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Abstract Very long-chain fatty acids are produced through a
four-step cycle. However, the 3-hydroxyacyl-CoA dehydratase
catalyzing the third step in mammals has remained unidentified.
Mammals have four candidates, HACD1–4, based on sequence
similarities to the recently identified yeast Phs1, although
HACD3 and HACD4 share relatively weak similarity. We
demonstrate that all four of these human proteins are indeed
3-hydroxyacyl-CoA dehydratases, in growth suppression experi-
ments using a PHS1-shut off yeast strain and/or in vitro 3-
hydroxypalmitoyl-CoA dehydratase assays. HACD proteins
exhibit distinct tissue-expression patterns. We also establish that
HACD proteins interact with the condensation enzymes
ELOVL1–7, with some preferences.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Very long-chain fatty acids (VLCFAs), those having a chain-

length P20, function in cellular processes including mainte-

nance of a functional nuclear envelope [1,2], protein transport

[3], and production of bioactive lipid molecules such as eicosa-

noids [4]. VLCFAs exist not only as free fatty acids (FAs) but

also as constituents of other lipids, such as sphingolipids, glycer-

ophospholipids, and glycosylphosphatidylinositol anchors [5,6].

Long-chain FAs are synthesized by FA synthase (FAS) [7].

FA elongation occurs by cycling through a four-step process

(condensation, reduction, dehydration, and reduction), with

two carbons added through each cycle. Long-chain FAs can

be further converted to VLCFAs by ER membrane-bound en-

zymes cycling through a similar four-step process [8]. Genes

encoding enzymes responsible for each step in the latter cycle

have been characterized extensively in yeast (condensation,
Abbreviations: VLCFA, very long-chain fatty acid; FA, fatty acid; SC,
synthetic complete; EGFP, enhanced green fluorescent protein
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ELO2/FEN1 and ELO3/SUR4; first reduction, YBR159w;

dehydration, PHS1; and second reduction, TSC13) [8,9].

Homology searches led to identification of respective mamma-

lian enzymes: for condensation, ELOVL1–7 (alternative names

are listed in Supplementary Table 1) [4]; first reduction, KAR

[10]; and second reduction, TER [10]. However, the 3-hydrox-

yacyl-CoA dehydratase(s) responsible for the dehydration has

not been identified.

Yeast Phs1 was recently identified as a 3-hydroxyacyl-CoA

dehydratase [8]. This enzyme contains no distinguishing do-

main or motif, except a C-terminal ER-retention signal. Phs1

is highly enriched with hydrophobic residues and is a six-span

membrane protein [11]. The Tyr149 and Glu152 residues of

Phs1 are essential for activity and thought to constitute the ac-

tive site [11].

Mammalian HACD1/PTPLA and HACD2/PTPLB share

significant sequence similarities with Phs1 (Supplementary

Fig. 1), yet their functions remain unclear. Interactions between

HACD2 and BAP31, postulated to be a chaperone or cargo

receptor for ER-Golgi transport, have been reported [12], and

HACD1 has been linked to certain muscle diseases [13,14].

Other mammalian proteins, HACD3/PTPLAD1/B-ind1 and

HACD4/PTPLAD2, share significant sequence similarities with

HACD1 and HACD2 and weak similarities with Phs1 (Supple-

mentary Fig. 1). HACD3 was originally identified as a gene in-

duced by sodium butyrate [15], which inhibits cell proliferation

and induces differentiation. HACD3 reportedly interacts with

the small GTPase Rac and appears to be involved in Rac1 sig-

naling [15], yet its exact function has remained unclear.

In the study presented here, we characterized these four

HACD proteins. We found that all are localized in the ER,

and each exhibits a characteristic tissue-expression pattern.

