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Abstract

The existence of the global attractor of the damped forced Ostrovsky equation in L̃2(R) is proved for
the forces in L̃2(R). Moreover, the global attractor of the equation in L̃2(R) is actually a compact set in
H̃ 3(R).
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In the paper, our aim is to study the existence and regularity of the global attractor of the
damped forced Ostrovsky equation in L̃2(R),

ut − βuxxx + (
u2)

x
− γD−1

x u + λu = f, (x, t) ∈ R × R, (1.1)

u(x,0) = u0(x) ∈ L̃2(R), (1.2)
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where λ > 0, β and γ are real constants and β · γ �= 0, D−1
x = F−1

x
1
iξ
Fx , f is time independent

and belongs to L̃2(R); the space L̃2(R) is defined as below

L̃2 =
{
f ∈ L2(R): F−1

x

(
f̂ (ξ)

ξ

)
∈ L2(R)

}
with the norm

‖f ‖
L̃2 = ‖f ‖L2 +

∥∥∥∥F−1
x

(
f̂ (ξ)

ξ

)∥∥∥∥
L2

.

The corresponding Sobolev spaces H̃ s are defined in a similar way

H̃ s =
{
f ∈ Hs(R): F−1

x

(
f̂ (ξ)

ξ

)
∈ Hs(R)

}
with the norm

‖f ‖
H̃ s = ‖f ‖Hs +

∥∥∥∥F−1
x

(
f̂ (ξ)

ξ

)∥∥∥∥
Hs

.

The Ostrovsky equation [14] governs the propagation of the weakly nonlinear long surface
and internal waves of small amplitude in a rotating fluid. The liquid is assumed to be incom-
pressible and inviscid. After the suitable scaling, the equation can be written as above [6].
Parameter β determines the type of dispersion. Namely, β = −1 (negative-dispersion) for sur-
face and internal waves in the ocean and surface waves in a shallow channel with an uneven
bottom. Parameter β = 1 (positive-dispersion) for capillary waves on the surface of liquid or
for oblique magneto-acoustic waves in plasma [1,3,6]. Equation (1.1) models the situation when
nonlinearity, dispersion, dissipation and rotation are taken into account at the same time.

From the mathematical point of view, the extra term with the factor λ accounts for a weak dis-
sipation without regularization or smoothing property. Hence, the well-posedness of the solution
of (1.1)–(1.2) and the asymptotic smoothing of the solution operator come essentially from the
dispersive regularization property of the equation.

Moreover, if γ = 0, λ = 0 and f = 0, then Eq. (1.1) reduces to the Korteweg–de Vries equa-
tion (KdV)

ut − βuxxx + (
u2)

x
= 0.

Many works [4,5,7,8,13] consider the existence of global attractors of the weakly damped KdV
equation

∂tu − β∂3
xu + u∂xu + λu = f. (1.3)

For the weakly damped KdV equation (1.3), Goubet and Rosa [8] obtained the existence of global
attractor in L2(R) and its compactness in H 3(R) by the energy equation method together with a
splitting of the solution.

If λ = 0 and f = 0, then (1.1) reduces to the Ostrovsky equation

∂tu − β∂3
xu + ∂x

(
u2) = γD−1

x u. (1.4)

Recently Varlamov and Liu [17] introduced the spaces L̃2(R) and H̃ s(R) for considering the
solvability of the Cauchy problem of (1.4). They showed that the Cauchy problem is locally
well-posed in H̃ s(R) (s > 3

2 ) with γ > 0. Moreover, the global-in-time solutions were con-
structed in the space C(R, L̃2(R)) for the small initial data, and the asymptotics of the solution
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was computed for x/t = const and t → ∞. Huo and Jia [9] obtained that the Cauchy problem
of (1.4) is locally well-posed in H̃ s(R) (s � − 1

8 ) without the condition γ > 0 by the so-called
Fourier restriction norm (the Bourgain function spaces). The method was first introduced by
J. Bourgain [2] to study the KdV and nonlinear Schrödinger equations in the periodic case. It
was simplified by Kenig, Ponce and Vega [10,12].

However, it seems that no paper studies the global attractor for the damped forced Ostrovsky
equation (1.1). In the paper, we show that global attractor for Eq. (1.1) exists in L̃2(R) and is a
compact in H̃ 3(R).

First, we consider the well-posedness of the solution of (1.1)–(1.2) by the Bourgain function
spaces. We shall only give the outline proof of the well-posedness for simplicity.

Next, we show the long time behavior of solution of (1.1)–(1.2), which is described by global
attractor. We obtain the existence of the global attractor in L̃2(R) and its boundedness in H̃ 3(R)

by the energy equation method together with a splitting of the equation.
For hyperbolic equations, the existence of global attractor is obtained by the asymptotic

compactness or the asymptotic smoothing properties of the solution operator, together with the
existence of a bounded absorbing set. Those properties are proved by splitting the solutions into
a decaying part plus a regular part, or by exploiting suitable energy-type equations, or by both
ways [16].

