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a b s t r a c t

Growth and yield formation in rice (Oryza sativa L.) depend on integrated impacts of genotype, envi-
ronment and management. A rice growth simulation model can provide a systematic and quantitative
tool for predicting growth, development and productivity of rice under changing environmental condi-
tions. Existing rice models perform well but are somewhat difficult to use because of the large number
of parameters that users must estimate. Experience in modelling wheat suggested that using physio-
logical development time (PDT) as a scaler for phenology and a partitioning index for organ growth
could result in fewer parameters while providing good predictability and applicability. RiceGrow was
developed using PDT and a partitioning index to quantify relations among rice growth and environ-
mental factors, genotypic parameters and management practices. RiceGrow includes seven sub-models
for simulating phenology, morphology and organ formation, photosynthesis and biomass production,
dry matter partitioning, yield and quality formation, water relations and nutrient balance. The model
was calibrated with three datasets involving various cultivars, sowing dates and N rates at multiple

sites. Validation with independent datasets showed the model had good predictability and applica-
bility. The RiceGrow model was compared with the ORYZA2000 model, showing that both provided
satisfactory estimates for phenology, shoot biomass and yield. Overall, RiceGrow can be used to pre-
dict rice growth and development with varied genotypes, environmental conditions and management
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. Introduction

Rice (Oryza sativa L.) is the most important grain crop in China,
ts planting area accounting for 30% of all grain crops, and its
ield for 40% of the grain yields. More than half of world’s pop-
lation relies on rice as its primary food staple. China and other
ice producing countries face problems of feeding an increas-
ng population, global warming and a reduction in rice planting
rea. Accurate prediction of rice growth and productivity under
arying environmental conditions will be helpful in develop-
ng appropriate agricultural policies and ensuring adequate food

roduction.

Crop simulation models can dynamically describe the bio-
hysical and physiological processes of growth, development and
ield, and provide a quantitative tool for predicting the produc-
ivity level of a crop in relation to genotype, environment and

∗ Corresponding author. Tel.: +86 25 8439 6565; fax: +86 25 8439 6672.
E-mail address: caow@njau.edu.cn (W. Cao).

573-5214/$ – see front matter © 2010 Published by Elsevier B.V. on behalf of Royal Neth
oi:10.1016/j.njas.2009.12.003
luding scientific understanding, policy formulation and optimizing crop

vier B.V. on behalf of Royal Netherlands Society for Agricultural Sciences.

management [1–3]. Several growth simulation models have been
developed for rice, including SIMRIW [4], CERES-Rice [5,6] and
ORYZA [7,8], each performing well. These models use develop-
ment stage (DS) or a development index to predict phenology,
and use partitioning coefficients to estimate organ biomass. Some
coefficients have different values at different stages, which compli-
cates their application. Cao et al. [9,10] developed a wheat growth
model using physiological development time (PDT) as a scaler
for phenology and a partitioning index for organ growth, result-
ing in fewer parameters while providing good predictability and
applicability.

The primary objectives of this study were (1) to develop an
eco-physiological process-based simulation model of rice growth,
development, and yield (RiceGrow) by quantifying and integrating
the fundamental relations of developmental and growth processes
with environmental factors, genotypic parameters and manage-
ment practices by using physiological development time and a

partitioning index, and (2) to compare results from the Rice-
Grow model with results from the ORYZA2000 model using the
same datasets to determine if RiceGrow, with fewer input param-
eters, would provide similar or improved results compared with
ORYZA2000 [8].

erlands Society for Agricultural Sciences.

www.elsevier.com/locate/njas
mailto:caow@njau.edu.cn
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Fig. 1. Structural frame

. Materials and methods

.1. Description of RiceGrow1

.1.1. General
RiceGrow was developed by analysing and integrating the rela-

ionships between rice growth and development and environment
hrough the use of published studies [1–3] and field data. The model
imulates phenology, morphology and organ formation, photosyn-
hesis and biomass accumulation, biomass partitioning, yield and
uality formation of various genotypes in response to environmen-
al factors and management practices. The structure of RiceGrow is
utlined in Fig. 1.

.1.2. Phenology
Phenology was simulated by using physiological development

ime (PDT) to quantify the effects of temperature and photoperiod.
DT is defined as the development time accumulated under an opti-
um environment and has been used previously for wheat [9,10].

