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Abstract 

Errors of a battery model will dramatically enlarge as the internal parameters of a battery varying. To reduce the 
systematic errors, a parameter adaptive battery model is proposed. Based on it, sliding mode algorithm is adopted to 
estimate the SOC of a battery. The experimental platform is constructed and the UDDS driving cycles is used to 
verify the method. The results show the error of SOC estimation is less than 2% and it indicates the monitoring 
algorithm is of great value to power batteries which are generally used in variable environment. 
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Nomenclature 

0E   Open Circuit Voltage 

0V   Terminal Voltage 

2V   Polarization Voltage 

z   SOC 

1R   Ohm Resistance 

2R   Polarization Resistance 

2C   Polarization Capacitor 

nC   Nominal Battery Capacity 
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i   Noise 

i   Feedback Coefficient 

0Ve   The Observable Error of Terminal Voltage 

Ze   The Observable Error of SOC 

2Ve   The Observable Error of Polarization Voltage 

1. Introduction 

Battery management system (BMS) is one of the most important parts of an electric vehicle. As the 
core of BMS, state of charge (SOC) estimation has an extremely considerable effect on safety, dynamic 
and economy of the electric vehicles. If an accurate SOC can be obtained, the SOC range can be used of 
batteries could be extended[1]. Thus, a smaller battery pack will be able to satisfy the demand of electric 
vehicles. It means the price for building low-carbon cities by improving the market penetration of electric 
vehicles could be dramatically decreased. 

The precision of SOC estimation rely on the accuracy of the battery model[1]. Currently, static battery 
models are generally adopted in implement, such as Rint RC[2] Thevenin[3] PNGV[4] and 
nonlinear equivalent circuit model[5]. However, static battery models initialized in laboratory are unable 
to adapt variable actual using environment[6]. Though many robust SOC observer have been built to 
reduce the negative impacts, such as sliding mode observer[7], proportional integral observer[8] and 
extended Kalman filter observer[9], the model systemic error led from the variation of internal parameters 
is hard to be eliminated. 

Thus, keeping the coherence of a battery model and its actual characteristics under actual using 
environment becomes the key point to ensure the accuracy of SOC estimation. It means dynamic battery 
models are needed to adapt the change of internal parameters of a battery. Plett proposed a dual extended 
Kalman filter method[10] and Song proposed a dual sliding mode observer to estimate SOC and state of 
health (SOH) of a battery[11]. However, these kinds of battery models have obvious drawbacks: 1) 
ignoring the variation of other parameters except for internal resistance, 2) ignoring the transmission 
error’s impacts on parameter estimation, 3) a complex identification of parameters is needed.  

Thus, research on dynamic battery model and related SOC estimation methods are still inadequate. To 
solve the problems stated above, an adaptive battery model is established and a sliding mode observer for 
SOC estimation is proposed in this paper. As shown in Figure 1, parameters estimation, model updating 
and SOC estimation are synchronous. Compared with previous models, advantages are obvious: 1) 
eliminating systemic error of battery model effectively, 2) online estimation of parameters, 3) no need of 
accurate initial parameters, 4) transmission errors are avoided by independent parameter observer, 5) 
simple mathematical operation. 
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Fig. 1. Parameter adaptive battery model and sliding mode SOC estimation method 

2. Theoretical analysis 
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2.1. Equivalent circuit of a battery 

A simple first order RC equivalent circuit battery model is adopted for a further study in this paper. 
The RC model is shown in Figure 2. It consists of a voltage source ( 0E ), a resistor ( 1R ), and a parallel 

capacitor ( 2C ) and resistor ( 2R ). 
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Fig. 2. One order RC equivalent circuit battery model 

0E  is a nonlinear function of SOC[12]. The relationship of 0E  and SOC could be decomposed as 

0 n nE z  by linear interpolation. The related parameters are listed in Table 1.  

Table 1. Relationship between E0 and SOC 

z  0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 

n  0.59 0.46 0.62 0.73 0.79 

n  3.4 3.413 3.381 3.348 3.324 

z  0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1 

n  0.64 0.65 0.76 0.87 0.60 

n  3.399 3.393 3.316 3.228 3.471 

In Figure 2, the relationship between polarization voltage and current can be obtained according to 
Kirchhoff's law 
 2 2 2 2 2( )V V R C I C  (1) 

Terminal voltage 0V  could be written as follow 

 0 0 1 2V E IR V  (2) 

nC  is assumed to be constant in this paper. SOC can be depicted by derivation 

 nz I C  (3) 

2.2. Online estimation of model parameters 

As terminal voltage varies slightly in a short period, 1R 2R 2C  and 0E  are assumed to be slowly 
varying parameters. The derivative of equation (2) can be rewritten by substituting equation (1) and (4) 
into itself 

 
0 1 1 2 2 2 0 2 2 0 2 2

T
1 1 2 2 2 2 2 0 2 2

T T
1 2 3 4 1 3

0

2 4

[( ) ] ( ) ( ) ( )

[   ( ) ( )   1 ( )   ( )][    1]

[    ][    ]

V R I R R I R C V R C E R C

R R R R C C E R C I I VR  (4) 

where 0 1 2 2 1 2 3 4( , , , ) [    ]E R R C  is a matrix consists of parameters under estimation. Define 
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error 
0 0 0̂Ve V V , then a 0V  observer is constructed 