For equations defined on unbounded domains, it is suitable to use the energy equations since
it does not depend on compact imbedding of function spaces. It does require, however, the weak
continuity of the solution operator in the sense that if the initial data u0n converge to u0 weakly,
then the corresponding solutions un(t) converge weakly to u(t), at all time t . This weak continu-
ity is usually obtained by passing to the limit in the weak formulation of the equation and using
the uniqueness of the solutions.

Our results are achieved by splitting the solution into two parts. One is regular in H̃ 3(R),
the other decays to zero in L̃2(R) as time goes to infinity. In this way, the weak continuity
of the solution operator is replaced by an asymptotic weak continuity property. We first obtain
the boundedness of the regular part of the solution in H̃ 3(R). Then, taking time derivative of
Eq. (1.1), we obtain the compactness of the global attractor by applying the energy equation
method to the resulting equation.

In the paper, to study well-posedness of the solution of the problem (1.1)–(1.2), we use its
integral equivalent formulation

u(x, t) = S(t)u0 −
t∫

0

S(t − t ′)
(
∂x

(
u2) + λu − f

)
(t ′) dt ′, (1.5)

where S(t) = F−1
x e

−it (βξ3+ γ
ξ
)Fx is the unitary operator associated to the linear equation. For

simplicity, denote the phase function by φ(ξ) = βξ3 + γ
ξ

.
The major difficulty in this paper comes from the fact: the phase function of semigroup of (1.1)

has non-zero points, which makes a difference from that of the linear KdV equation [8]. There-
fore, we need to use Fourier restriction operators

P Nf =
∫

|ξ |�N

eixξ f̂ (ξ) dξ, P(ε,N)f =
∫

ε�|ξ |�N

eixξ f̂ (ξ) dξ, ∀N � ε > 0, (1.6)

to eliminate the singularity of the phase function and to split the solution in Section 6. For sim-
plicity, denote PNf = ∫

eixξ f̂ (ξ) dξ .
|ξ |�N
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Definition 1. For s, b ∈ R, the space Xs,b is the completion of the Schwartz function space on R
2

with respect to the norm

‖u‖Xs,b
= ∥∥S(−t)u

∥∥
Hs

x Hb
t

= ∥∥〈ξ 〉s 〈τ + φ(ξ)
〉bFu

∥∥
L2

ξ L2
τ
,

where 〈·〉 = (1 + | · |).

Similarly to H̃ s , we define the modified Bourgain function space X̃s,b as below

‖u‖
X̃s,b

= ∥∥〈ξ 〉s 〈τ + φ(ξ)
〉bFu

∥∥
L2

ξ L2
τ
+ ∥∥〈ξ 〉s |ξ |−1〈τ + φ(ξ)

〉bFu
∥∥

L2
ξ L2

τ

= ‖u‖Xs,b
+ ∥∥D−1

x u
∥∥

Xs,b
.

Let ψ ∈ C∞
0 (R) with ψ = 1 on [− 1

2 , 1
2 ] and suppψ ⊂ [−1,1]. Denote ψδ(·) = ψ(δ−1(·)) for

some δ ∈ R.
For T > 0, we consider the localized Bourgain space X̃T

s,b endowed with norm

‖u‖
X̃T

s,b
= ‖u‖

X̃
[−T ,T ]
s,b

= ‖ψT u‖
X̃s,b

.

In our arguments, we shall use the trivial embedding relation ‖u‖
X̃s1,b1

� ‖u‖
X̃s2,b2

whenever

s1 � s2, b1 � b2.
Denote A ∼ B by the statement: A � C1B and B � C1A for some constant C1 > 0, and

A � B by the statement: A � 1
C2

B for some large enough constant C2 > 0.
Denote by û(τ, ξ) = Fu the Fourier transform in t and x of u and by F(·)u the Fourier

transform in the (·) variable.
Let us introduce some variables

σ = τ + βξ3 + γ

ξ
, σ1 = τ1 + βξ3

1 + γ

ξ1
, σ2 = τ2 + βξ3

2 + γ

ξ2
.

By direct calculation, we can obtain

σ − σ1 − σ2 = 3βξξ1ξ2

(
1 − γ

ξ2
1 + ξ2

2 + ξ1ξ2

3β(ξξ1ξ2)2

)
. (1.7)

Throughout this paper, denote
∫

dδ the convolution integral by∫

ξ=ξ1+ξ2; τ=τ1+τ2

dτ1 dτ2 dξ1 dξ2.

Now, we give the statement of the main result.

Theorem 1.1. Let λ > 0, f ∈ L̃2(R). Then the solution operator {A(t)}t∈R associated with
Eq. (1.1) possesses a connected global attractor A in L̃2(R), which is compact in H̃ 3(R).

