalgamation operation on an m × m matrix B based on
any of its good column partitions, say � : [m] = ∪n

i=1�i . Pick a transversal of �, say
ki ∈ �i , i ∈ [n]; then create an m × n matrix B/� by taking (B/�)(·, i) = B(·, ki);
and finally produce the n × n matrix B� by putting B�(i, ·) = ∑

u∈�i
(B/�)(u, ·).

The matrix B/� which occurred in the middle of the above process is called the
reduced matrix of B with respect to the good column partition � and the final output
matrix B� is called the row amalgamation of B with respect to �. A simple check
yields

B = (B/�)χ(�) and B� = χ(�)(B/�). (16)

Furthermore, we have the following.

Lemma 5.5. Let A ∈ Matn(R) and B ∈ Matm(R). Then A is a row amalgamation of
B if and only if there are two matrices R and S such that A = RS, B = SR, and R is
a row amalgamation matrix.

Proof. The necessity follows plainly from Eq. (16). We now set up the backward
implication. Suppose that A = RS and B = SR for some row amalgamation matrix
Rn×m and rectangular matrix Sm×n. We can assume that R = χ(�) for some partition
� of [m]. Then B = SR tells us that � is a good column partition of B and S = B/�.
Since A = RS, we deduce that A = B�, as desired. �

The row amalgamation matrix of B with respect to its full column partition is
called the full row amalgamation of B, and is denoted by Bf r [31, p. 67]. Here we
commit the abuse of notation by not distinguishing between permutation-similar
matrices. Let Bf 0r = B and Bf 1r = Bf r . Then the kth full row amalgamation of
B, denoted by Bf kr , is defined recursively to be the full row amalgamation of Bf k−1r .
Continue the procedure of forming full row amalgamations until no nontrivial good
column partition can be found any more, we produce the total row amalgamation of
B, which will be referred to as Br later [31, p. 39]; [35, p. 426].

We now introduce the inverse of the row amalgamation operation. Let A be an n × n

matrix and σ a decomposition of the rows of A such that each row A(i, ·) is divided into
σi rows, say A(i, ·) = ∑σi

j=1 A
j
i , i ∈ [n]. Let m = ∑n

i=1 σi and consider a partition

� : [m] = ∪n
i=1�i such that �i contains σi elements, say �i = {u1

i , . . . , u
σi

i }, i ∈ [n].
We can do the row splitting operation on A according to π = {σ, �} in two steps as
follows: First construct an m × n matrix A[π ] by assigning A

j
i to be its u

j
i th row,

i ∈ [n], j ∈ [σi]; then get a matrix Aπ by requiring Aπ(·, u) = Aπ(·, i) for each
u ∈ �i and i ∈ [n]. We say that A[π ] is an expanded matrix of A and Aπ a row
splitting of A, respectively. We have a straightforward observation that

A = χ(�)A[π ] and Aπ = A[π ]χ(�). (17)

Moreover, we assert
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Lemma 5.6. Let A ∈ Matn(R) and B ∈ Matm(R). Then B is a row splitting of A if
and only if there are two matrices R and S such that A = RS, B = SR, and R is a
row amalgamation matrix.

Proof. The forward direction is guaranteed by Eq. (17). It suffices to consider the
converse. Suppose that A = RS and B = SR for some row amalgamation matrix
R and rectangular matrix S. From the definition of row amalgamation matrix, we
know that R = χ(�) for some partition � of [m]. Furthermore, invoking the fact
that A = RS we are allowed to deduce S = A[π ], where π = {�, σ } for some
decomposition σ . Finally, B = SR means that B is equal to Aπ , completing the
proof. �

Combining Lemmas 5.5 and 5.6, we can verify that the two operations, row splitting
and row amalgamation, are really the inverses of each other, as illustrated in the next
theorem.

Theorem 5.7. Let A ∈ Matn(R) and B ∈ Matm(R). Then A is a row amalgamation
of B with S being the expanded matrix if and only if B is a row splitting of A with S
being the reduced matrix.

To come back to Hoffman polynomials, we first frame a simple result from
Eq. (16).

Lemma 5.8. Let B be a nonnegative square matrix and A a row amalgamation of B.

Then A and B are elementarily equivalent over R+.

Corollary 5.9. Let B ∈ Matm(R) be a nonnegative irreducible matrix and A ∈
Matn(R) a row amalgamation of B. Then A is still a nonnegative irreducible matrix
and one of the following two cases holds:

(i) HB(x) = m
n
HA(x);

(ii) HB(x) = m
nλA

xHA(x).

Proof. In view of Theorem 5.3 (i) and Lemma 5.8, it suffices to establish that
deg HA(x) � deg HB(x). Lemma 5.5 asserts that A = RS and B = SR, where R
is a row amalgamation matrix and S a reduced matrix of B. We know that RR� = D

is a diagonal matrix with positive diagonal entries. Now assume f (x) is a polynomial
such that f (B) is positive and has rank one. Then we see that

f (A) = f (RS) by A = RS

= f (RS)RR�D−1 by RR� = D

= Rf (SR)R�D−1

= Rf (B)R�D−1 by B = SR. (18)
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From Eq. (18) we can deduce that f (A) > 0, since f (B) > 0, R � 0 has no zero rows
and D−1 � 0 has no zero columns; we also find that rankf (A) = 1. By Theorem 2.4,
we infer that deg HA(x) � deg HB(x), as was to be shown. �

Remark 5.10. The property of the row amalgamation matrix R that we use in proving
the preceding corollary is that R is nonnegative and that there exists a nonnegative
matrix R′ such that RR′ is the inverse of a nonnegative matrix. It is interesting to
determine the structure of such matrices.

Remark 5.11. Corollary 5.9 tells us that if we can find a nontrivial good column
partition of a nonnegative irreducible matrix B, then the task of computing its Hoff-
man polynomial can more or less be reduced to the determination of the Hoffman
polynomial of its row amalgamation matrix, which is of a smaller size. Note that it
is possible that B has no nontrivial good column partition while we can find λ ∈ R

such that B + λI is still nonnegative irreducible and has a nontrivial good column
partition. Since the relationship between the Hoffman polynomials of B and B + λI

is very clear, we can use such reduction tool like Corollary 5.9 on B + λI and thus
still facilitate the computation of HB(x).