Moreover, we demonstrated that all four are 3-hydroxyacyl-

CoA dehydratases. We also established that the HACD

proteins interact with ELOVL proteins. Our analyses have

completed the identification of mammalian enzymes responsi-

ble for the entire VLCFA elongation cycle.
2. Materials and methods

2.1. Cell culture and transfection
HeLa cells and HEK 293T cells were grown in Dulbecco�s modified

Eagle�s medium (Sigma, St. Louis, MO) containing 10% fetal bovine
serum and supplemented with 100 units/ml penicillin and 100 lg/ml
streptomycin. HEK 293T cells were grown in 0.3% collagen-coated
dishes. Transfections were performed using Lipofectamine Plus�
blished by Elsevier B.V. All rights reserved.
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Reagent (Invitrogen, Carlsbad, CA) according to the manufacturer�s
instructions.

Saccharomyces cerevisiae strains SAY31 and SAY32 [11] were grown
in synthetic complete (SC) medium (0.67% yeast nitrogen base and 2%
DD-glucose) containing nutritional supplements.

2.2. Plasmids
Plasmids constructed in this study are listed in Supplementary Table

2. The pUG34 plasmid, a yeast expression vector constructed to pro-
duce a fusion protein with an N-terminal enhanced green fluorescent
protein (EGFP), was gift from J.H. Hegemann. The pCE-puro
3xFLAG-1, pCE-puro HA-1, and the pCE-puro His6-Myc-1 vectors
were designed to produce an N-terminal 3xFLAG-tagged protein, an
N-terminal HA-tagged protein, and an N-terminal tandemly oriented
His6 and Myc epitope (His6-Myc)-tagged protein, respectively. The
PHS1, HACD1-4, and ELOVL1-7 genes were amplified by PCR using
primers and templates (Supplementary Tables 3 and 4), and the result-
ing sequences were verified and cloned into the pUG34, pCE-puro
3xFLAG-1, pCE-puro HA-1, or pCE-puro His6-Myc-1 vector.

2.3. Immunological assays
Immunoblotting was performed as described previously [16], using

the anti-Myc antibody PL-14 (1 lg/ml; Medical and Biological Labo-
ratories, Nagoya, Japan) and anti-GFP antibodies (1 lg/ml; Roche
Diagnostics, Indianapolis, IN). Microscopic immunofluorescence stud-
ies were performed with anti-Myc PL14 (5 lg/ml) and anti-calreticulin
(5 lg/ml; Alexis, Lausen, Switzerland) antibodies [17].

2.4. In vitro 3-hydroxyacyl-CoA dehydratase assays
Using anti-FLAG M2 agarose (Sigma), 3xFLAG-tagged proteins

were purified from HeLa cells transfected with the pCE-puro
3xFLAG-HACD1, 2, 3, or 4 plasmid [11]. In vitro 3-hydroxyacyl-
CoA dehydratase assays were performed in reaction buffer (50 mM
HEPES–NaOH (pH 7.4), 150 mM NaCl, 10% glycerol, 1 mM dithi-
othreitol, 1 mM phenylmethylsulfonyl fluoride, and 1· protease
inhibitor mixture (Complete� EDTA free; Roche Diagnostics),
0.05% digitonin, and 1 mM MgCl2) by incubating the purified pro-
teins with 0.01 lCi [14C]3-hydroxypalmitoyl-CoA (55 mCi/mmol;
American Radiolabeled Chemicals, St. Louis, MO) for 15 min at
37 �C [11].
2.5. [3H]Dihydrosphingosine labeling
[3H]Dihydrosphingosine labeling assay was described previously

[18].

2.6. Northern blotting
Northern blotting was performed using poly(A)+ RNA blots (Clon-

tech (TAKARA Bio), Palo Alto, CA) containing 1 lg of RNA from 12
different human tissues [17].
3. Results

