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Abstract 

Bracho, F. and M. Droste, Labelled domains and automata with concurrency, Theoretical Com- 

puter Science I35 (1994) 289-3 18. 

We investigate an operational model of concurrent systems, called automata with concurrency 
relations. These are labelled transition systems y4 in which the event set is endowed with a collection 

of binary concurrency relations which indicate when two events, in a particular state of the 

automaton, commute. This model generalizes asynchronous transition systems, and as in trace 
theory we obtain, through a permutation equivalence for computation sequences of d, an induced 

domain (D(d), <), Here, we construct a categorical equivalence between a large category of 
(“cancellative”) automata with concurrency relations and the associated domains, We show that 

each cancellative automaton can be reduced to a minimal cancellative automaton generating, up to 

isomorphism, the same domain. Furthermore, when fixing the event set, this minimal automaton is 

unique. 

1. Introduction 

In the study of programming languages like CCS [18] and CSP 1121, labelled 

transition systems have been frequently used to give an operational semantics of 

concurrent processes. A labelled transition system may be defined to be a quadruple 

(S, E, T, *) where S is a set of states, E is a set of events, Tc S x E x S is the transition 
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relation, and *ES is the start state. Recently, several authors have considered labelled 

transition systems with an additional binary relation 11 on E incorporating direct 

information about concurrency. Then two transitions t =(s, L’. I’), r’=(s, e’, r’) are de- 

fined to “commute” whenever P 11 c’. Such asynchronous transition systems, which 

generalize Mazurkiewicz traces [ 171, were investigated by Bednarczyk [2] and 

Shields [20]. Similar structures have been used to provide a semantics for CCS [4] 

and to model properties of computations in term rewriting systems, in the lambda 

calculus [ 1,3,13,16] and in dataflow networks [22,24]. For further background. we 

refer the reader to 1261. 

In the previous model, a single binary relation on E was used to represent 

the concurrency information for all pairs of transitions. Here, we investigate a 

more general model in which the concurrency information for two transitions depends 

not only on the two arriving events. but also on the present state of the transition 

system. Hence, we consider transition systems (automata) .E/ = (S. E, T, * ) together 

with a collection of binary concurrency relations lIs (sES) on E which reflect 

when two events or actions commute in a particular state SES. Such uutomatcr ~jith 

c’oncurrenc~~ rrlutions were introduced in [9, IO], where their domains of computation 

sequences were investigated, also, independently and in a slightly different form. in 

1141, where applications are given. They arise naturally, for instance, when 

considering the dynamic behaviour of place/transition nets with capacities in Petri net 

theory; see [l 11. 

Similarly as for asynchronous transition systems and as in trace theory. the 

concurrency relations of the automata .d induce a natural definition of permutation 

equivalence for (finite or infinite) computation sequences of .d; intuitively. two 

computation sequences are equivalent, if they represent “interleaved views” of a single 

computation (for the origins of this notion of equivalence, see [3,13, 161). Moreover, 

the set D(,rl) of equivalence classes of computation sequences carries a nontrival 

partial order which is naturally induced by the prefix-ordering of computation 

sequences. In [9,10]. an order-theoretic characterization was given of all the partial 

orders (D(&), <) where .n/ is an automaton with concurrency relations. These ~~rrk 

concurrency domuins turned out to be closely related with event domains and dl- 

domains which arose in studies of denotational semantics of programming languages 

(cf. [7. 251). 

In this paper, we investigate categories of automata with concurrency relations and 

of weak concurrency domains. Let us say that an automaton with concurrency 

relations .d yencrates a domain (D. < ), if (D, d ) is order-isomorphic to the domain 

(D( .&), < ). In general, a given domain (D, < ) may be generated by many (nonisomor- 

phic) automata ~2. This indicates that we should endow the domains (D(d). <) with 

more structure. In fact, as we will show, A! induces on the compact elements and on 

the prime intervals of its domain (D( xi), < ) two labelling functions in a natural way. 

These take values in the state set S and the event set E of .ol. respectively. This leads to 

a functor D from the category Am of all automata with concurrency relations into the 

category LDorn of all labelled weak concurrency domains. We show that this functor 



Labelled domains and automata wirh concurrency 291 

induces, in fact, an equivalence between the large subcategory of Aut comprising all 

cancellative automata and the category of all nicely labelled weak concurrency 

domains. For precise definitions, see Section 2; we just note here that for cancellative 

automata d various natural notions of concurrency of events in JZZ coincide. 

An important tool for this result is the notion of a reduction of LZZ to d’; 

this is defined to be an epimorphism from d to d’ reflecting the enabling and 

concurrency of events at states. We show that such a reduction of d to d’ 

does not change (up to isomorphism) the induced domain D(d) of computation 

sequences. As a consequence of our results we obtain a characterization of when 

a given weak concurrency domain (D, <) can be generated by a finite cancellative 

automaton d. We also obtain a characterization of all domains (D, <) arising, in 

a similar way, from trace alphabets (E, 11); such a characterization seemed to be open 

in trace theory. 

Next we consider, for a given weak concurrency domain (D, <), the class of 

all cancellative automata LZZ generating (D, <). We show that this class contains, 

with respect to reductions, a greatest automaton d,,,; i.e. d,,,,, can be reduced to 

any other cancellative automaton generating (D, G), and ,al,,, is unique up to 

isomorphism. 

Similarly as in classical formal language theory, each cancellative automaton 

54 generating (D, <) can be reduced to a “minimal” such automaton ~,i”; here 

“minimal” means that any further reduction of drnin is an isomorphism. However, 

here in general drnin is not unique up to isomorphism. Somewhat surprisingly, 

however, if we consider only automata with (in a certain sense) a fixed event set, then 

this class of automata contains, with respect to state reductions, also a uniquely 

determined minimal automaton. 

2. Automata and labelled domains 

In this section, we will introduce automata with concurrency relations and their 

induced domains of concurrent computation sequences. These domains can be 

endowed, in a natural way, with two labelling functions, for events and states, respec- 

tively. Their properties will be shown to correspond to different versions of concur- 

rency for events of the underlying automaton. 