2. Preliminary estimates

In this section, several estimates will be deduced. These lemmas can be also found in [9],
however for completeness, we give the proofs of them here. First let us use the following nota-
tions
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‖f ‖L
p
x L

q
t
=

( ∞∫
−∞

( ∞∫
−∞

∣∣f (x, t)
∣∣q dt

) p
q

dx

) 1
p

,

‖f ‖L
q
t L

p
x

=
( ∞∫

−∞

( ∞∫
−∞

∣∣f (x, t)
∣∣p dx

) q
p

dt

) 1
q

,

‖f ‖L∞
t H s

x
= ∥∥‖f ‖Hs

x

∥∥
L∞

t
, FFρ(ξ, τ ) = f (ξ, τ )

(1 + |τ + βξ3 + γ
ξ
|)ρ ,

a = max

(
1,

4

√∣∣∣∣6γ

7β

∣∣∣∣, 2

√∣∣∣∣ γ

3β

∣∣∣∣
)

,

Ds
x = F−1

x |ξ |sFx for fraction s, Dm
x = F−1

x (iξ)mFx for integer m.

Lemma 2.1. The group {S(t)}+∞−∞ satisfies∥∥DxP
aS(t)u0

∥∥
L∞

x L2
t
� C‖u0‖L2, (2.1)

∥∥D
− 1

4
x P aS(t)u0

∥∥
L4

xL∞
t

� C‖u0‖L2, (2.2)

∥∥D
1
6
x P aS(t)u0

∥∥
L6

xL6
t
� C‖u0‖L2, (2.3)

where the constant C depend on γ and β .

Proof. First we prove (2.1). It follows that

φ(ξ) = βξ3 + γ

ξ
, φ′(ξ) = 3βξ2 − γ

ξ2
(ξ �= 0), φ′′(ξ) = 6βξ + 2

γ

ξ3
(ξ �= 0).

If |ξ | � a, φ is invertible, then

P aS(t)u0 =
∫

|ξ |�a

eixξ e−itφ(ξ)û0(ξ) dξ

=
∫

|φ−1|�a

eixφ−1
e−itφû0

(
φ−1) 1

φ′ dφ

= Ft

(
eixφ−1

χ{|φ−1|�a}û0
(
φ−1) 1

φ′

)
.

Therefore, changing variable ξ = φ−1, we have

∥∥P aS(t)u0
∥∥2

L2 =
∥∥∥∥Ft

(
eixφ−1

χ{|φ−1|�a}û0
(
φ−1) 1

φ′

)∥∥∥∥
2

L2

=
∫

|φ−1|�a

∣∣û0
(
φ−1)∣∣2 1

|φ′|2 dφ

=
∫ ∣∣û0(ξ)

∣∣2 1

|φ′(ξ)|2 φ′(ξ) dξ
|ξ |�a
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�
∫

|ξ |�a

∣∣û0(ξ)
∣∣2 1

|φ′| dξ

� C‖u0‖2
Ḣ−1 .

This implies the estimate (2.1).
Let us turn to the proof of (2.2) next. The first inequality as below holds with the help of

Theorem 2.5 in [11]. It can be shown that

∥∥P aS(t)u0
∥∥2

L4
xL∞

t
� C

∫
|ξ |�a

∣∣û0(ξ)
∣∣2

∣∣∣∣ φ′(ξ)

φ′′(ξ)

∣∣∣∣
1
2

dξ

� C

∫
|ξ |�a

∣∣û0(ξ)
∣∣2|ξ | 1

2 dξ

� C‖u0‖2

H
1
4
.

Finally, (2.3) follows by interpolation between (2.1) and (2.2). �
Lemma 2.2. [17] The group {S(t)}+∞−∞ satisfies∥∥S(t)u0

∥∥
L6

xL6
t
� C‖u0‖L2, (2.4)

where the constant C depends on γ and β .

Remark. We can use Van der Corput Lemma [15] to obtain the result.

Lemma 2.3. If ρ > 3
8 , then

∥∥D
1
8
x P aFρ

∥∥
L4

xL4
t
� C‖f ‖L2

ξ L2
τ
, (2.5)

where the constant C depends on β and γ .

Proof. Changing variable τ = λ − φ(ξ), we have

Fρ(x, t) =
∞∫

−∞

∞∫
−∞

ei(xξ+tτ ) f (ξ, τ )

(1 + |τ + φ(ξ)|)ρ dξ dτ

=
∞∫

−∞
eitλ

( ∞∫
−∞

ei(xξ+tφ(ξ))f
(
ξ,λ + φ(ξ)

)
dξ

)
dλ

(1 + |λ|)ρ .

Therefore, using (2.3), Minkowski’s integral inequality and taking ρ > 1
2 , one is able to show

that

∥∥D
1
6
x P aFρ

∥∥
L6

xL6
t
� C

+∞∫
−∞

∥∥f
(
ξ,λ + φ(ξ)

)∥∥
L2

ξ

dλ

(1 + |λ|)ρ � C‖f ‖L2
ξ L2

τ
. (2.6)
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In fact, we have

‖F0‖L2
xL2

t
� C‖f ‖L2

ξ L2
τ
. (2.7)

Then (2.5) follows by interpolation between (2.6) and (2.7). �
Lemma 2.4. If ρ > 1

2
3(q−2)

2q
. Then for 2 � q � 6, it holds that

‖Fρ‖L
q
xL

q
t
� C‖f ‖L2

ξ L2
τ
, (2.8)

where the constant C depends on β and γ .

