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For a given compact Lie group G and a family of subgroups 3r of G, a classifying 
space E ~  is defined. It is a G-space such that every subgroup of G having fixed 
points on EJ-  belongs to ~ and such that for every H e F  the space E ~  is H- 
contractible i.e. it has an H-equivariant contraction onto a point. We want to com- 
pute the equivariant cohomology of classifying spaces for families of subgroups. 

Let h o be an equivariant multiplicative cohomology theory. For any subgroup 
H e  J ,  we define an ideal I(H)=ker{hG(pt)-~h~(G/H)}. The set of ideals 
{ / ( H I ) - . . . - I ( H n ) I H i E  Y}  defines a topology on hc(pt  ) which is called the ~- 
topology. 

The completion conjecture says that for a 'nice' cohomology theory h e and a 
'nice' space X the projection X x E~--,X induces an isomorphism/~x(J)  • ho(X)  --" 

^ 

ho(XxE~);  where denotes completion with respect to the ~--topology. There is 
also a more general formulation of the completion conjecture suitable in particular 
for completing cohomology theories which are modules over the Burnside ring func- 
tot with respect to the N-topology on the Burnside ring. 

The completion conjecture was formulated by the author [11] and then proved 
by him [12] for equivariant K-theory when ~-is the family of cyclic subgroups of 
a finite group. The induction method developed in [12] is now extended to give a 
reduction procedure of the completion conjecture for an arbitrary family of sub- 
groups to the case of the family of all proper subgroups. As a corollary we prove 
the completion conjecture for equivariant K-theories and arbitrary families of 
subgroups of compact Lie groups. In this case the completion conjecture was proved 
independently by J.-P. Haeberly [9] who exploited the method of Atiyah-Segal [4]. 
Two applications are mentioned. The first one provides a description of the image 
of the restriction homomorphism R(G)-,R(H) for a normal subgroup H of a com- 
pact Lie group G, in terms of group cohomology H*(B(G/H); R(H)) where G/H 
acts on R(H) by conjugation. The second application is to show how the completion 
theorem for the family of topologically cyclic subgroups and their subgroups gives 
a new approach to the description of the prime ideal spectrum Spec Kc(X). 
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I would like to thank Peter Lbffler for discussions we had in Oberwolfach in 
September 1974 during which the completion conjecture was formulated. 

1. Families of subgroups and equivariant cohomology 

Let G be a compact Lie group. A set P- of closed subgroups is called a family 
if it is closed under conjugation and taking subgroups. A G-space X is called p--free 
if all isotropy subgroups occuring on X belong to P-. It is called p--numerable if it 
has a numberable open G-covering q/ such that for any Ue  0Z/ there exists an 
equivariant map U ~  G/H for some H e  P-. An p--numerable space is clearly p--free. 

The homotopy category of p--numerable G-spaces has a terminal object which 
will be denoted by E~.  Its construction imitates the Milnor construction of a univer- 
sal free G-space, and it can be found in [8, §7.2]. There is a homotopy-theoretical 
characterization of classifying spaces for families of subgroups generalizing the 
classical theorem of A. Dold. 

1.1. Theorem. An P--numerable G-space E is classifying for the family P- if  and only 
i f  it is H-contractible for every subgroup H e  P-. [] 

Similarly to the case of free universal spaces for compact groups, one can equip 
an infinite join of orbits with isotropy subgroups belonging to P- with a compactly 
generated topology defined by finite joins (cf. [4, footnote on p. 3]). The classifying 
space for the family P- obtained in such a way is clearly a G-CW-complex in the 
sense of Matumoto [13]. 

If  P- is a family of subgroups of G and H C  G is a closed subgroup, let P- f3H= 
{L C H[L e P- } be its restriction to H.  We have the following restriction and pro- 
duct formulas for classifying spaces. 