3.1. HACD1, 2, 3, and 4 proteins are mammalian 3-

hydroxyacyl-CoA dehydratases

Phs1 was recently identified as a 3-hydroxyacyl-CoA dehy-

dratase in yeast [8]. However, corresponding mammalian en-

zyme(s) remained unidentified. Mammals have two proteins

that exhibit high sequence similarity to Phs1, PTPLA and

PTPLB (identity 24.1% and 26.9%; similarity 39.5% and

45.8%, respectively; Supplementary Fig. 1). Two others exhibit

weak but significant sequence similarity to Phs1, PTPLAD1

and PTPLAD2 (identity 15.3% and 19.2%; similarity 29.2%

and 39.3%, respectively; Supplementary Fig. 1). Although all

contain sequences similar to a protein tyrosine phosphatase

motif (HCXXGXXRS/T), none match completely (Supple-

mentary Fig. 1), and so are not expected to possess tyrosine

phosphatase activity. Indeed, PTPLB reportedly exhibited no

tyrosine phosphatase activity [12]. To reflect their relatedness
and, later, their functions, we renamed these proteins

HACD1–4 (3-hydroxyacyl-CoA dehydratase; HACD1/PTPLA,

HACD2/PTPLB, HACD3/PTPLAD1, and HACD4/PTPLAD2).

None exhibits a specific domain, although HACD3 contains a

sequence similar to p23/cPGED, a co-chaperone for Hsp90

and/or cytosolic glutathione-dependent prostaglandin E2 syn-

thase [19,20].

VLCFA synthesis occurs in the ER. Since only HACD2 has

been determined to be an ER protein [12], we investigated the

intracellular localization of the other proteins. HeLa cells were

transfected with plasmids encoding HACD1–4, each tagged

with Myc at its N-terminus, and expression was confirmed

by immunoblotting with an anti-Myc antibody (Fig. 1A). Indi-

rect immunofluorescence microscopy using the anti-Myc anti-

body detected all the proteins as reticular structures, with

patterns similar to that for ER staining (Fig. 1B). Double-

staining of the cells with the anti-Myc antibody and one direc-

ted to the ER protein calreticulin confirmed that all HACD

proteins are ER-resident (Fig. 1B).

To investigate whether the proteins are functional homo-

logs of Phs1, HACD1–4 were expressed in yeast as EGFP-

fused proteins. Since the essential PHS1 gene cannot be de-

leted, we used the SAY32 yeast strain, which carries the

PHS1 gene under control of the TetO7 promoter [11].

SAY32 cells containing a vector plasmid were unable to form

colonies on SC plates containing doxycyclin (Fig. 2A). When

introduced into SAY32 cells, HACD1 and HACD2 genes re-

stored growth of the defective cells on doxycyclin-containing

plates (Fig. 2A), indicating that they are indeed functional

homologs of Phs1, i.e. 3-hydroxyacyl-CoA dehydratases. Nei-

ther HACD3 nor HACD4 restored the growth (Fig. 2A).

However, in yeast ectopically expressed proteins are often un-

able to be properly expressed or folded, so an inability to re-

store growth cannot exclude the possibility that either of

these is a 3-hydroxyacyl-CoA dehydratase. Indeed, in immu-

noblots using anti-GFP antibodies only EGFP-HACD1 was

detected near its predicted molecular weight of 59.8 kDa

(Fig. 2B). EGFP-HACD2 and EGFP-HACD3 migrated

much faster than their predicted molecular weights (55.8

and 70.6 kDa), respectively, and EGFP-HACD3 ran even fas-

ter than EGFP (Fig. 2B). Two faint bands were observed for

EGFP-HACD4, but again both migrated faster than their

predicted molecular weight (54.9 kDa) (Fig. 2B). The faster

mobilities may be due to cleavage by a protease or to insuf-

ficient denaturing by SDS during the assay, which is often

seen with multi-spanning membrane proteins. If a protease

is involved, though, some EGFP-HACD2 molecules might re-

main uncleaved, or the cleaved protein might retain partial

activity, since EGFP-HACD2 was able to restore the growth

defect of SAY32 cells.

We confirmed the abilities of HACD1 and HACD2 to re-

store defective Phs1 function in SAY32 cells by examining

sphingolipid synthesis. In yeast, ceramide, the backbone of

sphingolipids, comprises a C26 VLCFA, and defects in

VLCFA synthesis result in accumulations of short-chain cera-

mide and reductions in complex sphingolipids [11]. Introduc-

ing the HACD1 gene into SAY32 cells completely restored

sphingolipid synthesis, similar to PHS1 results (Fig. 2C).