Proof. From the argument (2.6) and the inequality (2.4), we have for ρ > 1
2 ,

‖Fρ‖L6
xL6

t
� C‖f ‖L2

ξ L2
τ
. (2.9)

Then (2.8) follows by interpolation between (2.9) and (2.7). �
Lemma 2.5. Assume f,f1 and f2 belong to Schwartz space on R

2, then∫


¯̂
f (ξ, τ )f̂1(ξ1, τ1)f̂2(ξ2, τ2) dδ =

∫
f̄ f1f2(x, t) dx dt. (2.10)

Proof. For simplicity, we only discuss the case of one variable.∫
ξ=ξ1+ξ2

¯̂
f (ξ)f̂1(ξ1)f̂2(ξ2) dδ

=
∫

ξ=ξ1+ξ2

ˆ̄f (−ξ)f̂1(ξ1)f̂2(ξ2) dδ

=
∫
ξ1

∫
ξ ′

2

∫
ξ ′

3

ˆ̄f (−ξ ′
3

)
f̂1(ξ1)f̂2

(
ξ ′

2 − ξ1
)
dξ1 dξ ′

2

= ˆ̄f ∗ f̂1 ∗ f̂2(0) = F f̄ f1f2(0)

=
∫

f̄ f1f2(x) dx. �
3. Linear estimates

Lemma 3.1. [10,12] Let s ∈ R, 1
2 < b < 1. Then for u0 ∈ H̃ s , it follows that∥∥ψ(t)S(t)u0

∥∥
X̃s,b

� C‖u0‖H̃ s . (3.1)

Lemma 3.2. [10,12] Let s ∈ R, 1
2 < b < 1 and 0 < δ � 1. Then

∥∥∥∥∥ψδ(t)

t∫
S(t − t ′)f (t ′) dt ′

∥∥∥∥∥
X̃

� Cδb′−b‖f ‖
X̃s,b−1

, (3.2)
0 s,b
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∥∥∥∥∥ψδ(t)

t∫
0

S(t − t ′)f (t ′) dt ′
∥∥∥∥∥

L̃2

� Cδb′−b‖f ‖
X̃s,b−1

, (3.3)

∥∥ψδ(t)F
∥∥

X̃s,b
� Cδ

1
2 −b‖F‖

X̃s,b
. (3.4)

Lemma 3.3. [9,10,12] Let s ∈ R, 1
2 < b < b′ < 1 and 0 < δ � 1. Then∥∥ψδ(t)F

∥∥
X̃s,b−1

� Cδb′−b‖F‖
X̃s,b′−1

. (3.5)

4. Bilinear estimate

Theorem 4.1. Let 1
2 < b < 9

16 , 1
2 < b′. Assume that the Fourier transform Fuj = ûj (τ, ξ) of uj

is supported in {(ξ, τ ): |ξ | � N}, N > 0, j = 1,2. Then∥∥∂x(u1u2)
∥∥

X̃0,b−1
� C

N
1
8

‖u1‖X̃0,b′ ‖u1‖X̃0,b′ , (4.1)

where the constant C depends on γ and β , but is independent of N .

Proof. First we have∥∥∂x(u1u2)
∥∥

X̃0,b−1
= ∥∥∂x(u1u2)

∥∥
X0,b−1

+ ∥∥D−1
x ∂x(u1u2)

∥∥
X0,b−1

.

We only prove bilinear estimate for the first term ‖∂x(u1u2)‖X0,b−1 on the right of the equality,
as the proof of the second term is easier than that of the first term. That is∥∥∂x(u1u2)

∥∥
X0,b−1

� C

N
1
8

‖u1‖X̃0,b′ ‖u2‖X̃0,b′ .

By duality and the Plancherel identity, it suffices to show that

Υ =
∫


|ξ | f̄ (τ, ξ)

〈σ 〉1−b
Fu1(τ1, ξ1)Fu2(τ2, ξ2) dδ

=
∫


|ξ |
〈σ 〉1−b

∏2
j=1 〈σj 〉b′ f̄ (τ, ξ)f1(τ1, ξ1)f2(τ2, ξ2) dδ

� C

N
1
8

‖f ‖L2

2∏
j=1

(‖fj‖L2 + ∥∥|ξ |−1fj

∥∥
L2

)
,

for f̄ ∈ L2, f̄ � 0, where fj = 〈σj 〉b′
ûj , j = 1,2; ξ = ξ1 + ξ2, τ = τ1 + τ2.

One easily obtain that ‖fj‖L2 + ‖|ξ |−1fj‖L2 = ‖uj‖X̃s,b′ .
Let

FFj
ρ (ξ, τ ) = fj (ξ, τ )

(1 + |τ + βξ3 + γ
ξ
|)ρ , j = 1,2.