1.2. Proposition. There is an H-homotopy equivalence 

E J -~ E ( P- N H ) . [] 

1.3. Proposition. I f  ~-1, P-2 are families o f  subgroups of  G, then there is a G- 
homotopy equivalence 

E(J,n J2)-~Eo~ xE~2, 

where the topology on the cartesian product is the smallest compactly generated 
topology containing the Tychonoff topology. [] 

To compute the cohomology of infinite complexes, it is convenient to work in the 
category of inverse systems of abelian groups or rings. Following [4], we recall the 
construction of the category Pro(V) from a given category V. Objects of the 
category Pro(V) are inverse systems {As}s~ s of objects of V indexed by directed 
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sets S. To define a morphism from {As}sE s t o  {nt}te T one prescribes the map 
u : T ~ S  (not necessarily order-preserving) and morphisms f t : A u ( t ) ~ B  t of C for 
each t e  T: subject to the condition that if t < t '  in T, then for some s e S  such that 
s > u(t), s > u(t'), the diagram 

f ,  
Au(t) ' B t 

as, u(t) / 

/ 
As 

Au(t, ) ) B t, 

bt,t 

is commutative. But one identifies the morphisms (u, ft) and (u',ft') if for each t, 
there is an s e S such that 

Au(t) 

Bt 

Au,(t) 

As 

commutes. 
It is not difficult to see that if ~ is an abelian category, then Pro(P) is also 

abelian. By a pro-cohomology theory will be meant a sequence of functors defined 
on a topological category with values in the category Pro(~a) and satisfying the 
Eilenberg-Steenrod axioms. Pro-cohomology theories inherit all formal properties 
of usual cohomology. In particular, for equivariant pro-cohomology, the com- 

parison theorem remains true. 

1.4. Proposition. Let T: h c ~ k  6 be a natural transformation o f  equivariant pro- 
cohomology theories. Suppose that for  every orbit G / H  such that H belongs to a 
given family J,, T (G/H)  is an isomorphism. Then for  any finite Y--free G-CW- 
complex X, T(X)  is an isomorphism. [] 

Let h be a cohomology theory defined on the category of compact spaces. Then 
h can be extended to a pro-cohomology theory on the category of compactly 
generated spaces by the formula: 

g(X) = {h(K) : K C X ,  K compact}. 
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Now let he be an equivariant cohomology theory defined on the category of com- 
pact G-spaces. For any family of subgroups ~- of G, one associates with he a new 
pro-cohomology theory h e [ ~ ]  defined on the category of compact G-spaces: 

h o [~-](X) = fie(X x E~ r) = {ho(X  x K) : KCE~-,  K compact}. 

The projection X x E ~ r ~ X  induces a natural transformation h e--*he[~']. For an 
arbitrary subgroup K C  G, we define a K-cohomology theory hK by the induction 
formula hK(X)= he (G XK X). The induction formula holds for various equivariant 
cohomology theories which are defined geometrically for an arbitrary compact Lie 
group. The cohomology theory h e [ ~  ] is characterized by the two universal pro- 
perties listed in the next theorem. 

1.5. Theorem. The natural transformation hc~ho[~ - ]  has the following 
properties: 

(a) I f  X is a ~--free compact space, then h e ( X ) ~  ho[~-](X ) is an isomorphism. 
(b) I f  a G-map f :  X ~ Y induces an isomorphism f *  : hK(Y)~hK(X)  fo r  every 

K ~  J ,  then f * : h o [ f ] ( Y ) ~ h o [ : ] ( X  ) is an isomorphism. [] 

The proof is a slight modification of the one given in [12, Theorem 1.5]. 
Now we describe another important construction which yields a pro-cohomology 

theory. Let R be a graded ring. Let h be an R-module valued cohomology theory. 
This means that for any space X the graded group h(X) is a graded R-module, and 
that induced homomorphisms as well as boundary operators are R-homomorphisms. 
We will say that the h-cohomology of the space X is R-finite if at least one of the 
following conditions holds: 

(i) h(X) is a finitely generated R-module. 
(ii) I f  R = R °, then hq(X) is a finitely generated R°-module for every index q. 

Let J =  {Is}se s be a family of ideals in R. The set of all finite products Is~" ..." Is k 
of ideals from J (denoted also by J) is the basis of neighbourhoods of 0 ~ R of the 
J-adic topology on R. Hence the J-adic topology is defined on any R-module. 

We define a functor h / J  with values in the corresponding pro-category by the 
formula 

(h/J)(X)  := {h(X) / I .  h(X) : I ~  J}. 