DT for rice is a state variable that has values of 0 at emergence,
at the beginning of the photoperiod-sensitive phase, 13 at pan-

cle initiation, 18 at the end of the photoperiod-sensitive phase,
2 at heading and 57 at maturity. The interaction of daily thermal
ffectiveness (DTE), relative photoperiod effectiveness (RPE) and
n intrinsic earliness (IE) and basic filling factors (BFF) determine
he daily physiological effectiveness. These daily values of effec-
iveness were summed to obtain PDT. The Beta [11] and quadratic
unctions were used to describe daily thermal effectiveness (DTE,

qs. (1) and (2)) and daily photoperiod effectiveness (DPE, Eqs. (3)
nd (4)), respectively. Five specific genetic parameters were used to
djust the genotypic differences in rice development so that all cul-
ivars would reach the same physiological development time at a

1 For equations and variables see Appendices A and B.
of the model RiceGrow.

given development stage (Eqs. (5) and (6)). These parameters were:
temperature sensitivity (TS), photoperiod sensitivity (PS), optimum
temperature (To), intrinsic earliness (IE), and basic filling factor
(BFF). Thermal time from sowing to emergence was determined by
adding the increased thermal requirement for seeding depth (7 ◦C
per cm) to the soil surface thermal time (47 ◦C), using 10 ◦C as the
base temperature) (Eq. (7)).

2.1.3. Leaf area development
The LAI submodel has two phases: (1) an exponential growth

phase and (2) a non-exponential growth phase. The exponential
growth phase occurs during early growth (when LAI < 1.6). During
this phase, it is assumed that leaf growth is driven by temperature
without water or nutrient limitations [7,12], and leaf area increases
exponentially with thermal time (◦C d, base 10 ◦C) (Eq. (8)). Poten-
tial relative growth rate (Rp) was regulated by a nitrogen nutrition
index (NNI) [12,13] (Eq. (9)) and a water deficit factor (WDF), which
was calculated from actual and potential canopy transpiration. In
the non-exponential growth phase (when LAI > 1.6), the increase in
LAI was calculated as a product of the increment in leaf dry weight
and specific leaf area (SLA) of the green leaves (Eq. (10)). SLA was
calculated using a quadratic function based on thermal time until
it exceeded 1200 ◦C d, after which SLA was set to a constant value
(Eq. (11)).

2.1.4. Photosynthesis and biomass accumulation
Gaussian integration was introduced to calculate daily canopy

photosynthesis, by integrating the instantaneous photosynthetic
rate over the day and leaf area index. The three-point method
and the five-point method were used to calculate the photosyn-

thesis rate, allowing a depth- or time-dependent photosynthetic
response curve to be introduced [8,14]. The reflection coefficient
of the canopy changed with the sine of the solar angle, and the
relationship between the extinction coefficient for PAR and PDT
was quantified (Eq. (12)). The actual CO2 assimilation rate was



Journa

i
p
m
g
b
b
a
(
g
(
m
a
c
a
fi
f
f

2

d
o
f
a
T
t
r
a
s
c
N
t
o
o
1
I
y

2

G
d
[
c
m
T
s
r
b
s
fi
p
s
a
s
l
n

2

t
o
a
[
l
w

dry weights were determined by oven-drying at 80 ◦C to constant
L. Tang et al. / NJAS - Wageningen

nfluenced by CO2 concentration, physiological age, average tem-
erature, N nutrition and water stress (Eqs. (13)–(16)) based on
aximum CO2 assimilation rate (Am), which was regarded as a

enetic parameter. The CO2 concentration factor was quantified
y Eq. (14) [15], and the physiological age factor was determined
y PDT according to Hasegawa et al. [16,17] (Eq. (15)). The aver-
ge temperature factor was calculated from cardinal temperatures
Eq. (16)). Daily total dry matter was calculated from daily total
ross assimilation of canopy (DTGA) and respiration consumption
Eq. (20)). Respiration was expressed as a daily loss of total dry

atter. Maintenance respiration and growth respiration were both
ccounted for in the present model: maintenance respiration was
alculated from the maintenance coefficient and biomass (Eqs. (17)
nd (18)) according to Penning de Vries [15]. The maintenance coef-
cient, which declines with physiological age, was expressed as a

unction of PDT (Eq. (18)), and growth respiration was determined
rom daily total gross canopy assimilation (DTGA) (Eq. (19)).

.1.5. Partitioning and yield formation
A partitioning index was introduced to simulate time-course

ynamics of dry matter distribution among organs during devel-
pment. The shoot and root partitioning indices were defined as a
raction of dry weight in plant biomass, and for green leaves, stems
nd ears as the proportion of their dry weights in shoot mass [10].
he partitioning index changed with PDT (Eqs. (21)–(25)), whereas
he potential partitioning index for panicle dry weight (PPIP) was
egarded as a genetic parameter. Since water deficit affects biomass
llocation [15,18], a water deficit factor (WDF) was used to adjust
hoot and root dry matter partitioning, with daily biomass allo-
ated to green leaves being adjusted by both the WDF and the
NI. Biomass allocated to spikes was determined by high and low

emperature-based functions [4] (Eqs. (26a)–(26c)). The proportion
f weight in panicles was between 82% and 92%, with an average
f 87%. The average moisture content of paddy rice grains is about
4%, which was used as default value to calculate final rice yields.

f the actual grain moisture content is not 14%, the simulated grain
ield should be adjusted.