It is a simple matter to derive from Corollary 5.9 the following result. It says that
the knowledge of Hoffman polynomials may help us estimate how many times of row
amalgamations we have to perform in order to reach one digraph from the other.

Corollary 5.12. Let B be an m × m nonnegative irreducible matrix. Then

HB(x) = �xkHBr (x)

for some nonnegative integer k and some � > 0. The parameter k is no larger than
the number of full row amalgamations required to reach the matrix Br from B.

Problem 5.13. Develop some criterion to tell which of the two cases described in
Corollary 5.9 happens.

Problem 5.13 for a matrix B and its full row amalgamation Bf r is partially exploited
below. Note that if B is nonsingular then B = Bf r , and thus nothing needs to be said
on this case.

Corollary 5.14. Let B be an m × m nonnegative irreducible matrix and S an m × n

matrix consisting of all the distinct columns of B. If det B = 0 and S is of full column
rank, then

HB(x) = n

mλB

xHBf r
(x).



154 Y. Wu, A. Deng / Linear Algebra and its Applications 414 (2006) 138–171

Proof. Recall that we have S = B/� for a full column partition � of B and Bf r

coincides with B�. Let A = Bf r and R = χ(�). Lemma 5.8 claims that (R, S) :
A ≈R+ B. But S has full column rank by our assumption and R surely has full row
rank. Thus, by examining Eqs. (2) and (3) in addition, we get the result from Theorem
5.3. �

By symmetry, we can define good row partition, column splitting, and column
amalgamation and so on in the most obvious way. To distinguish them from corre-
sponding concepts on row splitting and row amalgamation, etc., we use c in place of
r in the relevant notation. Sometimes we just use amalgamation to represent either
column amalgamation or row amalgamation.

Example 5.15. Let A =




0 0 1 1
0 0 1 1
1 0 0 0
0 1 0 0


. A direct computation gives Af r =


0 0 1

0 0 1
1 1 0


, Ar = Af 2r =

(
0 2
1 0

)
and HA(x) =

√
2

2 x2(x + √
2) = 2

√
2

3 xHAf r
(x) =

x2HAr (x).

We see that Ac = Ar in Example 5.15. But this is not always true as illustrated by
the next example.

Example 5.16. LetA =




0 0 1 0 1
0 0 0 1 1
0 0 1 0 1
1 1 0 0 0
0 0 0 1 1


. We haveAf c =


1 1 0

0 1 1
1 1 0


,Af 2c

=
(

1 1
1 1

)
and Ac = Af 3c = (2). However, Ac /= Ar = Af r =




0 1 1 2
0 1 0 1
1 0 0 0
0 0 1 1


.

Here HA(x) = 5
8x3 = 5

4HAr (x) = 5
4x3HAc(x).

Note that in Example 5.16, Ar cannot be amalgamated to be of a smaller size despite
of the fact x|HAr (x). But Ar is elementarily equivalent to Af c since Ar = SR and
Af c = RS, where

R =

0 1 0 1

0 0 1 1
1 0 0 0


 and S =




1 1 0
1 0 0
0 0 1
0 1 0


 .
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Here the matrix R is not an amalgamation matrix. This is in accordance with the fact
that Ar does not have a nontrivial amalgamation. In light of the above observation, it
seems interesting to seek some sort of partial converse of Theorem 5.3.

Problem 5.17. Let A ∈ Matn(R+) and B ∈ Matm(R+) be two irreducible matrices
such that HB(x) = n

mλA
xHA(x). Discuss the form of HA(x) which ensures that B has

either a nontrivial good column partition or a nontrivial good row partition. In what
circumstance can we assert that such a pair A and B are elementarily equivalent?

Problem 5.18. If HB(x) = n
mλA

xHA(x), can we find a matrix which is a common
column splitting or a common row splitting of A and B, or can we find a matrix
which is a column splitting of A and a row splitting of B? Moreover, if these kinds
of common splittings do exist, how can we construct from A and B their common
splittings of the smallest size efficiently?

5.3. Splitting and amalgamation of digraphs

Having considered general nonnegative irreducible matrices, let us turn to those
integer ones, namely strongly connected digraphs. To start things off, let us prepare
some terminology.

If an arc e goes from a vertex u to a vertex v, we say that u is the initial vertex (or
the tail) of e and v the terminal vertex (or the head) of e. The incidence structure of
a digraph � is characterized by two maps from E(�) to V (�), the tail operator i�

which sends an arc to its initial vertex and the head operator t� which sends an arc
to its terminal vertex. A vertex is a source of � if it is not the terminal vertex of any
arc of �; a vertex is a sink of � if it is not the initial vertex of any arc of �. The initial
incidence matrix of � is the matrix P� of dimension |V (�)| × |E(�)| such that

P�(i, j) =
{

1, if vi = i�(ej ),

0, otherwise

and the terminal incidence matrix of � is the matrix Q� of dimension |V (�)| × |E(�)|
such that

Q�(i, j) =
{

1, if vi = t�(ej ),

0, otherwise.

In what follows, when the digraph � is clear from the context we will often elim-
inate it from the notation. Let Eu = E(�)u denote the set of arcs of � starting at a
vertex u ∈ V (�). An out-partition π of � is a partition of E(�) into disjoint sets
E1

u, . . . , E
πu
u , u ∈ V (�), where ∪πu

i=1E
i
u = Eu for each u ∈ V (�). Note that we do

not require πu � 1 as in [35, Definition 2.4.3] and so our definition differs from
the usual one used in symbolic dynamics. But we also point out that πu = 0 can
happen only when Eu = ∅ and hence the two definitions coincide when restricted to
digraphs without sinks. An out-partition π is said to be discrete if |Ei

u| = 1 for all
u ∈ V (�) and i ∈ [πu], and π is said to be indiscrete if πu = 1 for all u ∈ V (�).
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The out-splitting of � corresponding to an out-partition π , denoted by �π , has vertex
set {ui : u ∈ V (�), i ∈ [πu]} and arc set {ei : e ∈ E(�), i ∈ [π t�(e)]} and the inci-
dence structure is given by requiring that for any e ∈ E(�), i ∈ [π t�(e)] we have

i�π (ei) = i�(e)j and t�π (ei) = t�(e)i , where j is chosen such that e ∈ E
j

i�(e)
.