1.6. Proposition. Let R be a noetherian ring. Then h / J  is a pro-cohomology theory 
on the category o f  spaces whose h-cohomology is R-finite. 

Proof. The exactness axiom follows from the Artin-Rees lemma as stated in [3, Cor- 
ollary 10.10]. The homotopy axiom is clearly fulfilled. [] 

Let M : ~ o ~ R i n g s *  be a contravariant functor defined on the category of 
canonical orbits of a group G with values in the category of graded rings. Its value 
on the orbit G / H  we denote M n  for short. For any pair of subgroups H c K  of G 
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we define an ideal 

IXM(H) = ker{Mx ~M/4}. 

In the case K = G we write IM(H) and if the functor M is fixed, we also omit it and 
write I(H) for short. 

Let Y be a family of subgroups of G. Let I M ( y )  = {IM(H)]He Y}: the IM(Y) - 
adic topology on any Me-module will be called the (M, :-)-topology or shortly the 
y-topology. 

Let h G be any equivariant cohomology theory. Assume that h o is a module over 
M, i.e. for every subgroup K C G  and K-space X, the graded group hx(X) is a M r -  
module in a way such that obvious compactibility conditions are satisfied (cf. [8, 
§7.4] for the case M = A  is the Burnside ring functor). 

Hence, any family of subgroups Y defines an Y-topology on the theory he. The 
basic property of the Y4opology is given by the following proposition: 

1.7. Proposition. I f  X is a compact :--free G-space, then the :--topology on h e ( X  ) 
is discrete. 

Proof. It follows from the existence of tubes around orbits and the Meyer-Vietoris 
argument. [] 

1.8. Corollary. For an arbitrary compact G-space X, the projection X x E Y  p ~ X 
defines a homomorphism o f  pro-rings 

p x ( Y )  : (he/ IM(Y))(X)  ~ he [Y](X). [] 

2. The completion conjecture. Reduction theorems 

First we describe a few examples justifying the terminology introduced in the last 
section. 

If h c is a multiplicative cohomology theory, then he is a module over the functor 
M given by restricting hG to the orbit category. One can also take M =  h ° I ~a and 
consider h~(X), for every index q, as an h°-module. 

For example, equivariant K-theory is a module over the representation ring func- 
tor. Equivariant stable cohomotopy theory is a module over the Burnside ring func- 
tor which can be identified with nO]oG. 

Various equivariant bordism theories are modules over the Burnside ring functor. 
In fact, every equivariant cohomology theory graded over the representation ring 
is a module over the Burnside ring functor. 

The completion conjecture for the cohomology theory he which is a module over 
the functor M says that the morphism of pro-objects defined in 1.8: 

px( : )  : (hMIM( hc [:](X) 
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is an isomorphism for spaces X satisfying some finiteness conditions. 
For the proofs of our results concerning the completion conjecture, we need to 

impose certain conditions on cohomology theories and M-module structures on 
them. The first is the finiteness condition (N): 

(N) The ring M e is noetherian and for any subgroup K C G the homo- 
morphism Me--~Mx is finite i.e. MK becomes a finitely generated 
M e-module. 

Let ~ be a fixed family of subgroups of G. The second assumption is the follow- 
ing restriction ~--topology property (R,~-): 

(R j )  For any subgroup H C  G, the N-topology defined on M~ by restriction 
M e -~M~ coincides with the Y NH-topology on M~; i.e. the topology 
defined by the ideals {Iv(K ) IKe Y NH}.  

We will discuss certain reduction theorems for the completion conjecture. 

2.1. Theorem. Let ~- be a family o f  subgroups o f  G. Assume that the cohomology 
theory h e is an M-module satisfying conditions (N) and (Re). Let X be a compact 
G-space o f  MK-finite cohomology hK(X), for every subgroup K c G. Assume also 
that: 

(i) for the family ~e o f  all proper subgroups o f  G, the morphism px(  ~e) is an 
isomorphism, 

(ii) for any proper subgroup K C G and the cohomology theory hr the morphism 
px(  ~ r NK) is an isomorphism. 

Then the morphism px(  ~ r) is an isomorphism. 