.1.6. Soil–plant water and nitrogen relations
The soil–plant water and nitrogen balance sub-models in Rice-

row were based on work by Ye [19], who described water
ynamics based on a water and nitrogen balance model in wheat
20,21]. The water balance sub-model for semi-arid and flooded
onditions was developed according to the soil water budget
ethod following the CERES-Wheat [22] and MACROS models [15].

he processes of water interception by crops, irrigation, rainfall,
urface drainage/runoff, field evaporation and transpiration, and
oot water uptake were included. The drought stress factor was
ased on the critical soil water content, which is the point of limited
oil water availability. The waterlogging stress factor was quanti-
ed by integrating soil water content, waterlogging duration and
lant sensitivity at the different growth stages. In the nitrogen
ub-model, critical plant-nitrogen content, nitrogen uptake and
llocation were quantified to describe the relationships between
oil-N supply, plant uptake, dry matter production and N accumu-
ation in the grains. The partitioning indices were used to simulate
utrient distribution among organs in relation to PDT.

.1.7. Grain quality formation
Rice grain quality, including the formation of starch and pro-

ein, which are the primary components of the rice grain, depends

n the processes of carbon and nitrogen assimilation pre-anthesis
nd translocation post-anthesis, as detailed by Zhu et al. [23] and Li
24]. The relationships between grain starch and protein accumu-
ation and environmental factors (temperature, nitrogen, water)

ere analysed using data from field experiments with different
l of Life Sciences 57 (2009) 83–92 85

cultivars and nitrogen rates. Based on these results, algorithms for
starch and protein accumulation in the rice grain were developed
on the basis of non-structural carbohydrate formation, nitrogen
uptake, and carbon and nitrogen flow dynamics in the plant that
were driven by physiological development time (PDT). In addi-
tion, based on the patterns of the differential starch and protein
partitioning among panicle branches, spatial distribution models
for starch and protein accumulation in grains of the primary and
secondary branches on the panicle were established.

2.2. ORYZA2000

The ORYZA2000 model is a product of the modelling by the
‘School of De Wit’ [1,25]. It is one of the most famous growth mod-
els for rice, simulating growth and development of lowland rice in
situations of potential production, water limitations, and nitrogen
limitations [8]. ORYZA2000 also follows a daily calculation scheme
for the rate of dry matter production of the plant organs and for
the rate of phenology development. By integrating these rates over
time, dry matter production and development stage are simulated
throughout the growing season.

The photosynthesis and dry matter production modules in
ORYZA2000 are well documented [14,26], and these modules in
RiceGrow are similar. In grain crops, carbohydrate production
(source size) during grain-filling can be higher or lower than the
storage capacity of the grains (sink size). Spikelet sterility due to
either too high or too low temperatures is adjusted by the method
described by Horie [27,28]. Leaf area growth includes a source- and
sink-limited phase. In the early growth phases, leaf area increases
exponentially as a function of temperature sum times a relative
leaf growth rate. When the LAI is larger than 1, the increase in leaf
area is calculated from the increase in leaf weight times specific
leaf area. Carbohydrates produced are partitioned among roots,
leaves, stems, and panicles using experimentally derived partition-
ing factors as a function of development stage, which is tracked as
a function of daily average temperature and photoperiod.

2.3. Experiments

Five experiments were conducted.

2.3.1. Experiment 1
This experiment was conducted at the Nanjing Agricultural Uni-

versity Experiment Station in Nanjing (32◦02′N, 118◦50′E) in 2000
and 2001. Two Japonica rice cultivars were evaluated: Koshihikari
and RR109, with two sowing dates in 2000 (13 and 20 May) and six
sowing dates in 2001 (29 April, 10 and 18 May, 3 June, 15 July, and 1
August). The experiment was of a split-plot design with three repli-
cations. Plot size was 10 m2, with row and hill spacings of 23.1 and
13.2 cm, respectively, two plants per hill. Fertilizer application rates
for N, P2O5 and K2O were 270, 150 and 150 kg ha−1, respectively.