We also call a digraph an out-splitting of � if it is isomorphic to �π for some out-
partition π of �. It is easy to see that a digraph � is a out-splitting of � if and only if
A(�) is a row splitting of A(�). Let Eu = E(�)u denote the set of arcs of � ending
at a vertex u ∈ V (�). An in-partition π of � is a partition of E(�) into disjoint sets
Eu

1 , . . . , Eu
πu , u ∈ V (�), where ∪πu

i=1E
u
i = Eu for each u ∈ V (�). Parallel to the

definition of discrete out-partition and out-splitting, we define in the most obvious
manner the (in)discrete in-partition and in-splitting.

For a given digraph �, we call a partition � of V (�), say V (�) = ∪m
i=1�i , an

in-good partition if for any i ∈ [m] and any u, v ∈ �i the multiset of initial vertices
of Eu is the same as that of Ev . The in-amalgamation of � for an in-good partition �,
denoted by ��, is the digraph having vertex set {�1, . . . ,�t } and there are t arcs going
from �i to �j if and only if for each v ∈ �j , there exist t arcs in E(�) with i�(e) ∈ �i

and t�(e) = v. Similarly, we define out-good partition and out-amalgamation in the
most obvious way.

The next result indicates the duality between out-splitting and in-amalgamation of
digraphs.

Theorem 5.19. Let � be a digraph.

(i) For any out-partition π of �, � is an in-amalgamation of �π ;
(ii) For any in-good partition � of V (�), � is an out-splitting of ��.

Proof. (i) Suppose π is an out-partition of � such that for each u ∈ V (�), Eu is
partitioned into sets E1

u, . . . , E
πu
u . Let �u = {ui : u ∈ V (�), i ∈ [πu]}. It is easy to

check that � ∼= (�π )� where � is the partition V (�π ) = ∪m
i=1�u.

(ii) Suppose the in-good partition � is V (�) = ∪m
i=1�i . Set π�i

= |�i | and label
the vertices of � in �i by �1

i , . . . ,�
πi

i . In virtue of the definition of ��, we know that
the arcs from �i to �j in �� are in bijective correspondence with the occurrences of
vertices from �i in the multiset of initial vertices of Eu, where u is any vertex in �j .
Let E(��)t�i

, t ∈ [πi], be those arcs going out of �i which correspond to the vertex �t
i

in the above correspondence. We thus obtain an out-partition π of �� which partition
E(��)�i

to be ∪πi

t=1E(��)t�i
for each i ∈ [m]. We can verify that � ∼= (��)π , ending

the proof. �

Example 5.20. Let � be the digraph depicted in Fig. 1(a). Let �1 = {v1, v2}, �2 =
{v3}, �3 = {v4}, �4 = {v5, v6, v7} and �5 = {v8, v9}. Then the in-amalgamation ��

for � : V (�) = ∪5
i=1�i is showed in Fig. 1(b). Now let � = �� whose arcs are

labelled as in Fig. 1(b). Let E1
�1

= {a, b}, E2
�1

= ∅, E1
�2

= {c}, E1
�3

= {d}, E1
�4

=
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(a) (b)

Fig. 1. Duality of out-splitting and in-amalgamation of digraphs.

{e},E2
�4

= {f },E3
�4

= ∅,E1
�5

= ∅ andE2
�5

= ∅. We useπ to denote this out-partition
of �. It is easy to check that �π

∼= �.

When mentioning a partition of � later in this paper, we shall always mean an
in-partition or an out-partition. For a partition π , depending on whether it is an in-
partition or an out-partition, we will simply write �(π) for �π or �π and π(u) for πu

or πu, for any u ∈ V (�), correspondingly. We say that �(π) is a splitting of � and �
is an amalgamation of �(π) [35, Definition 2.4.9].

The line digraph L(�) of a digraph � has vertex set E(�) and there is an arc from
e1 to e2 if and only if t�(e1) = i�(e2). For any positive integer m, the mth-iterated
line digraph Lm(�) of � is defined inductively by setting L0(�) = � and putting
Lm(�) = L(Lm−1(�)) for m � 1.

Example 5.21. �(π) ∼= L(�) for any digraph � and its discrete partition π .

Example 5.22. �(π) ∼= � for any digraph � and its indiscrete partition π .

Let π be an out-partition of �. The out-division matrix Pπ and the out-arc matrix
Qπ are |V (�)| × |V (�π )| matrices specified by

Pπ(u, vi) =
{

1, if u = v;
0, otherwise; and Qπ(u, vi) = |{e ∈ Ei

v : t�(e) = u}|

for any u, v ∈ V (�), i ∈ [πv] [35, Definition 2.4.11]. Correspondingly, if π is an
in-partition of �, the in-division matrix P π and in-arc matrix Qπ are matrices of
dimension |V (�)| × |V (�π )| such that

P π(u, vi) =
{

1, if u = v,

0, otherwise,
and Qπ(u, vi) = |{e ∈ Ev

i : i�(e) = u}|

for any u, v ∈ V (�), i ∈ [πv]. We are ready to give a description of the relationship
between the adjacency matrices of a digraph and its amalgamation digraph.
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Lemma 5.23. Let � be a digraph.

(i) For any out-partition π of �, we have

A(�) = PπQ�
π and A(�π ) = Q�

π Pπ . (19)

(ii) For any in-partition π of �, we have

A(�) = QπP π� and A(�π ) = P π�
Qπ. (20)

Proof. The proof of [35, Theorems 2.4.12, 2.4.14] still works. �

We list below some basic properties of out(in)-division and out(in)-arc matrices
associated with a partition of a digraph but skip their routine proofs.

Lemma 5.24. Let � be a digraph.

(i) For any out-partition π of �, Pπ is of full row rank if and only if πv � 1 for
all v ∈ V (�) while Q�

π is column-nontrivial if and only if � has no sources. �
has a sink w if and only if (a) πw = 1 and Q�

π has a zero row; or (b) πw = 0
and Pπ has a zero row.

(ii) For any in-partition π of �, P π� is of full column rank if and only if πv � 1
for all v ∈ V (�) while Qπ is row-nontrivial if and only if � has no sinks. � has
a source w if and only if (a) πw = 1 and Qπ has a zero column; or (b) πw = 0
and P π� has a zero column.