Definition 2.1. An automaton with concurrency relations is a quintuple 

& = (S, E, T, *, 11) where 

(1) S and E are countable disjoint sets; *ES is a distinguished element; 

(2) T is a subset of S x E x S such that whenever (s, e, s’), (s, e, S”)E T, then s’ = s”; we 

require that for each eeE there are S,S’ES with (s,e,s’)~F, 

(3) II = (/Is)sss is a family of irreflexive, symmetric binary relations on E; it is 

required that whenever el IIs e2 (er , e2 E E), there exist transitions (s, el, sl), (s, e2, sz), 

(s 2,eI,r) and (sI,e2,r) in T. 
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The elements of S are called states, the elements of E events and the elements of T 

transitions. Intuitively, a transition t =(s, e, s’) represents a potential computation step 

in which event e happens in state s of & and d changes from state s to s’. We write 

ev(t)=e, the event of t. The element * is the start state. The concurrency relations IIS 

describe the concurrency information for pairs of events at state s. The last require- 

ment can be seen as in Fig. 1. 

In an automaton with concurrency relations ~6’ the events that concur at a state 

s do not have to bear upon those that concur in another state. In this general model, 

the concurrency relations )lS (sES) are thus viewed as being independent of each other. 

Later on we will impose additional restrictions on &. A$nite computation sequence in 

,oY is either empty (denoted by E), or a finite sequence u = tl . t, of transitions tiE T of 

the form ti=(siP1,ei,si) for i= 1, . . . ,n; it can be depicted as 

We call .sO the domain of u, denoted dam(u), and s, the codomain, denoted cod(u). 

Likewise, an infinite sequence (ti)itmr of transitions ti=(siPlr e,, si) (ieN) is called an 

ir$inite computation sequence of XJ’; its domain is se. A computation sequence is called 

initial if its domain is *, the start state. We let CS(&)(CS’(&), CS,(&), CSz(A)) 

denote the sets, respectively, of all (all finite, all initial, all finite initial) computation 

sequences of ~2. The composition uv of a finite computation sequence u and an 

arbitrary computation sequence v with dom(v)=cod(u) is defined in the natural way 

by concatenating u and v. Formally, we put UE=EU=U. We call u a prejix of M? if u is 

finite and IV = UC’ for some computation sequence U. 

Now we want the concurrency relations of ~2 to induce an equivalence relation on 

CS(SZ), so that equivalent computation sequences are not differentiated by the order 

in which the concurrent events appear. For this we proceed as follows: we call two 

finite computation sequences t = tl . t, and u= ur . . u, strongly equivalent if we 

obtain t from u by replacing for some 1~ i<n, an occurrence uiui+ 1 of the form 

(.s,a,q)(q,h,r)bytiti+l of the form (s, h, p)( p, a, r) with a /IS h in &‘. We then let - be the 

reflexive and transitive closure of strong equivalence on CS’(,d). 
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It easily follows from the above that - is an equivalence relation and that any two 

equivalent sequences have the same length, domain and codomain. Also for any UEE, 

the number of occurrences of a is the same in any two equivalent sequences. 

The prefix relation together with - induces a preorder on CSO(&) by letting u < v 

iff v-uw for some wcCS’(&). This gives rise to a preorder in CS(&) where for 

U, v~cS(d) we put u d v if for every prefix u’ of u there exists a prefix v’ of v such that 

U’ d v’. Then put u-v iff u < v and v < u, and let [u] denote the equivalence class with 

respect to -. We order these classes by [u] d [v] iff u < v. Then let D(d)= {[u]: 

UECS,(&‘)) and call (D(d), < ) the domain of concurrent computation sequences 

associated with a2. Given a partial order (D, <), we say that & generates (D, <) if 

(D, < ) is isomorphic to (D(d), < ). It is proved in [lo] that this is indeed a domain 

where the compact or finite elements are given by D’(&)={[u]: UECS~(G!)}. We 

will later show that this construction induces a functor between the categories of 

automata and certain kinds of domains and functions. Let us now turn to the domains 

that are induced by the automata we have defined. 

We introduce some notation. Let (D, <) be a domain, i.e. an w-algebraic complete 

partial order (c.p.0.). We denote the set of compact (=isoluted, jinite) elements of 

(D, <) by Do. We say that (D, <) isjfinitury, if for all XED’, the set {dcD”: d<x} is 

finite. For x, YED with x < y we write XX y if there is no ZED with x < z <y. We denote 

by [x, y] such a pair, and we call it a prime interval of D. 

Let IntD denote the collection of all prime intervals of D. Also, for prime intervals 

[x, y], [x’, y’] of D we put [x, y] < [x’, y’] if x’ # y, x_( x’ and y< y’. This can be seen 

in Fig. 2. 

We let x denote the smallest equivalence relation on Int, containing <. For 

C.~,yl~lnt~, let Cx,yl, denote the equivalence class of [x, y] with respect to t<. 

Let &=(S, E, T, *, 11) be an automaton with concurrency relations. It is immediate 

from the definition of (D(d), <) that for x,y~D’(&) we have that x-ty iff x=[u] 

and y=[ut] for some UECS~(&) and tET. Since the number of occurrences of any 

fixed event e in two equivalent finite computation sequences is the same and all UEX 

have the same codomain, it follows that if x=[u’]=[u] and y=[u’t’] =[ut] then 

t = t’. So each prime interval [x, y] in D(d) determines a unique transition t. We will 

write x2 y when for some u~CSi(d), teT we have x=[u], y=[ut], and ev(t)=e. 
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Fig. 3. 

Since, conversely, t is uniquely determined by dam(t) and Ed, we also obtain that 

.& y and .ui y’ implying y = ~1’. 

Suppose now that [.u,y]< [x’,y’] in (D(d), <). Let s=[u], _)l=[~rr] and 

x’=[ut2] with tr, tzET. Since y<y’ and x’xy’, we have ~~‘=[ut~t;]=[ut~t;] with 

t;, t; E T. Let ei=eu(ti), ri=ru(ti) (i = 1, 2). Then we obtain the following diagram 

(Fig. 3). 