Measurements in 2001 were taken primarily from the following
sowing dates (SD): 29 April (SD1), 3 June (SD2) and 15 July (SD3).
During the experimental period, sample plants were randomly
selected every 4 d at the panicle differentiation stage and every
7 d at other stages. Depending on which organs were present, each
sample was separated into four fractions: roots, sheaths and stems,
leaves and panicles. Green leaf blade area was measured with a CI-
203 area meter (CID, Vancouver, WA, USA). Aboveground organ
weight. Total N contents of roots, sheaths and stems, leaves and
panicles were determined using the semi-micro Kjeldahl method.
Weather data (minimum and maximum air temperature, precipita-
tion, sunshine hours) were obtained from a meteorological station
within 1 km of the experimental fields.
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.3.2. Experiment 2
This experiment was conducted at the Jiangsu Academy of

gricultural Sciences Experiment Station in Nanjing (32◦02′N,
18◦50′E) in 2001. Four nitrogen rates were tested (0, 135, 270
nd 405 kg N ha−1) on cultivar 9325. The experiment was of a ran-
omized complete block design with three replications and a plot
ize of 12 m2. Sowing and transplanting date were 8 May and 12
une, respectively. Row and hill spacing were 25.0 and 13.2 cm, with
wo plants per hill. The application rate for both P2O5 and K2O was
50 kg ha−1. Other management followed local standard practices.
easured variables were as in Experiment 1.

.3.3. Experiment 3
This experiment was conducted in 2001 at three sites: Chiang

ai, Thailand (18◦45′N, 98◦58′E), Kyoto, Japan (35◦03′N, 139◦44′E)
nd Nanjing, China (32◦02′ N, 118◦50′ E), with three Indica type
ultivars: Takanari (TAK), IR72 and Ch86, and two Japonica types:
ipponbare (NIP) and Takenari (TEN). The sowing and transplant-

ng dates were 13 July and 7 August at Chiang Mai, 12 May and
3 June at Nanjing, and 2 and 25 May at Kyoto. Application rates
or N, P2O5 and K2O were all 120 kg ha−1. The experiment was of
randomized complete block design with three replications and a
lot size of 15 m2. Row and hill spacing were 30 and 15 cm, respec-
ively, with one plant per hill. Other management followed local
tandard practices. Plants were sampled at the key development
tages. Measured variables were as in Experiment 1.

.3.4. Experiment 4
This experiment was a ‘virtual experiment’ in which data were

sed from previously published rice experiments [29]. The exper-
ment included 13 sowing dates and six sites (including Yanxian,
uangzhou, Changsha, Nanjing, Tianjin, Gongzhuling and Tianjin,

ocated from 43◦31′N to 18◦20′N). The development stages at which
ata had been collected included emergence, panicle initiation,
eading and maturity. In addition, 13 different daylength treat-
ents (20-min steps in the range from 11.5 to 14.5 h and daylengths

5, 18 and 24 h) had been imposed in Guangzhou, with heading
ata recorded for each treatment. Six cultivars were evaluated:
uoguang, Nantehao, Bolizhan, Huangkezaonianri, Laolaiqing and
ingguzhong. Daily weather data were obtained from the National
eteorological Center (NMC) in Beijing.

.3.5. Experiment 5
This experiment was conducted in Jiangning district, Nanjing,

hina (32◦02′N, 118◦50′E) in 2007 and 2008. Rice cultivar Wuxi-

ngjing 14 was evaluated. The experiment was of a random design
ith three replications. In 2007, the sowing and transplanting dates
ere 18 May and 18 June, respectively. Plot size was 27 m2, with

ow and hill spacings of 4.5 and 6 cm, respectively. Two nitrogen
ates were tested: 0 and 360 kg N ha−1. In 2008, the sowing and

able 1
enetic parametersa for predicting development stages of different rice cultivar types (Ex

Cultivars Type PS × 10−2 TS T

Guoguang Early-maturity Japonica 0 5.0 2
Nantehao Early-maturity Indica 0 2.7 2
Koshihikari Middle-maturity Japonica 2.1 4.0 2
Bolizhan Middle-maturity Indica 0.61 2.0 3
Huangkezaonianri Middle-maturity Japonica 4.18 2.3 3
Laolaiqing Late-maturity Japonica 5.82 3.0 3
RR109 Late-maturity Japonica 6.12 4.2 2
Qingguzhong Late-maturity Indica 16.85 5.3 3

Average

a For abbreviations see Appendix B.
l of Life Sciences 57 (2009) 83–92

transplanting dates were 24 May and 25 June, respectively. Plot
size was 29.25 m2, with row and hill spacings of 4.5 and 6.5 cm,
respectively. Other management followed local standard practices.
Measured variables were the same as in Experiment 1.