In order to bound the integral Υ, we split the domain of integration into two pieces. By sym-
metry it suffices to estimate the integral in the domain

|ξ1| � |ξ2|.
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Case 1. Assume: |ξ | � 4a. If N � 2a � |ξ1| � |ξ2|, then the integral Υ is bounded by

∫


f̄ (τ, ξ)

〈σ 〉1−b

〈ξ1〉 1
8 χ|ξ1|�2af1(τ1, ξ1)

|ξ | 1
8 〈σ1〉b′

χ|ξ2|�2af2(τ2, ξ2)

〈σ2〉b′ dδ

� C

N
1
8

∫
F1−b · D

1
8
x P 2aF 1

b′ · F 2
b′(x, t) dx dt

� C

N
1
8

‖F1−b‖L2
xL2

t

∥∥D
1
8
x P 2aF 1

b′
∥∥

L4
xL4

t

∥∥F 2
b′
∥∥

L4
xL4

t

� C

N
1
8

‖f ‖L2
ξ L2

τ
‖f1‖L2

ξ L2
τ
‖f2‖L2

ξ L2
τ
,

which follows by Lemmas 2.3–2.5.
Case 2. Assume: |ξ | � 4a. If N � 2a � |ξ1| � |ξ2|, from the identities (1.7), it follows that, if

|ξ | � a, |ξ1| � a and |ξ2| � a, then

max
(|σ |, |σ1|, |σ2

)| � C|ξξ1ξ2|.
This implies that one of the following cases always occurs:

(a) |σ | � C|ξξ1ξ2|,
(b) |σ1| � C|ξξ1ξ2|,
(c) |σ2| � C|ξξ1ξ2|.

In this domain, the integral Υ is bounded by∫


|ξ |χ|ξ |�4af̄ (τ, ξ)

〈σ 〉1−b

χ|ξ1|�2af1(τ1, ξ1)

〈σ1〉b′
χ|ξ2|�2af2(τ2, ξ2)

〈σ2〉b′ dδ.

We consider the three cases (a)–(c) separately. Without loss of generality, we can assume
|ξ | ∼ |ξ2| � |ξ1|.

If (a) holds, for 1 � 1
8 + 2(1 − b), then the integral Υ is bounded by

∫


|ξ |χ|ξ |�4af̄ (τ, ξ)

(|ξ1||ξ2||ξ |)1−b

〈ξ1〉 1
8 χ|ξ1|�2af1(τ1, ξ1)

〈ξ1〉 1
8 〈σ1〉b′

χ|ξ2|�2af2(τ2, ξ2)

〈σ2〉b′ dδ

� C

N
1
8

∫


f̄ (τ, ξ)
|ξ1| 1

8 χ|ξ1|�2af1(τ1, ξ1)

〈σ1〉b′
|ξ2| 1

8 χ|ξ2|�2af2(τ2, ξ2)

〈σ2〉b′ dδ

� C

N
1
8

∫
F0 · D

1
8
x P 2aF 1

b′ · D
1
8
x P 2aF 2

b′(x, t) dx dt

� C

N
1
8

‖F0‖L2
xL2

t

∥∥D
1
8
x P 2aF 1

b′
∥∥

L4
xL4

t

∥∥D
1
8
x P 2aF 2

b′
∥∥

L4
xL4

t

� C

N
1
8

‖f ‖L2
ξ L2

τ
‖f1‖L2

ξ L2
τ
‖f2‖L2

ξ L2
τ
,

which follows by Lemmas 2.3 and 2.5.
If (b) holds, then the integral Υ is bounded by
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∫


|ξ |χ|ξ |�4af̄ (τ, ξ)

〈σ 〉1 − b

χ|ξ1|�2af1(τ1, ξ1)

(|ξ1||ξ2||ξ |)b′
|ξ2| 1

8 χ|ξ2|�2af2(τ2, ξ2)

|ξ2| 1
8 〈σ2〉b′ dδ

� C

N
1
8

∫


χ|ξ |�4af̄ (τ, ξ)

〈σ1〉1−b
χ|ξ1|�2af1(τ1, ξ1)

|ξ2| 1
8 χ|ξ2|�2af2(τ2, ξ2)

〈σ2〉b′ dδ

� C

N
1
8

∫
F1−b · F 1

0 · D
1
8
x P 2aF 2

b′(x, t) dx dt

� C

N
1
8

‖F1−b‖L4
xL4

t

∥∥F 1
0

∥∥
L2

xL2
t

∥∥D
1
8
x P 2aF 2

b′
∥∥

L4
xL4

t

� C

N
1
8

‖f ‖L2
ξ L2

τ
‖f1‖L2

ξ L2
τ
‖f2‖L2

ξ L2
τ
,

which follows by Lemmas 2.3–2.5.
If (c) holds, the argument is similar to case (b). This completes the proof of Theorem 4.1. �

Theorem 4.2. [9] Let 1
2 < b < 9

16 . For 1
2 < b′ and s � − 1

8 , it follows that∥∥∂x(u1u2)
∥∥

X̃s,b−1
� C‖u1‖X̃s,b′ ‖u2‖X̃s,b′ , (4.2)

where the constant C depends on β and γ .