Since the number of occurrences of er (respectively ez) in lit, r’, is the same as in 

ut, t; and er # e2 by y #Y’, we obtain e’, =e2 and e; =e,. Hence, .x% y and 

[x, y]< [x’, y’] imply s/i ~1’. We summarize these observations in the following 

lemma which will be used subsequently very often without mentioning it explicitly again. 

Lemma 2.2. Let .&‘=(S, E, T, *, 11) he an automaton with concurrences relations. Let 

x,J’, z, x’, y’~Ll~(&) and P, e’E E. 

(a) !fx< y and .x3 z, then y=z iffe=e’. 

(b) [x,y] >( [x’,y’] and .u< _y imply ~‘2 y’. 

Let (D, < ) again be a finitary domain, and let s, yg D with x < y. A sequence (.Yi)l=o 

in Do of the form x=.x~~.Y~~ ... < s, =)I will be called a cowring chain from x to y. 

Such a covering chain will be said to be strongly equivalent to any other covering chain 

fromxtoyoftheforms=xO~ ...<s~<z<.Y~+~-< . ..~s.=~‘with;#s~+,,for 

some 0 < i<n-2. We define equivalence on the set of all covering chains in D as the 

reflexive and transitive closure of strong equivalence. 

Definition 2.3 ([Droste [lo]). A finitary domain (D, <) is called a weak concurrency 

domain, if it satisfies the following two conditions for any x,y,z~D’: 

(R) If x+ y, x-< z and [.K, y] t< [x, z], then y=z. 

(E) Any two covering chains from I to x are equivalent. 

Let .d be an automaton with concurrency relations. Lemma 2.2 shows that 

(D(sZ), < ) satisfies axiom (R). Besides, any finite initial computation sequence r1 . t, 
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with eu(ti)=ei gives rise to a covering chain I=xO<x,~ ...2x, in D(d) 

fromItox,,wherexi=[tl...ti](i=O )...) n). It is easy to see that this correspondence 

preserves strong equivalence, thus also equivalence; hence (D(d), <) satisfies axiom 

(E). So, (D(d), < ) is a weak concurrency domain. Conversely, each weak concurrency 

domain (D, <) is generated by some automaton d with concurrency relations [lo]. 

Here, in general d is not determined uniquely by (D, <). However, as will be seen, the 

class of all automata JZ? generating a fixed weak concurrency domain (D, <) can be 

well structured. Any domain (D(d), <) carries a natural labelling of its prime 

intervals [x,y], as indicated by Lemma 2.2. This motivates the following definition. 

Definition 2.4. Let (D, < ) be a finitary domain and E a set. A mapping jE : ZntD + E will 

be called an event-/abelling function if it is onto and satisfies the following two 

conditions for any x, y, x’, y’, ZE Do : 

(1) Cx,yl x Cx’,y’l implies MCX,YI)=MCX’,~‘I). 
(2) IE([x,y])=lE([x,z]) implies y=z. 

Then (D, <, IE) will be called an event-labelled domain. In this case, for x, YEDO, we 

will write x-? y to denote that XX y and lE( [x, y])=e. 

Note that any event-labelled domain satisfies axiom (R). It is useful to see how 

event-labelling functions correspond to particular congruences of (D, < ) (this corres- 

pondence will be exploited in Section 4). Let (D, <, IE) be an event-labelled domain. 

Defining [x, yl = E Lx’, ~‘18 lE (Lx, yl) = Id Cx’, ~‘1)~ we obtain an equivalence relation 

--E on Znt, satisfying 

t( c =E and if [x,y] E~[x,z] then y=z. (*) 

Any equivalence relation E on Into satisfying (*) will be called an event-congruence 

on (D, <). We say that =E is the event-congruence corresponding to the event- 

labelling function 1,. Conversely, given an event-congruence = on (D, < ), let E com- 

prise all = -equivalence classes of Znt,, and let lE: Int, + E map each prime interval 

onto its E -equivalence class. Then 1, is an event-labelling function whose correspond- 

ing event-congruence coincides with =. In particular, if here = is equal to >(, the 

corresponding event-labelling function lE (with lE( [x, y]) = [x, y] ,) will be called the 

canonical event-labelling function. If (D, d ) = (D (&), < ) for some automaton &’ with 

concurrency relations, we can also define a function lE: Into(d)+ E by putting 

lE([x, y])=e if x=[u], y=[ut] for some utcCSi(&) with tETand eu(t)=e. If each 

transition of d occurs in some initial computation sequence, then 1, is onto, and by 

Lemma 2.2, lE is an event-labelling function on (D(-ol), <). We call lE the induced 

event-labelling function, and (D(d), < lE) the induced event-labelled domain of d. 

Given an automaton & = (S, E, T, *, /I ) with concurrency relations, the correspond- 

ence [u]~cod(u) (u~CSz(s&‘)) defines a function from Do(&) into S, which we also 

denote, simply, by cod. Similarly as before for events, its properties motivate the 

following definition. 
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Fig. 4 

Definition 2.5. Let (D, <, IE) be an event-labelled domain and S a set. A mapping 

Is : Do + S will be called a state-lahelling,function if it is onto and satisfies the following 

condition: 

(I) Whenever x,J~,.Y’ED~ with x-fit y and Is(x)= ls(x’), then there is Y’ED’ with 

.Y’< ~3’ and I,s(y’)=/s(y). 

Then (D, <. lE. Is) will be called a labelled domain. Moreover, it will be said to be 

r~ice/~l luhlled (and Is is a nice state-labelling function) if the following condition is 

satisfied 

(2) Whenever .~,~i, z, .u’,yj,zf~D~ with ~2 yie~’ z and ~‘2 yj “%‘zi for i= 1,2, 

.t‘r # y2 and /,(.u)= Is(x’), then -I - 7’ ‘1 -AZ. 

Diagramatically this is illustrated in Fig. 4. 

Clearly. for any event-labelled domain (D, 6, lE), the identity mapping idDo on Do is 

a nice state-labelling of (D, <, lE), called the trivial state-labelling function. 

Let Is be an arbitrary state-labelling function of (D, <, lE), and let -r be the 

event-congruence on (D, <) corresponding to 1,. Then the equivalence relation cs on 

Do. defined by: .Y S~JJ iff Is(s)=Is(y), satisfies the following condition: 

(cl) Whenever x,y,s’~D~ with xx y and x E~x’, then there is JJ’ED’ with 

[s, ~11 E E [s’, y’] and y = sy’. 