The data from Experiments 1, 2 and 4 were used for model devel-
opment and parameterization, and those from Experiments 3 and
4 were used for model validation. In Experiment 4, the 13 different
daylength treatments and five sowing dates were used for calibra-
tion, and the other eight sowing dates were used for validation. The
data from Experiment 5 in 2007 were used to calibrate, and the data
from Experiment 5 in 2008 were used to validate the two models.

3. Results and discussion

3.1. Model calibration

The RiceGrow sub-models were parameterized by using lit-
erature values or regressions based on experimented data. The
phenology development, LAI growth and dry matter partitioning
sub-models were calibrated separately by using observed data
to avoid the accumulated error from data transmission between
sub-models. The soil water and nutrient sub-models had been con-
structed and tested previously [19–21].

3.1.1. Phenology modelling
Five specific genetic parameters: temperature sensitivity (TS),

photoperiod sensitivity (PS), optimum temperature (To), intrinsic
earliness (IE), and basic filling factor (BFF) were used for predicting
development stages of different rice cultivars (Table 1). Photope-
riod sensitivity (PS) was most closely related to cultivar maturity
and had values from 0 for early-maturing Japonica rice to 16.85
for late-maturing Indica rice, reflecting large genotypic differences.
The values of TS and To for different cultivars ranged from 2.0 to 5.3
and from 28 to 30, respectively, which showed that the sensitivity
temperature for rice cultivars varied little. No correlation was found
between IE and BFF for the cultivars tested in this study, in which
values ranged from 0.21 to 1.0 and from 0.58 to 0.96, respectively.

3.1.2. Specific leaf area simulation
Specific leaf area (SLA) decreased rapidly with growing degree

days (GDD) during the early growth period (GDD less than
1200 ◦C d), and then remained stable at about 0.002 ha kg−1 (Fig. 2).
The cultivars Koshihikari and RR109 showed the same pattern for

the three sowing dates. Thus, sowing date and cultivar had little
impact on model calibration. Nitrogen application rate had a slight
effect on SLA, with the high-N rate depressing SLA when GDD was
greater than 1200 ◦C d (Fig. 3). Thus, the NNI was used to modify
SLA values under varied N levels.

periments 1 and 4).

o (◦C) IE BFF RMSE (d)

Emergence Heading Maturity

8 1.00 0.75 1.39 3.83 2.48
8 0.32 0.84 1.44 5.36 4.50
8 0.60 0.67 1.13 3.34 2.98
0 0.21 0.96 1.57 4.37 1.84
1 0.53 0.71 1.65 3.21 3.91
1 0.62 0.63 1.85 5.78 3.56
8 0.63 0.58 1.09 3.28 3.51
0 0.73 0.72 1.67 6.64 4.25

4.58 3.37
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dataset of SD2 of experiment 1, which represented a conventional
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ig. 2. Specific leaf area (SLA) in relation to growing degree days after sowing for
he rice cultivars RR109 and Koshihikari.

.1.3. Dry matter accumulation and partitioning
The values for maximum CO2 assimilation rate (Am) showed

ittle change, about 46 kg CH2O ha−1 h−1, compared with reported

alues of 42–50 kg CH2O ha−1 h−1 [1,7,17]. This may reflect a nar-
ow range of this characteristic for the cultivars used in our
xperiments.

Fig. 4. Panicle partitioning index (PPI) in relation to physiological development time

ig. 5. Partitioning indices for green leaf dry weight (PIGL), panicle dry weight (PIP) and
ultivar 9325 at two N levels.
Fig. 3. Specific leaf area (SLA) in relation to growing degree days (GGD) after sowing
for the rice cultivar 9325 at two N levels.

Dry matter partitioning into leaves, stems and panicles was
affected by genotype, sowing date and nitrogen level (Figs. 4 and 5).
The partitioning indices for organs were quantified using the
sowing date and N application rate. The potential partitioning index
for panicles (PPIP) of different cultivars showed a large variation;
PPIP for the cultivar RR109 was 0.58, whereas for the cultivar Koshi-

(PDT) for rice cultivars Koshihikari and RR109 sown on 3 different dates (SD).

stem dry weight (PIS) in relation to physiological development time for the rice



88 L. Tang et al. / NJAS - Wageningen Journal of Life Sciences 57 (2009) 83–92

Fig. 6. Simulated versus observed days from sowing to emergence (A), emergence to heading (B) and heading to maturity (C) for various rice cultivars.
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Table 2
Genetic parameters for rice cultivar Wuxiangjing 14 derived from RiceGrow.