Lemma 5.25. Let � be a digraph, π1 an out-partition and π2 an in-partition of E(�),

respectively. If π1 is discrete, then Pπ1 = P� and Qπ1 = Q�. If π2 is discrete, then
Qπ2 = P� and P π2 = Q�.

In view of Example 5.21, Lemmas 5.23 and 5.25, we come to the following result,
which has appeared many times in various literatures.

Corollary 5.26. For any given digraph �, A(�) = P�Q�
� and A(L(�)) = Q�

� P�.

Theorem 5.27. Let � and � be two digraphs. Then the following statements are
equivalent:

(i) � is an out-splitting of �;
(ii) � is an in-amalgamation of �;
(iii) A(�) is a row splitting of A(�);
(iv) A(�) is a row amalgamation of A(�).
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Proof. The equivalence of (i) and (ii) comes from Theorem 5.19 and the equivalence
of (iii) and (iv) can be seen from Theorem 5.7. Combining Lemmas 5.6, 5.23 and
5.24, we get that (i) and (iii) are equivalent. �

We remark that from Lemma 5.23 and the main result of [2], we have much
knowledge of the relationship between the Jordan form, and hence many relevant
parameters, of a digraph and its split digraph. Also note that using the notation of
symbolic dynamics, Lemma 5.23 says that there is an elementary equivalence (over
Z+) from A(�) to A(�(π)) [35, Definition 7.2.1]. This again confirms that a digraph
and its split digraph define conjugate dynamical systems and thus have equal param-
eters as long as it is a conjugate invariant, like the zeta function, the Bowen–Franks
group, the Jordan form away from zero, some inverse limit spaces, the dimension
group, and so on [31, Chapter 2]; [35, §6.3, §6.4, §7.4].

Our task below is to use Theorem 5.1 directly to find the relationship between the
Hoffman polynomials of a digraph and its split digraph.

Corollary 5.28. Let � be a strongly connected digraph and �(π) a splitting of � for
some partition π of �. Let n = |V (�)| and m = |V (�(π))|. Then H�(π)(x) equals
either m

n
H�(x) or m

nλ�
xH�(x).

Proof. It is a direct consequence of Corollary 5.3 and Lemmas 5.23 and 5.24. �

Theorem 5.29. Let � be a strongly connected digraph with at least one arc. Let
�(π) be a splitting of � for some partition π of E(�). If there exists at least one
vertex u ∈ V (�) with |π(u)| > 1 and if Q�

π is of full column rank for π being an
out-partition or Qπ is of full row rank for π being an in-partition, then

H�(π)(x) = m

nλ�
xH�(x),

where n = |V (�)|, m = |V (�(π))|.

Proof. First note that � has neither sources nor sinks. Also observe that the condition
that |π(u)| > 1 implies that there are identical rows in A(�(π)) if π is an out-partition
and there are identical columns in A(�(π)) if π is an in-partition. Henceforth, we get
det A(�(π)) = 0, whichever case it is. The result is now immediate from a simple
combination of Eqs. (2) and (3), Theorem 5.3, and Lemmas 5.23 and 5.24. �

Say that a digraph is common if it has a vertex whose in-degree is at least two or
a vertex whose out-degree is at least two.

Corollary 5.30. Let � be a strongly connected common digraph and π a discrete
partition of �. Let n = |V (�)|, m = |E(�)|. Then we have

H�(π)(x) = m

nλ�
xH�(x).
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Proof. It suffices to check the case that π is a discrete out-partition. From the defini-
tion of a discrete out-partition we can find that Q�

π is of full column rank. Hence the
result comes directly from Theorem 5.29. �

Since �(π) is just L(�) when π is discrete, we can rephrase that special case of
Corollary 5.30 as below.

Corollary 5.31. Let � be a strongly connected common digraph with |V (�)| = n

and |E(�)| = m. Then we have

HL(�)(x) = m

nλ�
xH�(x).

Given a digraph �, we call a digraph the ith full or total column (row) amalgamation
of � if its adjacency matrix equals A(�)f ic or A(�)c (A(�)f ir or A(�)r ). We denote
the ith full and total column (row) amalgamation of � by �f ic and �c (�f ir and �r ),
respectively.

As reported in Example 5.16, the fact that x|HAc(x) does not necessarily imply
that the digraph �(Ac) is a splitting of any digraph of smaller order. However, parallel
to Problem 5.17, we want to know to which extent something in the opposite direction
of Theorem 5.29 or Corollary 5.31 could be said, i.e., under what further assumptions
can we deduce from x|H�(x) that � is a split digraph or even a line digraph of a
digraph of a smaller size? Especially, we pose

Problem 5.32. Let k and � be two positive integers and � a digraph with H�(x) =
xk + xk+�. Under which further assumption on � can we find a digraph � satisfying
� = Lk(�) and H�(x) = 1 + x�? Note that the assumption that � is regular does
guarantee the existence of � as mentioned above [43].

5.4. An application

For their application to concurrent computation, Ho [23] is interested in the so-
called M-satisfiable digraphs for integers M, namely digraphs whose adjacency matri-
ces A satisfy M � maxk∈Z+ maxi,j,j ′ |Ak(i, j) − Ak(i, j ′)|. The smaller the parame-
ter M could take, the more uniform the task assignment corresponding to the digraph
is. For example, if there is a unique walk of length n between any pair of ordered not
necessarily distinct vertices [47], then this digraph must be 1-satisfiable. It is known
that a digraph is M-satisfiable for some M if and only if its adjacency matrix A satisfies
the matrix equation

Am − An = �J (21)

for some positive integers m > n and � [23]. Indeed, if A(�) = A satisfies Eq. (21),
then we can show that � is M-satisfiable for
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M = max
k∈{0,1,...,m−1} max

i,j,j ′ |Ak(i, j) − Ak(i, j ′)|. (22)

Define a strongly connected digraph to be generalized satisfiable provided its Hoff-
man polynomial is a factor of a polynomial of the form xm − xn. Ho [23, Corollary 5]
finds that a digraph is satisfiable if its line digraph is satisfiable. By virtue of Remark
2.5 and Corollary 5.28, a natural generalization of his result is that any amalgamation
digraph or splitting digraph of a generalized satisfiable digraph must be generalized
satisfiable. Note that the Decomposition Theorem [35, Theorem 7.1.2] says at this
moment that this property specified by the Hoffman polynomials is a conjugacy
invariant of the edge shift of the digraph.