We will give a proof of Theorem 2.1 at the end of this section. An easy inductive 
argument gives the following corollary: 

2.2. Corollary. Let hc be a cohomology theory which is an M-module satisfying 
conditions (N) and (R~) for  any family o f  subgroups ~ o f  G. Let X be a G-space 
as in Theorem 2.1. Suppose that for  any subgroup H C G the morphism Px( ~ I )  is 
an isomorphism o f  corresponding H-equivariant pro-cohomology theories. Then 
for  any family o f  subgroups G- o f  G, the morphism px(  ~-) is an isomorphism. [] 

We formulate another reduction principle which may be useful to prove the com- 
pletion theorem for some cohomology theories. Assume that topologies defined by 
families of subgroups ~ and J2 satisfy the following intersection property: 

(I) The ~ CI J2-topology on Mc coincides with the topology defined by 
the ideals {Ii +/2:11 e I (~ ) ,  I2 e I(J2)}. 
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2.3. Theorem. Let h G be a module over a functor M satisfying assumption (I). 
Assume that for  a given G-space X such as in Theorem 2.1 and every subgroup 
H e  ~], px(3rl) and p x ( ~ 2 N H )  are isomorphisms. Then p x ( ~ f 3 ~ )  is also an 
isomorphism. 

Our reduction Theorem 2.2 is analogous to the easy part of Carlsson's proof of 
the Segal conjecture as presented by Adams [1] - i.e. the reduction of the general 
Segal conjecture for p-groups to the computation of p-adically completed stable 
cohomotopy of the unit sphere of an infinite-dimensional representation. The 
sphere of an infinite-dimensional representation @°°V such that vH~=o for any 
subgroup H ~ G  and VG=O is actually a classifying space for the family of all 
proper subgroups (cf. [7] and Section 3). At least for finite groups, the stable 
cohomotopy theory considered as a module over the Burnside ring functor satisfies 
conditions (N) and (R: )  for any family of subgroups ~. Hence to prove the com- 
pletion conjecture in stable cohomotopy for an arbitrary finite G-CW-complex, it 
remains to compute the pro-group try(S(@ °° V)) for any finite group G. 1 

In the next section we prove the completion conjecture for families of all proper 
subgroups only for cohomology theories satisfying certain orientability conditions. 

Proof of Theorem 2.1. The theorem is trivially true for the family of all subgroups 
of G; in that case, the classifying space is G-contractible and the F-topology is 
discrete. Hence assume that J C ~. Then there is a G-homotopy equivalence 
E ~  = E ~  xE~-  (cf. Proposition 1.3) and the pro-cohomology theory hG[3- ] can 
be written in the following form 

hG[~](X) = {hG(X ×A ×B)  : A c E ~ ,  BcE.~,,A, B compact}. 

The N-topology on the ring Mc coincides with the topology defined by the ideals 
{Ii +I2 :Ii e I (~ ) ,  I 2e I (~ )} .  Hence we have the following decomposition of the 
theory h a / I ( Y ) .  We write hG = he (X)  for short. 

(hG/I( ~-))(X) = { hG/(I 1 + I2)h c : 11 e I( ~ ), 12 e I (~)}  

= {ho ®Me (MG/II) ®Mo (MG/I2) : I1 e I(#),  I 2 e I (~)}.  

Consequently, the map p x ( Y )  : (ha/I(~-)(X) ~ ha [J-](X) can be decomposed 

{ hG/II ha ®me (MG/I2) : I I~  I(:~), I 2 e I ( J ) } \  

I px(~)®id  
\ 

{ h G ( X x A ) @ M c ( M G / I 2 ) : A c E ~ , I 2 e I ( G - ) }  1 Px(:)  

pXxA(y)} J 

{ h a ( X x A  xB)  :A  c E ~ ,  B c E ~ , , A , B  compact} . 

t Added in September 1984: A proof of the completion conjecture for equivariant stable cohomotopy 
will appear in a joint paper by J.F. Adams, J.-P. Haeberly, S. Jackowski and J.P. May. 
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We prove that both factors are.isomorphisms. The assumption (i) implies that for 
each fixed 12 e I(~-), the map px(t~ )®idMo//2 is an isomorphism. Therefore, from 
general properties of pro-categories (cf. [4, Lemma 3.2]), the map P x ( ~ ) ® i d  is an 
isomorphism. Now fix a compact subcomplex A C E~.  We prove that 