Genetic parametera Value for Wuxiangjing 14 Units

PS 0.0506
TS 3.82
To 30.2 ◦C
IE 0.34
PDF 0.61
Am 46 kg CH2O ha−1 h−1

3.2.1. Growth stage

T
G

T
C

ig. 7. Simulated versus observed LAI values at key development stages for various
ice cultivars.

ikari the value was only 0.49. Seed setting rate was reported by
orie et al. to be decreased when daily maximum temperatures

xceeded 32 ◦C at heading and anthesis stages [4]. Fig. 4 shows
he relationship of PPI with PDT for the cultivars Koshihikari and
R109 for different sowing dates. The PPI for the cultivar Yoshi-
ikari with the SD1 treatment decreased about 15% compared with

able 3
enetic parameters for rice cultivar Wuxiangjing 14 derived from ORYZA2000.

Development stage (DVS) Specific leaf area (SLA) Pa

Phasea DVRb (◦C d−1) PPSEc (h−1) DVS SLA (ha kg−1) DV

DVRJ 0.000773 0.15 0.00 0.0040 0.
DVRI 0.000749 0.16 0.0038 0.
DVRP 0.000785 0.33 0.0028 0.
DVRR 0.001281 0.65 0.0023 1.

2.10 0.0020 1.

a DVRJ = juvenile phase; DVRI = photoperiod-sensitive phase; DVRP = panicle formation
b DVR = development rate.
c PPSE = photoperiod sensitivity.

able 4
alibration results for RiceGrow and ORYZA2000.

Parameter Predicted by RiceGrow

Panicle initiation (DAS)a 82
Flowering (DAS) 101
Maturity (DAS) 159
Grain yield (kg ha−1) 9629
Biomass at harvest (kg ha−1) 20,165

a DAS = days after sowing.
PPIP 0.54
Rp 0.0067 ◦C d−1

a For abbreviations see Appendix B.

SD2, which could have been caused by high temperatures at head-
ing. Cultivar RR109 escaped high-temperature injury because it is
an early-maturing late Japonica type and heading occurred during
lower temperatures. The PPI in SD3 was reduced due to low tem-
peratures delaying the heading stage, especially for cultivar RR109.
Both PIGL and PIS were reduced when N level was increased for
cultivar 9325 in Experiment 2 (Fig. 5).

3.2. Model validation
The experimental data involved a wide range of photoperiod and
temperature values, including daily mean temperatures from 19 to
30 ◦C, daylengths from 11 to 15.5 h, and observed days from 35 to
116. There was generally good agreement between the predicted

rtitioning Maximum grain weight (kg grain−1)

S Leaf Stem Panicle

00 0.60 0.40 0.00 0.0000245
50 0.60 0.40 0.00
75 0.30 0.70 0.00
00 0.00 0.40 0.60
20 0.00 0.00 1.00

phase; DVRR = grain-filling phase.

Predicted by ORYZA2000 Observed

80 79
103 102
157 155

12,007 11,304
20,082 18,232
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Fig. 8. Simulated versus observed dry weights of panicle and gree

nd observed days (Fig. 6), with the RMSE values ranging from 1.0

o 1.9 d for emergence, from 3.2 to 6.6 d for heading and from 1.8
o 4.5 d for maturity (Table 1), respectively, and with r2 values for
mergence, heading, and maturity of all cultivars of 0.86, 0.89 and
.92, respectively.

ig. 9. Simulated versus observed yields for five rice crops grown at Kyoto, Japan
nd Nanjing, China.
es of various rice crops grown at Kyoto, Japan and Nanjing, China.

3.2.2. Leaf area index
Simulated LAI values were compared with field observations

involving several sites, sowing dates and cultivars. The LAI of the
various cultivars at the main development stages were well pre-
dicted, with a highly significant fit (r2 = 0.97), low RMSE (0.47) and
low mean absolute error (0.28) (Fig. 7). However, there was a slight
over-estimation for low LAI, because SLA decreased rapidly with
increasing GDD at an early stage. This relationship needs to be
further evaluated in future investigations.

3.2.3. Biomass partitioning and yield
The simulated biomass partitioning for leaves and panicles, and

the yields were compared with observed data from Experiment 3
(Figs. 8 and 9). The r2 between simulated and measured values for
leaves, panicle and grain yield based on the 1:1 line were 0.89, 0.85
and 0.77, respectively, and the RMSE between those was 278, 569
and 832 kg ha−1in Kyoto, and 467, 612 and 856 kg ha−1 in Nanjing.
These values indicate that the model performed well.

3.3. Comparison of RiceGrow and ORYZA2000

3.3.1. Model calibration

The measured data from Experiment 5 in 2007 were used to cal-

ibrate RiceGrow. The genetic parameters of RiceGrow are listed in
Table 2. The high-N treatment (360 N kg ha−1) in Experiment 5 in
2007, which was regarded as optimal, was used for estimating the
genetic parameters of cultivar Wuxiangjing 14 for ORYZA2000. The
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Table 5
Validation results for RiceGrow and ORYZA2000.