HACD2 also restored sphingolipid synthesis, but only partially

(Fig. 2C). However, again activities in yeast do not always cor-

respond to natural activities in mammalian cells. In conclu-

sion, HACD1 and HACD2 are functional homologs of Phs1,



Fig. 2. HACD1 and HACD2 are functional homologs of Phs1.
SAY31 (wild type; WT) and SAY32 (pTetO7-PHS1; Tet) cells were
transfected with the pUG34 (EGFP vector), pAK856 (EGFP-PHS1),
pSH9 (EGFP-HACD1), pSH12 (EGFP-HACD2), pIKD453 (EGFP-
HACD3), or pKN27 (EGFP-HACD4) plasmid. (A) Cells were grown
for 2 days at 30 �C on SC plates lacking histidine and methionine but
containing 10 lg/ml doxycyclin. (B) Total cell lysates were prepared
and subjected to immunoblotting with an anti-GFP antibody (upper
panel) or, to demonstrate uniform protein loading, an anti-Pgk1
antibody (lower panel). (C) Cells were grown for 5 h in 10 lg/ml
doxycyclin in SC medium lacking histidine and methionine, then
labeled with [3H]dihydrosphingosine for 2 h at 30 �C. Lipids were
extracted from the cells and separated by TLC. CER, ceramide; DHS,
dihydrosphingosine; IPC, inositolphosphorylceramide; MIPC,
mannosylinositol phosphorylceramide; M(IP)2C, mannosyldiinositol
phosphorylceramide; PE, phosphatidylethanolamine; PC, phosphati-
dylcholine; PS, phosphatidylserine.

Fig. 1. All HACD proteins are localized in the ER. HeLa cells were
transfected with pCE-puro His6-Myc-HACD1–4. (A) Total cell lysates
were prepared and subjected to immunoblotting with an anti-Myc
antibody. (B) Cells were fixed with formaldehyde and permeabilized
with 0.5% Triton X-100. The cells were then double stained with anti-
Myc (left panels) and anti-calreticulin (middle panels) antibodies and
analyzed using a fluorescence microscope Axioskop 2 PLUS. Merged
images are presented in the right panels. Calibration bar, 20 lm.
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although equivalent functions were not established for

HACD3 or HACD4 by these assays.

To prove directly that HACD1 and HACD2 are 3-hydrox-

yacyl-CoA dehydratases and to investigate whether HACD3

and HACD4 also exhibit such activity, we performed in vitro

assays using affinity-purified HACD proteins tagged with

3xFLAG and [14C]3-hydroxypalmitoyl-CoA as a substrate.

All the proteins converted 3-hydroxypalmitoyl-CoA to 2,3-

trans hexadecenoyl-CoA (Fig. 3A). By changing concentra-

tions of the substrate we found that each enzyme exhibited dis-

tinct Km and Vmax values. HACD1 and HACD3 exhibited

similar, intermediate values (Km = 33.6 lM, Vmax = 49.3 lM

and Km = 49.5 lM, Vmax = 65.8 lM, respectively) (Fig. 3B).

HACD2 had comparatively larger values (Km = 121.7 lM,
Vmax = 181.8 lM), whereas HACD4 had smaller (Km =

6.8 lM, Vmax = 11.6 lM) (Fig. 3B). Thus, HACD2 exhibited

a lower affinity for 3-hydroxypalmitoyl-CoA but a higher reac-

tion velocity, and HACD4 exhibited a higher affinity but lower

reaction velocity.



Fig. 4. HACD3 and HACD4 mRNAs exhibit different tissue-specific
expression patterns. 32P-labeled HACD3, HACD4, and actin probes
were hybridized to poly(A)+ RNA blots containing 1 lg of RNA from
the indicated human tissues. PBL, peripheral blood leukocytes.