Ho constructs a family of satisfiable digraphs �k for each positive integer k. More-
over, Ho demonstrates that A(�k) is a solution to the equation A2(k+1) − Ak+1 =
2k+1J . In order to use Eq. (22) to estimate how satisfiable �k is, we want to find a
matrix equation of the form of Eq. (21) with as low degree as possible for which A(�k)

is a solution. Surprisingly, we can determine the minimum degree such polynomials by
working out the tth full amalgamation digraph of �k and then its Hoffman polynomial.

For any k � 1, the digraph �k to be defined will be a 2-regular digraph on the set
of 2k+1 − 1 vertices, that is, {r} ∪ {ai, bi |i ∈ [2k − 1]}. We write x → {y, z} to refer
to the operation of adding one arc from x to y and one arc from x to z. The incidence
relation in �k is built in the following procedure [23]:

R1. r → {a1, b1};
R2. a2i+j → {a2i+1+2j , a2i+1+2j+1}, 0 � i � k − 2, 0 � j � 2i − 1;
R3. a2k−1 → {r, b1};
R4. a2k−1+j → {b2k+2j , b2k+2j+1}, 1 � j � 2k − 1;
R5. Swapping the roles of a and b, do R2, R3 and R4 once again.

Note that R1 and R2 define a complete binary tree of depth k and rooted at r.

Theorem 5.33. H�k
(x) = 1

2k−1 xk−1(1 + x + x2 + · · · + xk).

Proof. Let n = 2k+1 − 1 and let A = A(�k), whose lines are indexed by a2k−1,

a2k−2, . . . , a1, r, b1, . . . , b2k−2, b2k−1 in that order. Our strategy is to prove that
HA(x) = �xk−1HAr (x) for some � ∈ R and then turn to compute HAr (x). The first
goal is done in two steps, proving that Ar is obtained from A by performing k − 1
full row amalgamations and that HA

f i−1r
(x) = �ixHA

f i r
(x) for some �i ∈ R, i ∈

[k − 2].
To deduce Ar = Af k−1r , we proceed as follows. Note that there are 2(2k−1 − 1) =

n−3
2 pairs of vertices, namely {a2, a3}, {a4, a5}, . . . , {a2k−2, a2k−1}, {b2, b3}, {b4, b5},

. . . , {b2k−2, b2k−1}, each pair of them have a common set of in-neighbors. Hence
(�k)f r is obtained from �k by merging each of those pairs of vertices and thus (�k)f r

is of order n1 = n − n−3
2 = 2k + 1. (�k)f 2r is obtained from (�k)f r by merging n−5

2
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Fig. 2. In-amalgamation of �k .

pairs of vertices each of which have the same set of in-neighbors in (�k)f r , and so
on. This amalgamation process ends at (�k)f k−1r since there are no two vertices in
(�k)f k−1r sharing the same set of in-neighbors. Note that (�k)f ir , i = 0, . . . , k − 1,
all of them have constant in-degree 2, which should not be misunderstood from the
local picture depicted in Fig. 2.

Next we prove that there is �i ∈ R such that HA
f i−1r

(x) = �ixHA
f i r

(x) for each
i ∈ [k − 1]. Examining the above procedure of doing amalgamations, we get that
for each i ∈ [k − 1], Af ir is of dimension ni = ni−1+2i+1

2 = 2k+1−i + 2i − 1 and
Af i−1r = SiRi and Af ir = RiSi for some row amalgamation matrix Ri and reduced
matrix Si . By Corollary 5.14 we need only check that each Si is of full column rank.
For i = 1, we know that S1 is obtained from A by deleting 2(2k−1 − 1) columns,
say columns corresponding to a3, a5, . . . , a2k−1 and b3, b5, . . . , b2k−1. Picking rows
corresponding to a2k−1, a2k−2, . . . , a2k−1 , r, b2k−1 , . . . , b2k−2, b2k−1, we find that S1

has a submatrix P1 =

 I2k−1−1

B

I2k−1−1


, where B =


0 1 1

1 0 1
1 1 0


. Since

P1 is nonsingular, we know that S1 is of full column rank. Analogously, for each
i ∈ [k − 1], there is a matrix Pi obtained from Si by deleting some rows, which is

permutation similar to


 I2k−i+i−2

B

I2k−i+i−2


. This verifies that Si is of full

column rank, as desired.
We now calculate HAr (x). Consider an eigenvalue λ of Ar together with its eigen-

vector ξ = (xk, . . . , x2, x1, γ, y1, y2, . . . , yk)
�. From Arξ = λξ we read off that




xi = λi−1x1, i ∈ [k],
yi = λi−1y1, i ∈ [k],
γ + ∑k

i=1 yi = λkx1,

γ + ∑k
i=1 xi = λky1.



Y. Wu, A. Deng / Linear Algebra and its Applications 414 (2006) 138–171 163

Consequently, we can find that Ar has an eigenvector j corresponding to eigenvalue
2 and has two independent eigenvectors

ξ1 = (ωk−1, . . . , ω, 1, 2ωk, 1, ω, . . . , ωk−1)

and

ξ2 = (ωk−1, . . . , ω, 1, ωk, 0, 0, . . . , 0),

corresponding to each (k + 1)th root of unityω /= 1. Notingnk−1 = 2k + 1, the above
observation shows that det(xI − Ar) = (x − 2)(1 + x + · · · + xk)2 and mAr (x) =
(x − 2)(1 + x + · · · + xk). Since the Perron eigenvalue of Ar is 2, we find that
HAr (x) = �0(1 + x + · · · + xk), for some �0 ∈ R.

Thus far, what we know is that H�k
(x) = �xk−1(1 + x + · · · + xk) for some � ∈

R. Making use of Theorem 2.6 yields that � = n

2k−1(1+2+···+2k)
= 1

2k−1 , the proof
finished. �

Here comes our promised application of the preceding computation of Hoffman
polynomials.