Parameter Predicted by RiceGrow Predicted by ORYZA2000 Observed

Panicle initiation (DAS)a 74 76 72
Flowering (DAS) 102 101 100
Maturity (DAS) 155 154 151

0 N treatment (N0)
Shoot biomass after harvest (kg ha−1) 11,037 10,495 9744
RMSE for shoot biomass (kg ha−1) 718.1 873.3
Yield (kg ha−1) 624 5709 6028

390 kg N ha−1 treatment (N390)
Shoot biomass after harvest (kg ha−1) 17,320 19,093 17,081
RMSE for shoot biomass (kg ha−1) 1393.2 1079.1
Yield (kg ha−1) 9615 10,947 9053.1

a DAS = days after sowing.
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Fig. 10. Simulated versus observed shoot biom

ain parameters for ORYZA2000 are listed in Table 3; the param-
ters that are not listed were used as default parameters for the
ultivar IR72 as given by ORYZA2000 [8]. The calibrated results for
he two models are listed in Table 4. ORYZA2000 and RiceGrow
oth simulated phenology, shoot biomass at harvest and yield sat-

sfactorily.

.3.2. Model validation
The two N treatments in Experiment 5 in 2008 were used to val-

date the two models, the high-N treatment (390 N kg ha−1; N390)
as regarded as non-N-limited conditions to simulate ORYZA2000

nd RiceGrow. Table 5 lists the validated results of phenology, shoot
iomass after harvest, and yield of the two models. Both mod-
ls simulated the phenology satisfactorily, with an RMSE value
f 2.94 d for ORYZA2000 and 2.83 d for RiceGrow. Shoot biomass
as simulated satisfactorily too (Fig. 10), with an RMSE value

or predicted shoot biomass under N0 treatment of 718.1 kg ha−1

or RiceGrow and 873.3 kg ha−1 for ORYZA2000, and under N390
reatment 1393.2 kg ha−1 for RiceGrow and 1079.1 kg ha−1 for
RYZA2000. These results indicate that the performance of Rice-
row in predicting shoot biomass under the non-N-application
ondition was better than that of ORYZA2000, whereas the per-
ormance of ORYZA2000 was better under the optimal N condition.
he yield under N0 treatment was simulated well by the two mod-
ls, but the yields simulated by the two models under the N390
reatment were both overestimated (Table 5).
. Conclusions

An eco-physiological process-based simulation model for rice
rowth (RiceGrow) was developed by quantifying the fundamen-
t two N levels, for RiceGrow and ORYZA2000.

tal growth processes and their response to environmental factors,
genotypic parameters and management practices. The model used
physiological development time and partitioning index methodol-
ogy similarly to that previously reported for a wheat growth model
[9,10].

The model is composed of seven sub-models, including phenol-
ogy, photosynthesis and biomass production, biomass partitioning,
yield and quality formation, water and nitrogen relationships.
Eight parameters relating to rice yield were used: temperature
sensitivity, photoperiod sensitivity, optimum temperature, intrin-
sic earliness, basic filling factor, maximum CO2 assimilation rate,
potential partitioning index for panicle and potential relative
growth rate for leaf area index. The model was calibrated and val-
idated using five datasets that involved various cultivars, sowing
dates and experimental sites, and showed good predictability and
applicability.

The model ORYZA2000 was compared with RiceGrow. In Rice-
Grow, the waterlogging stress factor is quantified by integrating soil
water content, waterlogging duration and plant sensitivity at the
different development stages, whereas ORYZA2000 only can sim-
ulate the water-limited growth. Also the grain quality formation
processes were simulated in RiceGrow, but are not simulated in
ORYZA2000. The outputs of RiceGrow and ORYZA2000 were com-
pared using a dataset involving 2 years and two N rates. The results
showed that the two models simulated phenology, shoot biomass
and yield satisfactorily, with RiceGrow providing results similar to

ORYZA2000.

However, further studies are needed to ensure accurate model
predictions with diverse cultivars and under diverse production
environments. It would be valuable to quantify the stress of high
and low temperature in phenology and to simulate the influence
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f varied CO2 levels on photosynthesis, which currently is only
xplained in simple terms in RiceGrow. RiceGrow and ORYZA2000
ere simply compared with two different conditions and should

e further compared in comprehensive conditions in the future.
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Appendix A.

RiceGrow submodel equations for phenology, leaf area index,
photosynthesis and dry matter accumulation and partitioning
(variables are described in Appendix B).