Remark. The proof is similar to that of Theorem 4.1. Here the condition s � − 1
8 is required only

because of the mathematical point of view.

5. Global well-posedness in L̃2 and absorbing sets

In this section, we use the approaches in [9] to obtain the local well-posedness of the problem
(1.1)–(1.2). By the L̃2 energy equation for the solution, we can obtain the global well-posedness
and the existence of the bounded absorbing sets in L̃2.

Assume that λ ∈ R and f = f (x, t) ∈ X̃T
0,b−1, for some T > 0. For u0 ∈ L̃2, we define the

operator

Φ(u) = ψ1(t)S(t)u0 + ψ1(t)

t∫
0

S(t − t ′)ψT (t ′)
(
∂x

(
u2) + λu − f

)
(t ′) dt ′,

and the set

B = {
u ∈ X̃0,b: ‖u‖

X̃0,b
� 4C‖u0‖L̃2

}
.

In order to show that Φ is a contraction mapping on B, we first prove

Φ(B) ⊂ B.

Using Theorem 4.2 and Lemmas 3.1–3.3, for 1
2 < b < b′ < 1, we have the next chain of

inequalities∥∥Φ(u)
∥∥

X̃
� C‖u0‖L̃2 + CT b′−b

(‖u‖2
˜ + ‖u‖

X̃
+ ‖f ‖

X̃

)
.

0,b X0,b 0,b 0,b−1
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Therefore, if CT b′−b‖u0‖L̃2 � 1
2 , CT b′−b � 1

2 and CT b′−b‖f ‖
X̃T

0,b−1
� C‖u0‖L̃2 , then

Φ(B) ⊂ B.

For u,v ∈ B, in an analogous way to above, we obtain∥∥Φ(u) − Φ(v)
∥∥

X̃0,b
� CT b′−b

(‖u‖
X̃0,b

+ ‖v‖
X̃0,b

+ 1
)‖u − v‖

X̃0,b
� 1

2
‖u − v‖

X̃0,b
.

Therefore, Φ is a contraction mapping on B. There exists a unique fixed point which solves
the Cauchy problem (1.1)–(1.2) for T .

If f is time independent and belongs to L̃2, by multiplying (1.1) by u and D−2
x u; integrating

it over R respectively, we can obtain the following energy-type equation,

d

dt

∥∥u(t)
∥∥2

L̃2 + 2λ
∥∥u(t)

∥∥2
L̃2 = 2

(
f,u(t)

)
L̃2 . (5.1)

Therefore, we have the following result:

Theorem 5.1. Let λ ∈ R, f ∈ L̃2(R) and u0 ∈ L̃2(R). Then problem (1.1)–(1.2) admits a unique
global solution u(x, t) ∈ C(R; L̃2), which belongs to X̃T

0,b for all T > 0 and b close to 1
2 . More-

over, the map which associates the data (λ,f,u0) to the corresponding unique solution u is
continuous from R × L̃2(R) × L̃2(R) into C([−T ,T ]; L̃2(R)) ∩ X̃T

0,b for all T > 0, with, in
particular,

‖u‖
X̃T

0,b
� C

(
λ,‖u0‖L̃2(R)

,‖f ‖
L̃2(R)

, T
)
.

Thanks to Theorem 5.1 we can define a group associated with Eq. (1.1):

Definition 2. For λ ∈ R, f ∈ L̃2(R) fixed, we denote by {A(t)}t∈R the group in L̃2(R) defined
by A(t)u0 = u(t), where u = u(t) is the unique solution of Eq. (1.1) which belongs to X̃T

0,b for
all T > 0.

From now on, we are interested in the long time behavior of Eq. (1.1) taking the dissipation
into account. Therefore, we assume that λ > 0. We also assume that the forcing term f belongs
to L̃2(R). We want to obtain the existence of bounded absorbing sets for the solution operator
{A(t)}t∈R. This is achieved with the help of the energy-type equation proved in above.

By applying Cauchy–Schwartz’s and Young’s inequalities to the term on the right-hand side
of (5.1), it follows that

d

dt

∥∥u(t)
∥∥2

L̃2 + λ
∥∥u(t)

∥∥2
L̃2 = 1

λ
‖f ‖2

L̃2 . (5.2)

Therefore, upon integrating in time,∥∥u(t)
∥∥2

L̃2 � ‖u0‖2
L̃2e

−λt + 1

λ2
‖f ‖2

L̃2

(
1 − e−λt

)
. (5.3)

Whence we deduce that

lim sup
t→∞

∥∥u(t)
∥∥

L̃2 � ρ0 = 1

λ
‖f ‖

L̃2 (5.4)

uniformly for u0 bounded in L̃2(R). Thus, we have proved the following result:
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Theorem 5.2. Let λ > 0, f ∈ L̃2(R). Then the solution operator associated with Eq. (1.1) pos-
sesses a bounded absorbing set in L̃2(R), with the radius of absorbing ball given according
to (5.4).