Fig. 3. All HACD proteins exhibit 3-hydroxyacyl-CoA dehydratase
activity. HeLa cells were transfected with pCE-puro 3xFLAG-1 vector
(mock) or pCE-puro 3xFLAG plasmids encoding 3xFLAG-HACD1,
2, 3, and 4. Proteins were purified using anti-FLAG M2 beads, and
samples (20 ng protein) were incubated for 15 min at 37 �C with [14C]3-
hydroxypalmitoyl-CoA (A, total 5 lM; B, 1–25 lM as indicated).
After termination of the reactions, lipids were saponified, acidified,
extracted, and separated by TLC. (B) The radioactivities associated
with the reaction product 2,3-trans hexadecenoic acid were quantified
using a bioimaging analyzer BAS-2500 and are expressed in a
Lineweaver–Burg plot.
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3.2. HACD proteins exhibit distinct expression patterns in

human tissues

Expression of human HACD1 mRNA is known to be re-

stricted to heart and (weakly) skeletal muscle [13], whereas

HACD2 mRNA is ubiquitously expressed [12]. Tissue-expres-

sion patterns have not previously been investigated for human

HACD3 or 4 mRNA, although in mouse, HACD3 mRNA was

determined to be expressed nearly ubiquitously [15]. We per-

formed high stringency Northern blot analysis using mRNAs

extracted from various human tissues. A predominant 3.2 kb

HACD3 mRNA was detected in most tissues examined, except

leukocytes (Fig. 4). The highest expression was observed in

brain, kidney, and liver, but only low levels were detected in

skeletal muscle. In contrast, expression of HACD4 mRNA

was highly tissue-specific. High expression was observed only

in leukocytes, and low expression in heart, spleen, kidney, pla-

centa, and lung (Fig. 4).
3.3. HACD proteins interact with ELOVL proteins with some

preferences

In yeast, enzymes involved in the VLCFA elongation cycle

form an elongase complex [8]. Mammals have seven condensa-

tion enzymes (ELOVL1–7) and four 3-hydroxyacyl-CoA

dehydratases (HACD1–4). However, it is unclear whether

mammalian enzymes also form elongase complex(es) or if each

HACD protein interacts with specific ELOVL protein(s). To

address these questions, we performed co-immunoprecipita-

tion experiments using anti-FLAG antibodies and lysates pre-

pared from HEK 293T cells expressing various combinations

of a 3xFLAG-tagged HACD protein and a HA-tagged

ELOVL protein. Interactions were observed for all sets of

co-expressed HACD-FLAG and ELOVL-HA proteins (Fig.

5), although ELOVL1 bands were difficult to see due to low

expression. The strength of the interactions varied. ELOVL3

and ELOVL6 interacted with HACD1 and HACD4 more

strongly than with HACD2 and HACD3. Interestingly,

HACD3 exhibited an apparently higher affinity for ELOVL2

and ELOVL7, since, despite their lower or equivalent expres-

sion levels, the amounts of ELOVL2 and ELOVL7 in the pre-

cipitated fractions were similar to those of ELOVL3,

ELOVL5, and ELOVL6, and greater than that of ELOVL4

(Fig. 5). These results suggest that ELOVLs have the potential

to function with any HACD protein, although some prefer-

ences exist.
4. Discussion

VLCFA synthesis occurs by cycling through a four-step pro-

cess. The enzyme catalyzing the third step, a 3-hydroxyacyl-

CoA dehydratase, had not been identified in mammals. Phs1

was recently identified as the yeast 3-hydroxyacyl-CoA dehy-



Fig. 5. HACD proteins interact with ELOVL proteins with some
preferences. HEK 293T cells were transfected with the pCE-puro HA-1
control vector or pCE-puro HA-ELOVLx plasmids (where x is each
ELOVL number), and with pCE-puro 3xFLAG-HACDx plamids
(where x is each HACD number) or the pCE-puro 3xFLAG-1 control
vector. Total cell lysates were then prepared from the cells and
solubilized with 1% Triton X-100. Following immunoprecipitation
with anti-FLAG M2 agarose, total lysates (1/4 amount) and bound
proteins were subjected to immunoblotting with anti-FLAG or anti-
HA antibodies. IP, immunoprecipitation; IB, immunoblotting.
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dratase [8], and a homology search revealed that Phs1 is con-

served among eukaryotes. Mammals have two apparent

homologs of Phs1 (HACD1 and HACD2) and two proteins

sharing weak but significant homology (HACD3 and HACD4)