T(I) − Tb

To − Tb

)(
Tc − T(I)
Tc − To

)Tc−To/To−Tb
]TS

(1)

4

1

RTE(I) (2)

P ≤ Po

PS × (P − Po)2 Po < P ≤ Pc
(3)

1
PS

)
1
2

(4)

Ei × IE 0 ≤ PDT ≤ 8
Ei × RPEi 8 ≤ PDT ≤ 18
Ei 18 ≤ PDT ≤ 32
Ei × BFF 32 ≤ PDT ≤ 57

(5)

1 + DPEi (6)

× SDEPTH (7)

exp(RP × GDD) LAI ≤ 1.6 (8)

(NNI, WDF) (9)

WL (10)

.0002GDD2 − 0.5604GDD + 581.04 GDD ≤ 1200
0 GDD > 1200

(11)

PDT + 0.2222 (12)

× FCO2 × FPA × FT × MIN(NNI, WDF) (13)

ln

(
Cx

340

)
(14)

PDT < 28
[−a(PDT − 28)] 28 ≤ PDT ≤ 57

(15)[
−(T − To)2

(T − Tb)(Tc − T)

]
Tb < T < Tc

T < Tb; T > Tc

(16)

) × ABIOMASS × Q (T−To)/10
10 (17)

091 − 0.0001 × PDT (18)

GA (19)

− RM − RG

1 − b
(20)

× 10−5 × PDT2 + 0.01 × PDT + 0.63 (21)

ISH (22)

4 − 0.0046 × PDT PDT < 26
532 × exp(−0.0492 × PDT) PDT ≥ 26

(23)

× 1
1 + exp[−0.2804 × (PDT − 39)]

PDT ≥ 24

PDT < 24
(24)

L − PIP (25)

1
32 ≤ PDT ≤ 39 (26a)
xp[−0.853 × (Tm − 36.6)]

4.6 + 0.054 × Q 1.56
t

100

)
26 ≤ PDT ≤ 39 (26b)

− T4) T4 ≤ 22 (26c)
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ppendix B.

Description of variables used in RiceGrow.
Symbol Unit Description

ABIOMASS kg ha−1 d−1 Daily actual biomass
Am kg CO2 ha−1 h−1 Maximum CO2 assimilation rate
AMAX kg CO2 ha−1 h−1 Actual CO2 assimilation rate
AWL kg ha−1 Actual dry weight of green leaves
AWP kg ha−1 Actual dry weight of panicle
BFF Basic filling factor
Cx ppm Actual CO2 concentration
DPE Daily physiological effectiveness
DTE Daily thermal effectiveness
DTGA kg CH2O ha−1 d−1 Daily total gross assimilation
EM ◦C d Thermal time from sowing to emergence
FCO2 CO2 factor
FPA Physiological age factor
FT Temperature factor
GDD ◦C d Growing degree days
HTF High-temperature factor
K Radiation extinction coefficient
IE Intrinsic earliness
LAI m2 m−2 Leaf area index
LAIo m2 m−2 Initial leaf area index value
LAIP m2 m−2 Potential leaf area index value
LTF Low temperature factor
NNI Nitrogen nutrition index
P h Daylength
Pc h Critical daylength for heading
PDT Physiological development time
PIGL Partitioning index for green leaves dry

weight
PIP Partitioning index for panicle dry weight
PIRO Partitioning index for underground

biomass
PIS Partitioning index for stem dry weight
PISH Partitioning index for aboveground

biomass
Po h Optimum daylength
PPIP Potential partitioning index for panicle
PS Photoperiod sensitivity
Qt ◦C d−1 Respiration temperature coefficient
R ◦C d−1 Actual relative growth rate for leaf area

index
RG kg CH2O ha−1 d−1 Growth respiration consumption
Rg Growth respiration coefficient
RM (To) kg CH2O ha−1 d−1 Maintenance coefficient
Rp Potential relative growth rate for leaf area

index
RPE Relative photoperiod effect
RTE Relative thermal effectiveness
SDEPTH cm Sowing depth
SLA 10−4 m2 g−1 Specific leaf area
SLAp 10−4 m2 g−1 Potential specific leaf area
T ◦C Daily mean temperature
T4 ◦C Daily mean temperature from end of

photoperiod Sensitivity to fourth day after
anthesis

Tb ◦C Minimum temperature for rice growth
Tc ◦C Maximum temperature for rice growth
T(I) ◦C Hourly temperature
To

◦C Optimum growth temperature for rice
growth

TS Temperature sensitivity
WDF Water deficit factors
ˇ Coefficient of CO2 factor function
A Coefficient of CO2 factor function
B Content of non-carbon substances
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