Moreover, Is is a nice state-labelling iff (cl) and (~2) hold: 

(~2) Whenever s, yi, 2, x’, yi, Z;E Do with XX yi< Z, x'< yi<zi, [x,vi] -E[x',Y~], 

[J,~,z] =Jy;zi] for i= 1, 2, y, #yz and .Y~~x’, then z;=&. 

Any equivalence relation = on Do satisfying (cl) (resp. (cl) and (~2)) will be called 

a stute-congruence (resp., nice state-congruence) for (D, <, lE). We say that --s is the 

state-congruence corresponding to the state-labelling function Is. Conversely, given 

a state-congruence = for (D, <, lE), we obtain a state-labelling function 1, by mapping 

each element of Do onto its =-equivalence class; trivially, the state-congruence 

corresponding to Is coincides with =. 

Now let .PI be an automaton with concurrency relations in which each state is 

reachable, and let IE be the induced event-labelling of (D(d), G). Then 

cod: D’(s/)+S, as defined before, is a state-labelling of (D(d), <,lE). For, if 

.x,J~,.Y’ED~(.c/) with x < y and cod(.y)=cod(.x’), then for some u,u’~CS~(.d) and tcT, 
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we have x=[u], y=[ut], eu(t)=e, x’=[u’] and cod(u)=cod(u’); so y’=[u’t]~D~(&), 

x’~y’andcod(y’)=cod(y).WeputD(~)=(D(~),~,1,,cod),andwecallD(~)the 

induced labelled domain of &. In general, D(d) is not nicely labelled. This is 

closely related with two versions of concurrency of events in states, which we now 

introduce. 

Definition 2.6. Let (D, <, lE, Is) be a labelled domain, and let e,, e,EE with e, # e2, 

and SES. 

(a) We say that e, and e, are observably concurrent at s, if whenever XGD’ with 

ls(x)=s, then there exist yI,yz,zeDo with x2 yi’~‘z for i=l, 2. 

(b) We say that e, and e2 are weakly observably concurrent at s, if there exist X, 

y,,y,,z~~D’ with ls(x)=s and X> yie~‘z for i= 1,2. 

For motivation, assume that (D, 6, lE, l,)=D(d) for some automaton JZZ. Let 

ti = (s, ei, ri) and tf =(ri, e3 _ i, r) E T for i = 1, 2. Then eI and e2 are observably concur- 

rent at s, if for any finite initial computation sequence u of JZZ with codomain s, we have 

that utI t; and utzt$ are equivalent. Also, eI and ez are weakly observably concurrent 

at s, if for some UECS~(JX?) with codomain s, ut, r; and utZt; are equivalent. Trivially, 

if two events eI, ez are observably concurrent at a reachable state s, then they are 

weakly observably concurrent. For the converse we note the following proposition. 

Proposition 2.7. Let 9=(D, 6, lE, ls) be a labelled domain. Then the following are 

equivalent: 

(1) 9 is nicely labelled. 

(2) Whenever eI,e2EE are weakly observably concurrent at SC& then they are 

observably concurrent at s. 

Proof. (l)=>(2): Let X/ED’ with ls(x’)=s. There are x,y,,yz,z~Do with Is(x)=s and 

x2< y,%‘z for i=l, 2. Hence, for i=l,2, there exists yj~D’ with x’> yi and 

ls(y:)=ls(yJ and then ZieD” with yie%‘zi. AS 9 is nicely labelled, we have z1 =z2. SO 

el, e2 are observably concurrent at s. 

(2)*(l): Let x, yi, z, x’, y;, z~ED’ as in condition (2) of Definition 2.5. We claim that 

z; = z; . Clearly, e, , e2 are weakly observably concurrent at s = is(x), hence observably 

concurrent. So there are y:, z*ED’ with x’2yFe$‘z* for i=l,2. Then yf=yf 

(i= 1,2) and so z’, =z*=z; as claimed. 0 

Let & be an automaton with concurrency relation. Clearly, if eI llse2, then in D(d), 

e, and e2 are observably concurrent at s. Hence, in general we have the following 

implications for any two events at a given reachable state: 

concurrency * observable concurrency + weak observable concurrency. 
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Fig. 5 

We will obtain our main results for automata in which these three notions of 

concurrency coincide. 

Definition 2.8. Let &’ be an automaton with concurrency relations in which each state 

is reachable. 

(a) ~4 has observable concurrenc~y, if in its induced labelled domain D(d), any two 

events are observably concurrent at a state iff they are weakly observably concurrent. 

(b) JZZ is cancellatiue, if whenever e,, ebb E are weakly observably concurrent in 

D(d) at SES, then e, llsez. 

(c) ([9]) d is concurrent, if whenever (4, u, p), (4, h, r), (q, c, .S)E T are such that a /I,, h, 

a llqc and h Ilpc, then also b l14c, a llIc and u 1l.b. 

Observe that by Proposition 2.7, JZI has observable concurrency iff its induced 

labelled domain II(&) is nicely labelled. Note that ,d is cancellative iff for any finite 

initial computation sequences utI t2, ut; t; with ti, tie T (i = 1,2), utl t2 - ut; t; implies 

tI tz - t; t;, which explains the name. The requirement for concurrent automata can 

be illustrated by Fig. 5. The black lines indicate the transitions which exist by the 

assumption that a Ilqb, a /14c, h llpc. The dotted lines indicate the transitions which are 

forced to exist by the requirements: h l14c, a 11,~ and a Il,b. 

Concurrent automata were studied in detail in [lo]. They correspond in a precise 

sense to automata with residual operations which were investigated by Stark [21], 

Panangaden and Stark [19] and Bachmann and Dung [l]. They occur naturally in 

A-calculus, networks of communicating processes, reductions in nondeterministic 

term rewriting; see [16,21, 1, 131. 

Obviously, if AZZ is cancellative, then it has observable concurrency. The following is 

less obvious. 
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Proposition 2.9. Let d be a concurrent automaton. Then & is cancellative. 