Theorem 5.34. For each i ∈ {0, 1, . . . , k − 1}, the ith full row amalgamation (�k)f ir

of �k is generalized satisfiable. Moreover, gi(x) = xk+1+i − xi is the unique poly-
nomial of least degree satisfying

(I) gi(Af ir ) is positive and has rank 1; and
(II) gi(x) is of the form xp − xq for some p > q.

Proof. Assume that i ∈ {0, 1, . . . , k − 1}. The first claim comes directly from Re-
mark 2.5 and Corollary 5.28. A more direct way to obtain it is to first see from the
proof of Theorem 5.33 that H(�k)f i r

(x) = ηrx
2k−1−r (1 + x + · · · + xk) for some

ηr ∈ R and then notice (x − 1)(1 + x + · · · + xk) = xk+1 − 1.
Now we consider the second assertion. It follows from the proof of Theorem 5.33

that gi(x) satisfies (I) and (II) for each i. Henceforth our task is to prove that gi(x)

is of least degree among such polynomials and is unique. We prove this only for
i = k − 1, the other cases being similar.

Suppose that f (x) is a polynomial satisfying conditions (I) and (II) for i = k − 1.
Using Theorems 2.4 and 5.33 we get deg f (x) � 2k − 1. If deg f (x) = 2k − 1, then
from Remark 2.5, it follows that f (A) = H�k

(x) and so f (x) fails to satisfy condition
(II). This then gives deg f (x) � deg gk−1(x) = 2k.

It remains to prove the uniqueness of gk−1(x). If there is a polynomial, say f (x) /=
gk−1(x), of least degree satisfying conditions (I) and (II). Then we know that f (x) =
x2k−1 − xn for some n < 2k − 1. Without loss of generality, assume n > k − 1. Now
we have a polynomial f (x) − gk−1(x) = xn − xk−1 which satisfies conditions (I) and
(II) and has a degree smaller than gk−1(x). This contradicts with what we prove in
the preceding paragraph and the proof is ended. �
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6. Harmonic digraph

We study in this section two classes of digraphs, the so-called harmonic digraphs
and semiharmonic digraphs, whose symmetric digraph version is introduced by Dress
and Stevanović [15]. A digraph � with adjacency matrix A is called harmonic if there
is µ ∈ R such that A2j = µAj and j�A2 = µj�A in which case � is also called µ-
harmonic. A digraph � is called semiharmonic if A3j = µAj and j�A3 = µj�A for
some µ ∈ C in which case � is also called µ-semiharmonic. The ensuing two results
are generalizations of corresponding ones of Dress and Stevanović [15].

Corollary 6.1. Let � be a digraph without sinks or sources and let A = A(�). There
exists a polynomial f (x) such that f (A) = AJA if and only if � is a strongly con-
nected harmonic digraph.

Proof. First of all, we mention that the assumption that � has no sources or sinks
implies that ξ = Aj and ζ� = j�A are both positive vectors.

Assume that there is a polynomial f (x) such that f (A) = AJA = ξζ�. As both
ζ and ξ are positive, we squeeze information out of Theorem 2.1 that � is strongly
connected and A2j = λAAj and j�A2 = λAj�A, that is, � is λA-harmonic.

Conversely, assume that � is strongly connected and A2j = µAj and j�A2 =
µj�A for some real number µ. Then both ξ and ζ� are Perron eigenvectors of A and
therefore µ is the Perron eigenvalue of A. It is Theorem 2.2 now which guarantees
the existence of a polynomial f (x) for which f (A) = ξζ� = AJA, completing the
proof. �

The proof of the second result can be done almost word-for-word the same as that
of Corollary 6.1.

Corollary 6.2. Assume that � is a digraph without sinks or sources. Let A = A(�),

ξ = A2j + √
λAj and ζ� = j�A2 + √

λj�A, where λ is the spectral radius of A.

Then there is a polynomial f (x) such that f (A) = ξζ� if and only if � is a strongly
connected λ-semiharmonic digraph.

We include a result about the tensor product of two (semi)harmonic digraphs.

Theorem 6.3. The tensor product of two (semi)harmonic digraphs is also a (semi)har-
monic digraph.

Proof. Let � and � be two harmonic digraphs with A = A(�) and B = A(�) such
that A2jn = λAjn and B2jm = µBjm for some positive number λ and µ. Then we
have (A ⊗ B)2jnm = (A ⊗ B)2(jn ⊗ jm) = A2jn ⊗ B2jm = λµ(A ⊗ B)(jn ⊗ jm) =
λµ(A ⊗ B)jnm. In the same way, j�nm(A ⊗ B)2 = λµj�nm(A ⊗ B). This shows that
� ⊗ � is a λµ-harmonic digraph.
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Similarly, the tensor product of a λ-semiharmonic digraph and a µ-semiharmonic
digraph is a λµ-semiharmonic digraph. �

Theorem 6.4. Suppose that we have (R, S): A ≈R+ B, where j�R = j� and Sj = j.
If �(A) is λ-(semi)harmonic, then �(B) is also λ-(semi)harmonic.

Proof. Since �(A) is λ-harmonic, A2j = λAj. It follows that RSRSj = λRSj
because A = RS. Multiplying both sides of the above equation from left by S,
we obtain that B2Sj = λBSj by considering that B = SR. Thus we have B2j = λj
as Sj = j. A similar computation gives that j�B2 = λj�B. Hence �(B) is λ-har-
monic.

The proof for the case of semiharmonic digraph can be patterned on that of the
previous case. �

Corollary 6.5. The line digraph of aµ-(semi)harmonic digraph is also aµ-(semi)har-
monic digraph.

Proof. It is notable that for a digraph �, both the transpose of its initial incidence
matrix P� and the terminal incidence matrix Q� have a lone 1 in each column, i.e.,
j�P� = j� and Q�j = j. Then Corollary 5.26 and Theorem 6.4 together yield the
result. �

Remark 6.6. The referee points out that the above results hold without the integral-
ity assumption and suggests to pursue the generalizations of the existing results on
harmonic digraphs to results for general nonnegative irreducible matrices.

The next two examples are presented by Grüneward and Dress.