(Supplementary Fig. 1). In the presented study, we revealed

that all these HACD proteins are indeed mammalian 3-

hydroxyacyl-CoA dehydratases. HACD1 and HACD2 re-

stored the growth defect of a pTetO7-PHS1 yeast strain (Fig.

2A). In vitro analyses demonstrated that HACD1, 2, 3, and

4 all exhibited 3-hydroxypalmitoyl-CoA dehydratase activities,

although their Km and Vmax values differed greatly (Fig. 3B).

Although yeast contains only one 3-hydroxyacyl-CoA dehy-

dratase Phs1, mammals have four isozymes. Therefore, it was

expected that each HACD protein would have a specific func-

tion. One particular difference is in their tissue-expression pat-

terns (Fig. 4) [12,13,15]. Moreover, the HACD proteins

exhibited certain preferences in interacting with ELOVL pro-

teins, although strict specificities were not observed (Fig. 5).

It is possible, however, that each HACD protein exhibits pref-

erence(s) toward certain 3-hydroxyacyl-CoAs, such as long-
chain, very long-chain, saturated, or unsaturated 3-hydroxya-

cyl-CoAs, since we used only 3-hydroxypalmitoyl-CoA as a

substrate due to limited commercial availability.

The expression of HACD2 and HACD3 is ubiquitous (Fig.

4) [12], whereas HACD1 and HACD4 expression is restricted

to certain tissues (HACD1, heart; HACD4, leukocytes; Fig. 4)

[13]. Likewise, ELOVL1, ELOVL5, and ELOVL6 are ubiqui-

tously expressed, whereas ELOVL2, ELOVL3, and ELOVL4

are tissue-specific (ELOVL2, liver and testis; ELOVL3, skin

and liver; ELOVL4, retina and brain; Supplementary Table

5). Therefore, HACD2 or HACD3 in combination with

ELOVL1, ELOVL5, or ELOVL6 may catalyze the synthesis

of VLCFAs common to most tissues. On the other hand,

HACD1, HACD4, ELOVL2, ELOVL3, ELOVL4, and per-

haps ELOVL7, whose expression profile is not known, may

function in the production of tissue-specific VLCFAs. Further

experiments into these combinations might address these entic-

ing possibilities.

The Km values of HACD1, 2, 3, and 4 seemed to be much

higher than those for expected cellular concentrations of 3-

hydroxyacyl-CoAs. However, these values may be caused by

in vitro assay conditions. Under physiological conditions the

HACD proteins and their 3-hydroxyacyl-CoAs substrates are

embedded in the ER membrane, whereas the in vitro HACD

proteins and substrates were solubilized with detergent, and

so existed in micelles. Access of the HACD proteins to sub-

strates in different micelles would be achieved only by fusion

of the micelles. Therefore, the Km values would be undervalued

compared to those under physiological conditions. We specu-

late that even the physiological Km of HACD2, which exhib-

ited the highest of the four proteins, is much lower than for

the cellular concentrations of 3-hydroxyacyl-CoA. If this is

true, HACD2 contributes to the dehydration of, at least, 3-

hydroxy long-chain saturated acyl-CoA such as 3-hydroxy-

palmitoyl-CoA in cells, since it exhibited the highest Vmax

value toward 3-hydroxypalmitoyl-CoA (Fig. 3B). Our preli-

minary results of an in vitro elongase assay using membrane

fractions from siRNA-treated HeLa cells with [14C]malonyl-

CoA and cold palmitoyl-CoA have indicated that only siRNA

for HACD2 causes an accumulation of 3-hydroxystearoyl-

CoA. However, future studies are required to determine the

substrate specificity of each HACD protein.
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