Proof. By [lo, (3.3)], sz2 can be transformed into an “automaton with residual 

operation”. By [23], these automata are cancellative. 0 

It will be shown below that any weak concurrency domain can be generated by 

a cancellative automaton. Hence, with respect to the class of generated domains, the 

assumption that the underlying automata are cancellative is no essential restriction. 

However, concurrent automata generate more specific domains, as shown in [9, lo]. 

A domain (D, <) is a Scott-domain, if each nonempty subset of D which has an upper 

bound in D has a supremum in D. A finitary Scott-domain (D, <) is called a concur- 

rency domain, if it satisfies condition (R) (see Definition 2.3) and (C) for any x, y, ZGDO: 

(C) Whenever .x< 4: XX z, y # z and { y, z} has an upper bound in D, then 

y~yuz and z-tyuz. 

Any such domain also satisfies condition (E) of Definition 2.3 and as shown in [lo], 

concurrent automata generate precisely the concurrency domains. 

3. Categories of automata and labelled domains 

We will introduce morphisms between automata and between labelled domains 

and then construct a functorial equivalence between the categories of cancellative 

automata and of nicely labelled domains. First let us define morphisms between 

automata. 

Definition 3.1. Let c-TA=(S, E, T, *, 11) and &‘=(S’, E’, T’, *‘, 11’) be two automata with 

concurrency relations, and let ,f: S + S’, g : E -+ E’ be functions. The pair (J g) is called 

a morphism from &’ to JzZ’, if the following conditions are satisfied: 

(1) whenever (s, e, r)ET, then (,f(s), g(e),f(r))ET’; 

(2) whenever e llse’ and g(e) Z g(e’), then g(e) ll;(sJg(e’); 
(3) f‘(*)=*‘. 

Thus, a morphism preserves states, events, transitions, the start state and maps 

concurrent or equal events of & to concurrent or equal events of d’. A slightly 

restricted version of these morphisms (obtained by deleting the assumption that 

g(e) # g(e’) in condition (2)) and the interplay between the induced category of 

automata with concurrency relations and a category of Petri nets were studied, 

e.g., in [l 11. 

Clearly morphisms compose and (ids, idE) is the identity morphism. We let Aut 

denote the category of all automata with concurrency relations in which each state is 

reachable, and morphisms as above as arrows, and we let CAut denote its full 

subcategory comprising all cancellative automata. 

Next we define the morphisms between labelled domains. 
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Definition 3.2. (a) Let (D, 6, IE), (D’, <, IE,) be two event-labelled domains. A pair 

(cp, g) of functions cp : D+D’, g : E -+ E’ will be called an ecrnt-morphism from (D, d, IE) 

to (D’, <, I,,), if it satisfies the following conditions: 

(1) cp:(D,<)+(D’, <) is continuous, cp(D’)zD” and cp(l)=l’; 

(2) whenever x,y~D’ with _x>y, then ~(.x)~)(p(~), i.e. IE,([q(.x), cp(~j)])= 

$7,: [,(l& J-1). 
(b) Let 9=(D, 6, lE, Is), 9’=(D’, <, l,,,lsz) be two labelled domains, 

(cp, g): (D, 6, l,)-+(D’, <, lEc) an event-morphism and ,f: S-+S’ a function such that 

Is, ‘: cp IL)” =,fn I,. Then the triple (cp,f; g) will be called a morphism from 9 to 93’. If here 

cp is an order-isomorphism, we call (cp,,f; g) (and also (cp, g)) an order-morphism. If 

moreover, f and g (resp. g) are bijective, we call (cp,,f; y) (resp. (v, 9)) an isomorphism. 

We let LDom denote the category of all labelled weak concurrency domains, with 

morphisms (q,,f; g) as arrows. Also, let NLDom denote its full subcategory consisting 

of all nicely labelled weak concurrency domains. 

It is easy to see that (cp,J y) is a morphism from 9 to 93’ iff cp satisfies condition (I ) 

above and preserves the event-congruences and state-congruences corresponding to 

the labelling functions of 9 and 9’. First we observe that for any morphism (q,j; 9). 

cp and g determine each other uniquely, and each of them determinesj: 

Proposition 3.3. Let 9 =(D, <, I,, Is), 9%’ =( D’, < lE’, Is,) he t,vo lahelled domains, and 

let (cp,.f, g), (cp’,f’, g’) : 9 -+ 9’ he two morphisms. Then cp = cp’ @g = g’, and in this case 

alsof=,f’. 

Proof. Clearly, cp = cp’ implies g = g’ andf’=f’, as lE, Is are onto. Now assume 9 =g’; we 

claim that (p=(p’. It suffices to show that cp(x)=cp’(s) for each XED’. We proceed by 

induction on the height of x, where the height of s is the smallest length of a covering 

chain from I to x. Clearly cp(l)=l’. 

Now assume that cp(x)=cp’(x) for all XED’ with height <n and let ~ED’ have 

height n+ 1. Choose sgD” with height n and & ~3. Then ~(.u)~)(P(JJ), and 

cp(.x)=cp’(x)~cp’(y). Hence (p(y)=(p’(y). 0 

Now let d, &” be two automata with concurrency relations, let 

D(.d)=(D(&‘), <,lE, Is), D(&‘)=(D(&“), ~,lEz,lS,) be the induced labelled domains, 

and let (,fi y):.d+d’ be a morphism. We define a mapping q:D(d)-+D(,d’) 

as follows. If x= [u]ED(sZ) where u =(so 2 s1 2 ... ) is a finite or infinite initial 

computation sequence of &, let U’ = (,f (so) “2 ‘.f’(sI ) ‘2) . ). We say that u induces u’ 

through (f; g), and we put cp (x) = [u’]. S ince (,f; g) is a morphism, it follows easily that 

cp is well-defined (irrespective of the particular choice of u). We call (cp,,f; .y) the induced 

morphism from D(,d) to D(.&‘), and we put D(,f; g):=(cp,,f; g). We have to check the 

following. 
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Proposition 3.4. D: Aut-r LDom is a functor. Moreover, if dEAut has observable 

concurrency, then D(d) is nicely labelled. 