6. Splitting of the solutions

The splitting used is obtained by writing u = v + w and splitting the nonlinear term as

uux = vvx + PN

(
(vw)x + wwx

) + P N
(
(vw)x + wwx

)
. (6.1)

Then, we obtain

vt − βvxxx − γD−1
x v + vvx + λv = f − PN

(
(vw)x + wwx

)
, (6.2)

and

wt − βwxxx − γD−1
x w + P N(wwx) + λw = −P N

(
(vw)x

)
, (6.3)

with the initial data

v(t = 0) = PNu0, w(t = 0) = P Nu0. (6.4)

First, we use that v = u − w to write the equation for w without explicit use of v. Whence,
we deduce the global existence of w and the decay in time of w(t) in L̃2(R). Then, the global
existence of v follows, and we prove the regularity of v in H̃ 3(R) and the L̃2(R) energy equation
for v.

7. Well-posedness and decay of the w part of the solution

We use v = u − w to write Eq. (6.3) for w without explicit use of v:

wt − βwxxx − γD−1
x w − P N(wwx) + λw = −P N

(
(uw)x

)
, (7.1)

with the initial data

w(t = 0) = P Nu0 = w0 ∈ L̃2(R). (7.2)

Next, we mainly use the arguments in Section 5 to obtain that for T sufficiently small, there
exists unique local solution of (7.1)–(7.2), and the bound

‖w‖
X̃T

0,b
� C‖w0‖L̃2(R)

, (7.3)

for some b > 1
2 .

The decay of w can be obtained with the help of bilinear estimate (4.1) and the energy equation
method. By taking the inner product of Eq. (7.1) with 2w in L̃2(R) and integrating the equation,
we obtain

∥∥w(t)
∥∥2

L̃2 � ‖w0‖2
L̃2e

−λt +
t∫

0

e−λ(t−s)
[(

ux(s),w
2(s)

)
L̃2 − λ

∥∥w(s)
∥∥

L̃2

]
ds. (7.4)

Next, we estimate the term
∫ t

0 e−λ(t−s)(ux(s),w
2(s))

L̃2 ds by the bilinear estimate (4.1). Let
1 < b, using integration by parts and duality, we obtain
2
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t∫
0

e−λ(t−s)
(
ux(s),w

2(s)
)
L̃2 ds

=
∞∫

−∞
e−λ(t−s)

(
ψ[0,t]u, ∂x(ψ[0,t]w)2)

L̃2(s) ds

� ‖ψ[0,t]u‖
X̃0,b−1

∥∥∂x(ψ[0,t]w)2
∥∥

X̃0,b−1
. (7.5)

By applying the bilinear estimate (4.1), it follows that∥∥∂x(ψ[0,t]w)2
∥∥

X̃0,b−1
� C

N
1
8

‖w‖2
X̃

[0,t]
0,b

. (7.6)

On the other hand, we easily have

‖ψ[0,t]u‖
X̃0,b−1

� ‖u‖
X̃

[0,t]
0,b

. (7.7)

Hence, we have by (7.6) and (7.7)

t∫
0

e−λ(t−s)
(
ux(s),w

2(s)
)
L̃2 ds � C

N
1
8

‖w‖2
X̃

[0,t]
0,b

‖u‖
X̃

[0,t]
0,b

. (7.8)

Then, using (7.3), we have

t∫
0

e−λ(t−s)
(
ux(s),w

2(s)
)
L̃2 ds

� C

N
1
8

‖u‖
X̃

[0,t]
0,b

1

|t |
t∫

0

‖w‖2
X̃

[0,t]
0,b

ds � C

N
1
8

‖u‖
X̃

[0,t]
0,b

1

|t |
t∫

0

∥∥w(s)
∥∥2

L̃2 ds. (7.9)

Thus, we have

∥∥w(t)
∥∥2

L̃2 � ‖w0‖2
L̃2e

−λt +
t∫

0

[
C

|t |N 1
8

‖u‖
X̃

[0,t]
0,b

− e−λ(t−s)λ

]∥∥w(s)
∥∥2

L̃2 ds. (7.10)

For N large enough, the second term in the right-hand side above is negative, hence∥∥w(t)
∥∥2

L̃2 � ‖w0‖2
L̃2e

−λt . (7.11)

This now can be iterated and shown to hold for all t � 0 in the interval of definition of w. This
shows that w(t) decays exponentially to zero in L̃2(R).

8. Regularity of the v part of the solution

Since u and w are defined globally in time, we mainly use the argument in Section 5 and
energy equation to prove an H̃ 3(R) bound for v = PNv + P Nv. For details, we can refer to [8].