PXxA( Y-) : ho (X x A) ®go Mo/I2 -" { ho(X × A x B) : B C E Y  } 

is an isomorphism. Indeed, for any proper subgroup K c G ,  the assumption (ii) 
together with condition (Ry) implies that Pxxo/K(Y-) can be decomposed into 
three isomorphisms: 

{hG(X× G/K)@MoMG/I2 : I2 e I(~-)} --* {hK(X)/J2hK(X):J2eI(~- f'lK)} 

PX x G/K( ~) J Px( ~- CIK) 

{ h o ( X × ( G / K ) x B ) : B C E ~ }  ~ { h K ( X x B ) : B C E ( ° t N H ) }  . 

Propositions 1.4 and 1.6 imply that PxxA(Y-) is an isomorphism for every finite G- 
CW-complex A such that A°=O. Hence, as before the map of inverse systems 
{PxxA(Y-)} is an isomorphism. [] 

The proof of Theorem 2.3 is analogous to the last one. It uses Proposition 1.3 
and its algebraic analogue (I). 

3. The completion conjecture for families of subgroups defined by linear represen- 
tations 

We recall here the results of [12, §3]; stating them in a slightly generalized form. 
Let ~ /be  a set of real representations of a group G. It determines a family of 

subgroups 9-~:= U v ~ { H c G :  VH~:0}. Let h o be a multiplicative cohomology 
theory and assume that ho has suspension isomorphisms for all representations 
Ve ~ Then their Euler classes e(V)eho(Pt  ) are defined (cf. [8, §7.1]). We con- 
sider ho as a module over its restriction to the orbit category. 

3.1. Proposition. The topology defined on ho(pt ) by the family o f  principal ideals 
{e(V)ho(pt) : Ve  ~f } coincides with the ~r~-topology. [] 

3.2. Corollary. For any G-space X, there is an isomorphism of  pro-rings 

(ho/I( f ~)(X) = {ho(X)/e(V)ho(X) : Ve ?f + }, 

where ~f + denotes the closure of  ~f with respect to direct sums, ordered by G- 
linear inclusions. [] 

A classifying space for the family ~ can be constructed as a sphere in an in- 
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finite dimensional representation. More precisely, we can assume that ~/= { Vi}i°°= 1 
is countable, and then set 

E~-r =lim S( V~ @ ... @ V l @ ... @ Vn @ "'" @ Vn). 
n k ~. J k , , . .  J 

n n 

To compute ha [jTr](X), we apply the Gysin sequence and use the last lemma, pro- 
ceeding as in the proof of Lemma 3.1 in [4]. 

3.3. Theorem. Let  X be a compact G-space such that ho (X)  is a noetherian h c (pt)- 
module. Then 

p x (  Y~ ) : (ha/I( ~¢ ))(X) ~ ho [ ~e ](X) 

is an isomorphism o f  pro-rings. [] 

3.4. Corollary. I f  the assumption o f  the last theorem is fulfilled and h o is an ad- 
ditive cohomology theory, then p x (  G-~ ) defines an isomorphism 

ha(X)  ̂  --" h o ( X  x EJ-~ ), 

where ^ denotes completion with respect to the ~-~-topology. [] 

The above corollary can be regarded as a statement dual to tom Dieck's result [7, 
Satz 5] describing in homotopy terms the localization of the homology theory with 
respect to Euler classes. 

We say that the theory h c has sufficiently many suspensions if every orbit G / H  
can be imbedded into a representation V for which the suspension isomorphism is 
defined in ha. For example, complex, orthogonal and real Kc-theories have suffi- 
ciently many suspensions. 

Clearly not every family of subgroups is defined by representations: for example 
if G does not have free representations, then the family consisting of the identity 
subgroup is not. However if h G has sufficiently many suspensions, then the family 
of all proper subgroups ~ is defined by the set of all representations without the 
trivial summand for which suspension isomorphisms are defined in ho. As we have 
shown in the previous section, the computation of the theory ho [~]  is an impor- 
tant ingredient of the proof of  the completion theorem for an arbitrary family of 
subgroups. 