Proof. Let (1; g): &’ +JZ!’ be a morphism in Aut, and let (cp,f; g): D(&)+D(d’) be 

the induced morphism in LDom. We first check that (cp,f, g) is a morphism in LDom. It 

is easy to see that cp is well-defined. If u=(sO 2 s1 2 ...) is any infinite initial 

computation sequence of d and uf=(s(~~:~‘J(sl)g~)...), let 

u,=(sO r:sl+ ... 2;“) and ~~=(f(s,)“~‘f(s~)+ ... G’ f(s,,)) (n~o). Then 

Cul=UnsoCunl in D(d) and Cu’l=U,,,C41, that is ~P(C~I)=U~~~(P(CUJ), in 
D(&‘). From this, it follows by a general domain-theoretic argument that cp is 

continuous. 

Now ifx=[u], y=[u(s, e, s’)] for some u6CS~(d) and (s,e,s’)ET, and cp(x)=[u’], 

then q(y)= [u’(f(s), g(e),f(s’))], so cp(x)ycp(y). Also, cod(u’)=f(cod(u)). Hence 

(cp,f, g) is a morphism. Clearly D respects compositions and identities. The final 

statement is clear by Proposition 2.7. 0 

Next we introduce particular kinds of morphisms between automata which will be 

very useful in what follows. If d is an automaton, we say that an event eE E is enabled 

at a state SES, if there is a transition (s,e,r) in T. 

Definition 3.5. Let &=(S, E, T, *, II), sZ’=(S’, E’, T’, *‘, I/ ‘) be two automata with 

concurrency relations. A morphism (L g) : d + d’ is called a reduction of JZZ’ to &“, if 

the following conditions are satisfied: 

(1) f: S-S is onto; 

(2) whenever seS and e’EE’ is enabled in f(s), then there exists egE which is 

enabled in s with g(e)= e’; 

(3) whenever se:S and e; , e; E E’ with e; 11 ;(s) e;, then there are e,, eZE E with e, llse2 

and g(ei)=ei (i=l, 2); 

(4) g is locally injective, i.e. whenever el, ezEEareenabledinsESandel#ez,then 

g(el) f g(+). 

Condition (2) says that g maps En,(s) = { eE E : e is enabled in s} onto En,. (f(s)) for 

each SES, in particular T onto T’. 

We note that iff: S+S’ is onto, then condition (2) implies that g : E+E’ is onto. For, 

if e’E E’, choose a transition (s’, e’, r’)E T’ and SES withf(s) = s’, then e’ = g(e) for some 

eEE. Condition (3) says that g maps Ils onto 11 ;(s) (sgS), which combined with the 

assumption of local injectivity of g tells us that for any e, , e2 E E enabled in s we have 

that el llsez iff g(el) I/&,g(e,). Observe that g may be locally injective without being 

injective. Now we will show that if there is a reduction from _QZ to d’, then JZJ and &’ 

generate the same domain. More precisely, we have the following result. 
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Theorem 3.6. Let &, a?’ he two automata with concurrency relations in which all states 

ure reuchuhle, und let (,f; y): .d +.QZ’ he u reduction. Then the induced morphism 

(y,,f; .y): D(&)+D(xZ’) is un order-morphism. 

Proof. By Definition 3.2, it suffices to show that cp is an order isomorphism. Let X, 

JIGD’(&). Clearly, xdy implies cp(x)<cp(y). So assume now that cp(x)dcc,(y). We 

claim that x<y. We may assume that x=[u], y=[n] where U, r:~cSz(&) have the 

form 

with so=ro=* and m,n~w. Then cp(x)=[zr’], (P(J~)=[c’] with 

y(e1) Y(Q) s(m) 

24’ = ,f(so) -.f’(s1) -.f’(sz) -+ . . . -,f’(s,) 

and 

u’ = ,f(ro)- 
Y(G) ,f(r,) c!(G) 

-.f(r2)+ 
1, ( t’ : ) 

... -.f’(r,) 

We proceed in two steps. First assume q(x)= q(y); we show that x=y. For this, we 

may suppose that the computation sequences u’, P’ are strongly equivalent (and 

different) in CS (&‘). In particular, n = m. Then for some j < n - 2 we have 

(1) ,f’(si)=f‘(ri) and g(ci)=y(eT) for each i<j and each i>j+2, 

(2) .f‘(sj)- 
‘(“+l) ,f(~~+~)?E,,f(,s~+~) =f’(rj) ““+I’ 

-.f(rj+ I) 

q(o:+2) 
-.f'(rj+zh and 

thus 

(3) g(ej+l)=s(e~+2)fg(ej+z)=.4(ej*,l)andg(ej+,)ll~(,,,.4(ej*,,). 
Since 9 is locally injective, we obtain first ei=eT and si=ri for each 1 < i<j. Then we 

get that ej+ 1 and eT+ 1 are enabled in sj = rj, hence ej+ r iIs, ej*+ 1 because of (3), as noted 

before. This implies that ej*, 1 is enabled in sj+ 1, and thus ej*, 1 =ej+z by local 

injectivity of 9. Similarly ej+ r =er++2. So ej+ r IIs, ej+ 2. Thus, sj+ 2 = rj+ z, and again 

ei = ef, Si = ri also for each j + 2 <i < m. This proves that u is strongly equivalent to C, 

giving .Y = [u] = [E] = y as we needed to show. 

Now we deal with the general case that cp(.x)<~(y). There exists w’gCS*(&‘) with 

U’VV’-L“. Let M” have the form &=(.s~ks~+, +...%s~+,) with s~If’(.s,,); 

then s’ n+k=f(r,). Since (f; 9) is a reduction, inductively we obtain a computation 

sequence w = (s, * en+!. s,+1 + “‘----+.s,+~ ) with u(e,+i)=eA+i and f(s,+i)=sk+i 

for each 1~ i < k. Clearly, x = [u] < [uw] and cp ( [uw] ) = [u’w’] = [d] = q ( [u] ). Then 

[uw] = [u] = y as shown above, hence x < r. 