Example 6.7. For λ > 1, let Tλ be the tree with one vertex v of degree λ2 − λ + 1,
while each neighbor of v has degree λ and all the remaining vertices have degree 1
[21]. By [21, Lemma 2.2] and [15, Theorem 1], if � is a strongly connected symmetric
digraph with a vertex of degree not less than λ2 − λ + 1 and f (A(�)) = A(�)JA(�)

for some polynomial f (x), then � ∼= Tλ.

Example 6.8. For two positive integers a and k � 2, let M2k
a be the strongly con-

nected symmetric digraph containing a cycle (v1, v2, . . . , v2k, v1) of length 2k,
v2i−1 having degree 2 + a, v2i having degree 2, and each neighbor of v2i−1 except
v2i having degree 1 [14]. By [14, Theorem 3.2] and [15, Theorem 2], if � is a
strongly connected symmetric digraph with only one pair of cycles of length > 2
for which there are a positive number λ and a polynomial f (x) ∈ R(x) such that
f (A) = (A2j + √

λAj)(j�A2 + √
λj�A), where A = A(�), then � ∼= M2k

a for some
a and k.
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7. Polynomial with at most two terms

In this section we restrict ourselves to the polynomials with at most two terms.
The following theorem is an easy extension of [33, Theorem 1].

Theorem 7.1. If for some c � 1, c(xk + 1) is the Hoffman polynomial of some
digraph, then c = 1 and k is odd.

Proof. Assume that A is the adjacency matrix of a digraph which has Hoffman poly-
nomial c(xk + 1). Then c(Ak + I ) = T is a positive matrix with rankT = 1 and
trT = n, where n is the size of A. Since Ak is nonnegative, we deduce that n

c
− n =

tr( T
c

− I ) = trAk � 0, which is possible only if c � 1. But it is assumed that c � 1
and thus we get c = 1, as desired.

It remains to prove that k is odd. Assume otherwise, k = 2h for some positive
integer h. Observe that the eigenvalues of T − I are n − 1, which is equal to λ2h

A ,
with multiplicity 1 and −1 with multiplicity n − 1. Consequently, the eigenvalues
of Ah are λh

A with multiplicity 1 and ±√−1 with equal multiplicity. Since
√−1

and −√−1 have to appear in pairs, this means that trAh = λh
A > 0 and henceforth

trA2h > 0, contradicting with trA2h = tr(T − I ) = 0. �

Example 7.2. For A =




1 0 1 1
1 1 0 1
0 1 0 0
0 0 1 0


, we have HA(x) = 2

5x(x2 + 1) and

λA = 2.

Problem 7.3. Suppose l and k are two positive integers. Is there a c > 1 such that
cxl(1 + xk) is the Hoffman polynomial of some digraph?

Problem 7.4. Let k > 1 be an even number. Is x�(xk + 1) the Hoffman polynomial
of some digraph? Note that if x�(xk + 1) = H�(x) for an even integer k, then �
cannot be regular [43, Theorem 2.1].

A complete digraph is a digraph whose adjacency matrix isJ − I ;while a complete
digraph with loops is a digraph whose adjacency matrix is J.

Theorem 7.5. If � is a symmetric digraph on n vertices such that between any two
vertices a and b there are exactly n + 1 walks going from a to b whose length is either
1 or 2, then � is the complete digraph with loops.

Proof. Let A = A(�). Then what we know is that A = A� and A + A2 = (n + 1)Jn

and what we need to prove is A = Jn. First, we make use of Theorems 2.1 and 2.6
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and Corollary 3.2 to find that A has constant line sum n = λA. Next, we deduce
from A = A� and A + A2 = (n + 1)Jn that A + AA� = (n + 1)Jn. Consequently,
by looking at the diagonal of (n + 1)Jn we find that

∑n
j=1(A(i, j)2 − A(i, j)) =∑n

j=1 A(i, j)A(j, i) − ∑n
j=1 A(i, j) = (n + 1 − A(i, i)) − n � 1, i ∈ [n]. But for

a nonnegative integer x, x2 − x � 1 can happen only if x = 0 or 1. Accordingly,
we get that A is an n × n (0, 1) matrix with constant line sum n and thus A = Jn

follows. �

8. Miscellaneous

We collect in this last section some observations concerning Hoffman polynomials.

Example 8.1. By Theorem 2.8, a digraph is strongly connected if and only if there
is a positive matrix of rank 1 by which the matrix subalgebra spanned is an ideal
of the adjacency algebra of �, i.e., the matrix algebra spanned by A(�). Theorem
1.1 tells us that a digraph � is strongly connected and regular if and only if the
matrix subalgebra spanned by J is an ideal of the adjacency algebra of �. Curtin
discovers several interesting characterizations by ideal theoretic conditions for some
generalization of distance-regular graphs and t-homogeneous graphs [12]. Fiol and
Garriga [18] characterize locally pseudo-distance-regular graphs in terms of a vector
subspace invariant under the multiplication of the adjacency matrix. It will be good to
find some ideal theoretic characterization for digraphs with certain kind of regularity.

In the following, we make some observations on classifying digraphs according to
their Hoffman polynomials. Note that in general, it is hard to determine the existence
of solutions to a nonnegative integer matrix equation and to give the constructions of
as many solutions as possible, not to mention classifying all solutions.

Example 8.2. A strongly regular digraph srd(n; k, t, �, c; λ, µ) is a k-regular di-
graph with n vertices such that for A = A(�)

AJ = JA = kJ, A2 + µ − λ

c
A +

(
�(λ − µ)

c
+ µ − t − �2

)
I = µJ.