4. g-topology in the representation ring 

We prove that conditions (g~ )  and (I) of the last section are fulfilled for 
equivariant K-theory. We restrict ourselves to the case of the complex representation 
ring. However the corresponding results remain true for coefficient ring of KO o- 
theory. 
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All the results of  this section are based on the description of the prime ideals in the 
representation ring of a compact Lie group given by Segal [15]. 

4.1. Proposition. In the noetherian ring A, the topology defined by the ideals {I} 
coincides with the topology defined by the set o f  their radicals {r(/)}. [] 

4.2. Corollary. I f  M G is a noetherian ring, then its ~--topology coincides with the 
topology defined by the set o f  ideals I'(~r)= {I(HI)N. . .NI(Hk):Hie G-}. 

Proof. Clearly r(I(H 1). . . . .  I(Hk)) = r(I(Hl) f').., rl I(Hk). [] 

The representation ring of a compact Lie group is noetherian and the restriction 
homomorphism to a subgroup is finite. Hence condition (N) is fulfilled. Now we 
prove (R~-). 

4.3. Proposition. For any family o f  subgroups Jr o f  a compact Lie group G and 
any subgroup H C  G, the ~--topology on the representation ring R(H) coincides with 
the Y tqH-topology. 

Proof. Denote by i .  :Spec R(H)~Spec  R(G), the map induced by the restriction 
homomorphism on prime ideal spectra. If a prime ideal p e Spec R(H) has support 
S~, the subgroup S~ is also the support of i.(10. It is enough to prove that for any 
Ie I (J - )  there exists J e I ( J N H )  such that JCr(I) .  Let i~l, ..., l'n be minimal prime 
ideals containing I(KI). . . . .  I(Kn)R(H) and let $1, ..., Sn be their supports in H. 
Now J=In(S1)-  ..." IH(Sn). [] 

Let us observe that the functor R also fulfills Condition (I). However (I) is not 
used for the proof of the completion theorem in equivariant K-theory. 

4.4. Proposition. Let ~ and ~-2 be families o f  subgroups o f  a group G. Then the 
f3 ~-2-topology on R(G)coincides with the topology defined by the set o f  ideals 

{ Ii + I2 : Ik ~ I( ~-~c) }. 

Proof. Clearly the (1(~)  + I(~))-topology coincides with the ( I ' ( ~ )  + I ' (~) ) -  
topology. It is enough to prove that for every ideal/1 + I 2 ~ I ' ( ~ ) + I ' ( ~ ) + I ' ( ~ )  
there is some I e I ( ~  N Jz) such that ICr(II +I2). Let 71, ..., ?k be minimal prime 
ideals containing I1 + 12 and let SI, ..., Sk be their supports. These subgroups clearly 
belong to ~ 1"3 ~ .  Now I =  I(SI) . . . . .  I(Sk). [] 

If a family ~ contains all cyclic subgroups, and hence all Cartan subgroups, then 
the J--topology is clearly discrete. We close this section by observing that this is 
actually the only case when the N-topology is complete. 



Families of subgroups and completion 177 

4.5. Proposition. For a family o f  subgroups J o f  a compact Lie group G, the 
following conditions are equivalent 

(1) J contains all cyclic subgroups o f  G, 
(2) J-topology on R(G) is discrete, 
(3) :-topology on R(G) is complete and Hausdorff, 
(4) N-topology on R(G) is complete. 

Proof. Implications (1) = (2) = (3) = (4) are obvious. We prove (4) = (1). Let S be a 
cyclic subgroup of G. Since the restriction R(G)- ,R(S)  is a finite homomorphism, 
Proposition 4.3 implies that R(S) is complete in the J N S-topology. Assume S ~ ~. 
Then J O S c  ~s, and hence R(S) must be also complete in the ~s-topology. It is 
now easy to see that the representation ring of a cyclic group is not ~-complete. [] 

5. Equivariant K-theory and spectral sequences 

The results of the previous sections imply a completion theorem generalizing 
results of Atiyah-Segal [4] obtained independently by J.-P. Haeberly [9]. 