Similarly to the above, where we constructed the computation sequence )t’ for w’, we 

obtain that cp maps Do(&) onto D’(,a/‘). Hence, cp is an order-isomorphism from 

(O’(ZZZ’),<) onto (O’(&‘), <) and thus also from (D(d), <) onto (I)(.&‘), <). 0 
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A converse of Theorem 3.6 (under the additional assumption that d, &’ are 

cancellative) will be proved later, see Corollary 3.20. We continue to establish 

properties of automata preserved by reductions. 

Proposition 3.7. Let d, &’ he two automata with concurrency relations such that each 

state of .d is reachable, and let (J g): & +&’ he a reduction. Then 

(a) & is cancellative iff 2zI’ is cancellative. 

(b) d is concurrent ifs& is concurrent. 

Proof. We first show that each state of ~2’ is reachable. Let s’ES’. Then s’=f(s) for 

some scS. Choose UECSZ(&) with codomain s. Then the induced computation 

sequence u’ of ~2’ satisfies cod(u’)=s’. 

(a) Let d’ be cancellative, and let xtu, xvw be two equivalent finite initial 

computation sequences of & ending with transitions t,u, v, w, such that 

ev(t)=ev(w)=a, ev(u)=ev(v)=b and a #b. Applying the morphism (f; g) to these two 

computation sequences, we obtain two equivalent computation sequences x’t’u’, x’v’w’ 

of &’ with transitions t’, u’, v’, w’ such that cod(x’)=f(cod(x)), ev(t’)=ev(w’)=g(a) 

and ev(u’)=ev(v’)=g(b). Since g is locally injective, we have g(a) #g(b). As 

JZZ’ is cancellative, we get g(a) Il:odf(x,jg(b) and so a I/cod(XIh. Hence J&’ is 

cancellative. 

For the converse, we argue similarly. Given two equivalent computation sequences 

x’t’u’, x’v’w’ of d’ as above, we obtain computation sequences xtu, xvw of d which 

induce x’t’u’ and x’v’w’ respectively, through v; g). As shown in the proof of Theorem 

3.6, then xtu and xvw are equivalent. Since & is cancellative, we obtain a I/codCxI b and 

then .g(a) 11 :od,(x,jg(b), as required. 

(b) Let ~2’ be concurrent, and let (4, a, p), (q, b, r), (q, c, s) E T such that a 11 4 b, a II4 c, 

b 11,~. Letting g(a)=a’, g(b)=b’, etc.,f(s)= s’, we obtain transitions (q’, a’, p’), (q’, b’,r’), 

(q’, c’, s’) of &’ with a’ lib, b’, a’ I/b, c’, b’ /I b, c’. Hence, also b’ jl is c’, a’ II:, c’, a’ II:, b’. Since 

(1; g) is a reduction, this implies b Ilqc, a Il,c, a Ils b, as required. Hence J&’ is concurrent. 

The converse is proved similarly. 0 

Next we begin with the definition of the functor A: LDom+Aut. First we show 

how to construct an automaton with concurrency relations from a given labelled 

domain. 

Definition 3.8. Let 9=(D, d, l,, 1,) be a labelled weak concurrency domain. We 

define an associated automaton with concurrency relations A (9) = (S, E, T, *, I/ ) as 

follows: 

(1) T={(s,e,s’)ES x E x S’: there are x,y~D’ with x2 y, ls(x)=s and l,(y)=s’}; 

(2) * = ls( J- ); 

(3) II =( II Aes where for all SES and eI, e,EE, we put et llse2 iff er and e2 are weakly 

observably concurrent in 9 at s. 
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Lemma 3.9. In the above situation, A (9) is an automaton with concurrency relations in 

which each state is reachable. 

Proof. Assume that (s, e,s’), (s, e, s”)ET. We claim that s’=s”. Choose x,x’, y,y+~D’ 

with x2 y, x’$= y’, Is(x)=Is(x’)=s,~&)=s’, and Is(y’)=s”. There is y”eD’ with 

~‘2 y” and ls (y”) = s’. Then y’ = y”, so s’=s”. Clearly, for each eEE there are x,y~D’ 

with .x2 y; then (Is(~),e,l~(y))~T. Now let e, lI,ez. Then s=ls(x) for some XED’ and 

there are yi,z~Do with x2yi’311,z (i= 1,2). Hence, we obtain transitions 

(s,ei, l,(yi)), (ls(yi),ej_i,Is(z)) for i= 1,2 in A(9) as required. 

Next let SES. There is XED’ with Is(x)=s. Choose any covering chain 

i=.xo~x,< . ..<~.,=.~in D from I to X. Let ti=(ls(xi~,),l,([xi~,,xi]), Is(xi)) 

for i= 1, . . , n. Then t, . . . t, is a finite initial computation sequence of A(9) with 

codomain s. 0 

Let 9, 9’ be two labelled weak concurrency domains and (cp,J g): 9 + 9’ a mor- 

phism. We then put A (cp,.f; g) = (.f; g), and we have to show that this is a morphism 

from A(9) to A(9’). This is done in the subsequent proposition. 

Proposition 3.10. The correspondence A : LDom --f Auf is a,functor. Moreover, A maps 

order-morphisms between nicely labelled domains to reductions. 

Proof. Let 9=(D, 6, IL;, Is), 9’=(D’, 6, 1ES, lsS) be two labelled weak concurrency 

domains and (cp,J; g):9+9 be a domain-morphism. We claim that then 

(,I; g): A(9)+A(9’) is a morphism in Auf. First let (s,e,s’)ET. There are x,y~D’ with 

x;y, ls(.u)=s and /,(y)=s’. Then cp(_u)% q(y) in 9’, I,,(cp(~))=~(s), and 

ls,((~(~))=f’(s’). Hence (f’(s), g(e),.f(s’))E T’. 
Now assume that er ljse2 in A(9) and g(eI)#g(e2). There are x,yi,ZED’ with 

ls(x)=s and ~2 yi’~‘Z for i=l,2. Then in 9’ we have l,.(cp(.x))=f‘(s) and 

~(X)g~‘(P(yi)g’~“Cp(Z) for i= 1,2. This shows that g(e,)l/;(,,g(e,) in A(9’) as 

needed. Obviously, A preserves compositions and identities. 