 0

0

T
0

T
1 2 3 4 0

ˆˆ

ˆ ˆ ˆ ˆ[    ][    1]

V

V

V e

I I V e
 (5) 

If ˆe , equation (6) and (7) are needed for the convergence of the estimated parameters 

 lim 0
t

e  (6) 

 
0

lim 0V
t

e  (7) 

Definite Lyapunov function as follow 

 
0

2 T1 1

2 2VV e e e  (8) 

Where  is a positive definite matrix. Thus 
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In order to satisfy the law of Lyapunov’s stability criterion, V  shoule be negative definite. Thus, a 
model for estimation of parameters is constructed  
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 1 1̂R̂  (11) 

 2 2 3 1
ˆ ˆ ˆR̂  (12) 

 0 4 3
ˆ ˆÊ  (13) 

 2 1 2 0 0 0 1 2
ˆ ˆ ˆ ˆ ˆ ˆ[( ) ] / [( ) ]C R R I V E V IR R  (14) 

As battery internal parameters vary slowly in a short period, a moving average filter is built to reduce 
noise of estimated parameters for the next step of operation. 

2.3. Adaptive sliding mode SOC observer 

The continuous state space equation of the battery model is established according to the equation 
(1), (2) ,(4) 

 
0 0 2 2 0 2 2 1 2 2 2 1

0 0 2 1 n 2

2 2 2 2 2 3

( ) ( ) [ ( )] ( )

( ) ( )

( )

V V R C E R C I R R R C

z V E V R C

V V R C I C

 (15) 

And it can be updated dynamically by parameters estimated online 
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0 0 2 2 0 2 2 1 2 2 2 1
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State variables of the battery model are observable, because the observation matrix is positive 
definite. A state observer can be constructed as follow 
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Where 
0Ve  can be easily got through a voltage sensor, however 

0Ve  and 
2Ve could not be got directly. 

According to the law of Lyapunov’s stability criterion, when formula (19) is satisfied, the relationship 
between Ze  and 

0Ve  , 
2Ve  and 

0Ve  can be constructed 
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Then an adaptive sliding mode SOC observer could be described as follow 
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3. Experimental verification 

NCR18650 lithium-ion battery is adopted in the experiment. It has a rated voltage of 3.7V and a cut off 
voltage of 2.8V. Urban dynamometer driving schedule (UDDS) current profile shown in Figure 3 is used 
to verify the accuracy of the algorithm for online parameter identification and SOC estimation of the 
power battery. 

 
Fig. 3. UDDS current profile 
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Initialization parameters and feedback coefficients 1(0)
ˆ 1 2(0)

ˆ 0.01 3(0)
ˆ 0.2 4(0)

ˆ 1 0.1  
1 0.02 2 0.005 3 0.005 4 0.05 . 
Comparison between estimated curves of parameters and actual curves filtered by sliding average filter 

are shown in Figure 4. The reference curve is calculated and interpolated offline through hybrid pulse 
power characterization (HPPC) test. 

In Figure 4, the estimated curves of parameters quickly converge to the reference curves with small 
fluctuations. Then they are used to dynamically update the SOC estimation model. The estimated terminal 
voltage based on parameter adaptive battery model proposed before and the actual one are compared in 
Figure 5. The curves fit well, which indicates that the adaptive battery model updated online could truly 
reflect the characteristics of the battery. 
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(a) Ohm resistance estimation curve 
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(b) Polarization resistance estimation curve 
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(c) Polarization capacitance estimation curve 

Fig. 4. Online parameter estimation curves 
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Fig. 5. Terminal voltage under UDDS current 

Initialize state variable 0 0.8z 2 0V 0 4V , initialize coefficients 1 0.05 2 0.001 3 0.005 . 
In order to verify the estimation accuracy of the SOC under unknown initial situation, the initial error of 
estimated SOC is set to be 20%. 

The comparison of the estimated SOC curve and the actual curve are shown in Figure 6. 
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 (b) SOC estimation error curve 

Fig. 6. The results of the proposed method 

It shows that the estimated SOC curve rises rapidly and converges to the actual SOC curve in 400 
seconds. The rapid convergence and small overshoot reflect a great robustness of the algorithm. After 400 
seconds the estimated SOC tends to be stable with few minor fluctuations. The error of SOC estimation is 
less than 2% as shown in Figure 6 (b). 

Different initial SOC error has a considerable effect on the convergence time. Under normal 
conditions, the initial SOC error of a battery is led from self-discharge, which is generally much lower 
than 20%. So the convergence time should be less than 400 seconds. 

To apply the algorithm in implementation, a hardware platform including current censors voltage 
sensors and a digital signal processor is needed. As the variation of the parameters is small in a short 
period, the model could be updated periodically using a multi-time dimension method to reduce the 
computation of DSP. At the beginning of the estimation period, the estimated parameters are not stable, 
so the historical parameters are used to replace them. 

4. Conclusion 

In this paper, a complete adaptive battery model is established based on battery parameters identified 
online to take the variation of battery internal characteristics under variable environment into 
consideration. Based on it, the sliding mode SOC observer is constructed to eliminate the error of the 
battery model and reduce the noise of measurement. The battery environmental platform is built and 
Lithium-ion battery is adopted to verify the effectiveness of the proposed method in estimating battery 
internal parameters and SOC under the UDDS driving cycles. The experiment results indicates that the 
online estimated parameters all converged to the true value in 400 seconds and the SOC estimation error 
is less than 2% . 
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