5.1. Theorem. L e t  X be a compact G-space such that K~(X) is finite over R(H) for  
any subgroup HC G. Then for  any family o f  subgroups F, the map 

px(  ~ )  : (K~/I( J))(X)--+ K~ [ J I ( X )  

!s an isomorphism o f  pro-rings. 

Proof. The theorem follows from 4.3, 2.2, 3.3, and the remarks following 3.4. [] 

In the case of the family consisting only of the identity subgroup, 5.1 provides 
a new proof of the Atiyah-Segal theorem [4]. Note that the theorem corresponding 
to 5.1 is true for KOG-theory and the proof carries over verbatim. 

5.2. Corollary. Let X be as in the last theorem. Then p x ( J )  defines an iso- 
morphism 

K~(X)" ---,K~ (X x EJ) 

where ^ denotes completion with respect to the N-topology. [] 

5.3. Corollary. Let X, Y be G-sPaces satisfying assumption o f  Theorem 5.1. Let 
f: Y - ~ X  be a G-map inducing an isomorphism f *  : K ~ ( X ) ~ K ~ ( Y )  for  any H e  g. 
Then f*  : K~ (X) ~K~  (Y) induces an isomorphism o f  the I(:-)-completions. 

Proof. The corollary follows from 1.5 and 5.2. [] 
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This last corollary is completed by the following generalization of an observation 
due to Petrie [14]. 

5.4. Proposition. The induced homomorphism f*  : K~(X)--, K~(Y) induces an 
isomorphism of  the I(:)-completions if  and only if  for every ideal p ~ spec R(G) 
such that its support S belongs to Y, the localized induced homomorphism 
f . :  * (S) ~ * K~(X )~ K~(y<S))p is an isomorphism. [] 

For a G-space X satisfying assumption of the completion theorem 5.1 we have 
l iml{K6(XxA):A  CE~-} = 0. Hence the equivariant Atiyah-Hirzebruch spectral 
sequence (cf. [10]) 

E~=H~(X xE: - ;  R(. ))=, K~(X) 

is convergent (cf. [6, §3]). The edge homomorphism of this sequence 

a : K ~ ( X ) - '  H°~<X ×EY; R(. )) 

has its values in the equivariant singular O-cohomology group (in the sense of Illman 
[10]) which is canonically imbedded into the product IIx~x l-ln~ncxR(H) (cf. [6, 
Proposition 3.3]). 

Let us consider this spectral sequence for three interesting families of subgroups. 

5.5. Example. Let H be a normal subgroup of G. Denote by Y-H the family 
of all subgroups contained in H. Then it is easy to see that H~(EY-H; R(.))= 
H*(B(G/H); R(H)) where G/H acts on R(H) by conjugation. Hence for X= pt, the 
spectral sequence has the form 

E~= H*(B(G/H); R(H))-.-+ R(G)" 

where ^ denotes completion with respect to the ideal ker{R(G)-~R(H)}. The image 
of the edge homomorphism R(G)--, H°(B(G/H); R(H))= R(H) a/H coincides with 
the image of the restriction homomorphism R(G)~ R(H) ~/H. Hence we obtain an 
implicit description of the characters of H which extend to G in terms of group 
cohomology. This spectral sequence - similar to the Hochschild-Serre Spectral 
sequence - is a stronger version of Atiyah's spectral sequence (cf. Atiyah [2, 
Theorem 7.8]). Indeed, Atiyah's sequence can be obtained from ours by completing 
it with respect to the augmentation ideal in R(G). 

5.6. Example. Let Y = ~ be a family consisting of subgroups contained in topo- 
logically cyclic subgroups of G. Then the ~g-topology is discrete. Character theory 
and Proposition 1.7 imply that the kernel of the edge homomorphism 

ot : K~(X)~ H° (X xE~; R(. )) 

is nilpotent. One can also prove that a induces a bijection of prime ideal spectra. 
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For more details cf. [6]. A decomposition theorem for Spec K~(X) - proved using 
different arguments - is contained in [5]. 

5.7. Example. Let G be a finite group and let ~ be the family of its elementary 
subgroups. Then Dress' theory implies that H~(E~; R(.))=O for q > 0 .  Therefore 
our spectral sequence for X =  pt reduces to the Brauer theorem in character theory. 
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