When � = 0 and c = 1, an srd(n; k, t, �, c; λ, µ) coincides with the directed strongly
regular graph dsrg(n; k, t; λ, µ) [16,24]; [36, p. 276]. In virtue of Theorem 2.4,
if � = srd(n; k, t, �, c; λ, µ) does not have the complete digraph of order n as its
subdigraph, then H�(x) = 1

µ

(
x2 + µ−λ

c
x + �(λ−µ)

c
+ µ − t − �2

)
. Conversely, let �

be a k-regular digraph whose adjacency matrix only has � as its diagonal element and
0 and c as its off-diagonal elements. Then we can conclude from H�(x) = a2x

2 +
a1x + a0, a2 /= 0, that � = srd(n; k, t, �, c; λ, µ), where µ = 1

a2
, λ = 1−a1c

a2
and

t = 1−a0−a1�
a2

− �2.
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Example 8.3. A strongly regular symmetric digraph [32, p. 60] is a symmetric di-
graph without loops or multiple arcs such that the number of common neighbors of two
vertices u and v only depends on whether or not u = v, u and v are adjacent, or u and
v are nonadjacent. It is not hard to realize that if a quadratic polynomial is a Hoffman
polynomial of some symmetric digraph without loops or multiple arcs, then this
digraph must be strongly regular. This fact is used in the proof of [32, Theorem 4.11].
Conversely, with the exception of a union of several copies of a complete digraph,
each strongly regular symmetric digraph has a quadratic polynomial as its Hoffman
polynomial. Indeed, for a strongly regular symmetric digraph srg(n, k, λ, µ) [36, p.
263]; [32, Lemma 4.8], its adjacency matrix A fulfils the equations

AJ = kJ, A2 + (µ − λ)A + (µ − k)I = µJ.

This means that if µ /= 0, namely the digraph is not a union of complete digraphs,
its Hoffman polynomial must be 1

µ
(x2 + (µ − λ)x + µ − k). We also mention that a

symmetric regular digraph without loops and multiple arcs has exactly three distinct
eigenvalues if and only if it is strongly regular and not a union of the complete digraphs
[36, Problem 31.H]; [32, Theorem 4.11], i.e., if and only if its Hoffman polynomial
is quadratic. Note that there do exist symmetric digraphs having exactly three distinct
eigenvalues which are non-regular and hence surely not strongly regular [5,6,38].

Example 8.4. Hoffman indicates that a d-regular digraph with Hoffman polynomial
x + x2 must be the Kautz digraph K(d, 2) [22]. Gimbert obtains the same result in
[19]. Jørgensen extends the assertion of Hoffman by proving that there is a unique
d-regular digraph with Hoffman polynomial 1

t
x2 + x for any positive integer t [29].

Wu and Li demonstrate that the Kautz digraph K(d, n) is the only d-regular digraph
which has xn−1 + xn as its Hoffman polynomial [43].

Example 8.5. A digraph of out-degree at most k and diameter at most d is a Moore
digraph if the number of its vertices attains the Moore bound, i.e., 1 + k + k2 + · · · +
kd . In other words, a Moore digraph is a digraph whose adjacency matrix A satisfies
I + A + · · · + Ad = J. It is known that the only Moore digraphs are the complete
digraphs of k + 1 vertices or cycles of d + 1 vertices, corresponding to the case d = 1
and k = 1, respectively [7,39]. Clearly, a regular digraph is a Moore digraph if and
only if it has a Hoffman polynomial of the form xn−1 + · · · + x + 1.

A symmetric digraph of degree at most k and diameter at most d is called a (k, d)
Moore symmetric digraph if the number of its vertices achieves the (undirected)
Moore bound, namely 1 + k + k(k − 1) + · · · + k(k − 1)d−1 [1]. The Moore sym-
metric digraphs of diameter 1 are just complete digraphs. A Moore symmetric digraph
of diameter 2 can only have valence 2, 3, 7 or 57 [1]. It is known that the only
Moore symmetric digraphs with parameters (2, 2), (3, 2) and (7, 2) are the pentagon,
the Peterson graph and the Hoffman–Singleton graph, respectively [3, Chapter 23].
However, the existence of a (57, 2) Moore symmetric digraph remains an enigma.
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The Moore symmetric digraphs of diameter d � 3 can only be the symmetric cycle
of length 2d + 1.

Example 8.6. A digraph is a (k, 1) Moore symmetric digraph if and only if it is a
loopless symmetric digraph with Hoffman polynomial x + 1. A digraph is a (k, 2)

Moore symmetric digraph if and only if it is a loopless regular symmetric digraph
with Hoffman polynomial x2 + x − (k − 1).

Problem 8.7. Is it possible to characterize (k, d) Moore symmetric digraphs for d �
3 using their Hoffman polynomials together with a bit of some other parameters?
Note that the Hoffman polynomial of the symmetric cycle of length n = 2d + 1 is∏d

i=1(x − 2 cos(2πi/n)). We also mention that the symmetric cycle of length n is
characterized by its spectrum {2 cos(2πi/n) : i ∈ [n]} [13, p. 72].

We now consider the Hoffman polynomials of vertex transitive digraphs.

Example 8.8. A circulant digraph is a Cayley digraph on a cyclic group. A classical
result is that all vertex transitive digraphs of prime order are circulant digraphs [32,
Theorem 7.7]. In addition, Lazarus [34, p. 115, Corollary] proves that the minimal
polynomial of a circulant digraph of prime order either splits into linear factors or
is a linear factor times one irreducible factor. This then tells us that the Hoffman
polynomials of all vertex transitive digraphs of prime order either splits into linear
factors or is irreducible.

Let us introduce two more results of Hoffman himself about Hoffman polynomials.

Example 8.9. Let Qm be the m-dimensional cube. Hoffman proves that for m = 2
or 3, Qm is the only symmetric digraph with 2m vertices and Hoffman polynomial
equal to HQm(x) [25, Theorem 2]. Hoffman also finds that there are only one
symmetric digraph of 16 vertices besides Q4 which has HQ4(x) as its Hoffman
polynomial.

Example 8.10. For any positive integer t, let �t be the digraph with V (�t ) = {(i, j) :
i, j ∈ Zt } and arcs going from (i, j) to (i, j + 1) and (i + 1, j) for all i, j ∈ Zt .
Hoffman proves that any digraph of order t2 with Hoffman polynomial H�t (x) for
t = 2, 4 or an odd prime must be isomorphic to �t [26, Theorem 2].

Our final example is due to Feng and Kwak.

Example 8.11. Ref. [17, Lemma 2] asserts that a symmetric digraph of order 2(k + 1)

with Hoffman polynomial (x3 + kx2 − x − k)/(k2 − k) must be the complement of
the 2 × (k + 1)-grid, i.e., the complete bipartite symmetric digraph Kk+1,k+1 with
one perfect symmetric matching deleted.
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[13] D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1979.
[14] A. Dress, S. Grüneward, Semiharmonic trees and monocyclic graphs, Appl. Math. Lett. 16 (2003)

1329–1332.
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