Using (5.4), we first observe that

lim sup
∥∥PNv(t)

∥∥
H̃ 3 � lim supN3

∥∥v(t)
∥∥

L̃2 � lim supN3
∥∥u(t)

∥∥
L̃2 � ρ0N

3. (8.1)

t→∞ t→∞ t→∞
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Hence, we focus on an H̃ 3(R) estimate for P Nv = Z, which is solution to

Zt − βZxxx − D−1
x Z + P N

(
(PNv + Z)(PNv + Z)x

) + λZ = P Nf, (8.2)

Z(0) = 0 (8.3)

which follow from (6.2), (6.4) and P N(PN) = 0.
We can find to obtain the H̃ 3(R) bound for Z is equivalent to prove an L̃2(R) estimate on

Z′ = Zt , which solves

Z′
t − βZ′

xxx − D−1
x Z′ + 1

2
P N∂x

(
(PNv + Z)Z′) + λZ′

= −1

2
P N∂x

(
(PNv + Z)∂t (PNv)

)
, (8.4)

Z′(0) = P Nf − P N
(
PNv(0)∂xPNv(0)

)
. (8.5)

Similar with arguments in Sections 5 and 7, using the energy equation, bilinear estimate (4.1),
the local well-posedness of (8.4)–(8.5) in L̃2(R), we have∥∥Z′(t)

∥∥
L̃2(R)

� C
(
λ,‖u0‖L̃2(R)

,‖f ‖
L̃2(R)

,N
)
, ∀t � 0. (8.6)

Therefore, we have∥∥v(t)
∥∥

H̃ 3(R)
� C

(
λ,‖u0‖L̃2(R)

,‖f ‖
L̃2(R)

,N
)
, ∀t � 0. (8.7)

Therefore, there exists the following energy equation for v,

∥∥v(t)
∥∥2

L̃2(R)
�

∥∥v(0)
∥∥2

L̃2(R)
+

t∫
0

e−2λt
[
2
(
f, v(s)

)
L̃2(R)

+ (
PN

(
2v(s)w(s) + w2(s)

)
, vx(s)

)
L̃2(R)

]
ds. (8.8)

9. Asymptotic smoothing and the global attractor

In this section, we use the results in Sections 7, 8 to prove the existence of global attractor
in L̃2(R) and its compactness in H̃ 3(R). For details, we can refer to [8]. First, we prove the
asymptotic compactness of the group in L̃2(R). Hence we prove that a bounded sequence of
initial conditions {u0n}n in L̃2(R) and a sequence of positive numbers tn → ∞, the solution
un(tn) = vn(tn) + wn(tn) are precompact in L̃2(R), with wn(tn) decaying to zero in L̃2(R) and
vn(tn) being precompact in L̃2(R) and weakly precompact in H̃ 3(R). This will give us the exis-
tence of the global attractor A in L̃2(R), and, at the same time, the boundedness of A in H̃ 3(R).

In fact, from Section 8, we have{
vn(tn + ·)}

n
is bounded in C

([−T ,T ]; H̃ 3(R)
)
, (9.1)

and, for the time-derivative,{
∂tvn(tn + ·)}

n
is bounded in C

([−T ,T ]; L̃2(R)
)
, (9.2)

for each T > 0 (and starting with n sufficiently large so that tn − T � 0). By Arzela–Ascoli
Theorem, we can find that a subsequence of vn(tn) such that

vnj
(tnj

+ ·) ⇀ ū(·) strongly in C
([−T ,T ];Hs

loc(R)
)
, ∀s ∈ [0,3),

weakly star in L∞([−T ,T ]; H̃ 3(R)
)
, ∀T > 0. (9.3)
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Moreover,

vnj
(tnj

+ t) ⇀ ū(t) weakly in H̃ 3(R), for every t ∈ R. (9.4)

From (7.11), we have∥∥wn(tn + t)
∥∥

L̃2(R)
→ 0, uniformly for t � −T , ∀T > 0. (9.5)

With (9.3) and (9.5), one can pass to the limit in the weak formulation of the equation for vnj
to

find that ū is a solution of (1.1), and satisfy the energy equality (5.1).
We use energy equality (8.8) for vn with t = tn and 0 = tn − T , uniform for v in H̃ 3(R), the

decay (9.5) of wn and weak-star limit of vnj
in (9.3) to obtain

lim sup
j→∞

∥∥vnj
(tnj

)
∥∥2

L̃2 �
∥∥ū(0)

∥∥2
L̃2 . (9.6)

This, together with (9.4) and (9.5), implies that

unj
(tnj

) = vnj
(tnj

) + wnj
(tnj

) → ū(0) strongly in L̃2(R),

weakly in H̃ 3(R). (9.7)

This shows the solution operator is asymptotically compact in L̃2(R). Hence there exists a global
attractor A in L̃2(R), and, at the same time, A is bounded set in H̃ 3(R).

Then, we work with the equations for u′
n = dun

dt
and show, using the energy equation method

applied to u′
n, that with the initial conditions {u0n}n belonging to A (and, hence, bounded in

H̃ 3(R)), the sequence u′
n(tn) is precompact in L̃2(R). This implies, from the equation for u,

that un(tn) is precompact in H̃ 3(R). This shows that the flow restricted to the global attractor
is asymptotically compact in H̃ 3(R) and, hence, that the global attractor is compact in H̃ 3(R).
The proof of asymptotically compact in H̃ 3(R) is similar with one of asymptotically compact in
L̃2(R), here we do not need to split the solutions un(tn). Hence we omit the details.
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