Suppose now that 9 and 9’ are nicely labelled and that cp is an order-isomorphism. 

We show that then (.f; g) is a reduction. To show that .f’is onto, let s’ES’. Choose 

.x’ED’~ with ls,(x’)=s’. Then .x=cp~‘(x’)~D~ satisfies .f( Is(x)) = Is, (q(x)) = s’. Next let 

SES and (,f(s), e’, r’)ET’. Choose XED’ with Is(x)=s. Then .f’(s)=lsS(q(x)), and by 

Definition 2.5(l) there is y’gD” with q(x)< y’ and l,,(y’)=r’. Choose J~ED’ with 

q(y)=!“. Then x~y. Putting e=IE([X,yl]) and r=l,(y), we get (s,e,r)~T and 

g(e)=e’. This proves condition (3.5)(2). 

To check (3.5)(3), let SGS and e;, e’,EE’with e; il;(s,e; in A(W). Choose .xED’ with 

ls(x)=s. Since l,~(cp(x))=J‘(.s) and 9’ IS nicely labelled, there are y’I,y;,z’~D’o with 
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9(.x)2 y;%z’for i= 1,2. Let yi=Cp-‘(y;)(i=l, 2)and z=cpP1(z’). Then XX yi< z, 

and ei=lE([x,yi]) satisfies g(e,)=e; (i=l,2) so e, fez. Hence we have e1 llse2 in 

A (9). 
Finally, let SGS and (s,ei,si)~Tfor i= 1,2. There are x,y1,y2~Do with Is(x)=s and 

XT yi, Is(yi)=sifor i= 1,2. SO c~(x)%‘~((Y~) for i= 1,2. NOW e, #e, implies yr #y,, 

thus g(ei) # g(ez). Hence g is locally injective. 0 

It will be useful to consider first A(9) where the labelled domain 9 has a parti- 

cularly simple form. 

Definition 3.11. Let (D, <) be a weak concurrency domain. Let 1 be the canonical 

event-labelling function on (D, 6). As noted before, (D, 6, 1, idDO) is nicely labelled. Its 

associated automaton A (D) = (S, E, T, *, 11) has the following form: 

(1) S=D” and *=I; 

(2) E=(Cx,Yl,:x,Y~D”,X~Y}; 

(3) T= ((x, Cx, ~1 x,y): x,YED”,.y~Y}; 

(4) II = ( lIs)seS where [x, y,] IIX[x, y2] iffy, # y, and there exists ZGD’ with yi-< z 

(i= 1,2). 

This automaton will be called the canonical automaton with concurrency relations 

associated with (D, G). 

These automata were studied before in [lo]. Next we note the close relationship 

between 9 and induced labelled domain of A(9). 

Lemma 3.12. Let 9 =(D, 6, lE, idDo) be a weak concurrency domain with canonical 

event-labelling function and trivial state-labelling. Let &‘= A(9) be the canonical 

automaton associated with (D, <). Then there exists an isomorphism (q~,id~o, idE) 

from 9 onto D(A), the induced labelled domain of &‘. 

Proof. Define cp : D”+Do(d) as follows. If XED’, choose a covering chain 

J_=x~<...<x,,=x from I to X. Let ti=(Xi_1,[Xi_1,Xi]_,Xi) (i=l,...,n) and 

put cp(x)=[t1 . . . t,,] (if x= I let q(x)= [E]). As shown in [lo; proof of Theorem 2.41, 

cp:(D’, d )-(DO(&), < ) is an order-isomorphism and thus extends uniquely to an 

order-isomorphism from (D, <) onto (D(d), < ). Obviously, cod(cp(x)) =x for each 

XED’. Now if x, YEDO with X-C y, let q(x) be given as above, and put 

r =(x, cx, Yl -,Y)ET. Then cp(~)=Cti...r,tl, so ~E~(C~(x),cp(~)l)=Cx,~lx= 
lE([x, y] ). The result follows. 0 

Now we can generalize Lemma 3.12 to arbitrary nicely labelled domains. 

Proposition 3.13. Let 9 = (D, <, lE, 1s) he a nicely labelled domain. Then there exists an 

isomorphism ~3 = (7cD, ids, idE) from 9 to Do A (9). 
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Proof. Let IE, be the canonical event-labelling function on (D, <), and let 

9’ =(D, <, Iv,, id,,). Then sJ’ = A (9’) is the canonical automaton associated with 

(D, <). Obviously, the triple (idD, ls,a) where g( [.u,.v],~, )=IE([.~,y]) for any 

cx, Yl Elnt,, is an order-morphism from 9’ to 9. Hence, by Proposition 3.10, 

(js, g): A’+A(9) is a reduction. Let (cp, Is, g) be the induced morphism from D(&‘) to 

D 9 A (9). By Theorem 3.6, cp is an order-isomorphism. By Lemma 3.12, there is also 

an isomorphism ($,id,o, idE,) from 9’ to D(rA’). Hence, (4r, :t+b,ls,a) is an order- 

morphism from 9’ to D-A (9). Observing that (idv, Is, g) is an order-morphism from 

9’ to 9, we obtain easily that (cp- $, ids, ids) is an isomorphism from 9to Do A (9). 

We record an explicit description of the order-isomorphism rrD = 43 0 $ obtained in 

the proof of Proposition 3.13. Let SE Do and choose any covering chain 

l.=x()<xr< . ..<x.=x from I to x in $8. Then each 

fi=(ls(X_r), I,U([Xi-19 Xi]), IS(Xi)) (i= 1, ,n) is a transition Of A(9), SO 

u = tl . . t,~ CSZ (A (9)) (if x = I, we have u = E, the empty computation sequence of 

A(9)). Then rcD(x)= cpo $(x)= [u], as can be easily checked. 

Corollary 3.14. Let 9=(D, <, Iv, Is) h e a nicely lahelled weak concurrency domain. 

(a) Let &’ he the canonical uutomaton associated with (D, <). Then there exists 

a reductionji-om .d to A(9). 

(b) A(9) is cuncellative. 

(c) !f(D. < ) is u concurrency domain, then A(9) is concurrent. 

Proof. (a) This was shown in the course of the proof of Proposition 3.13. 

(b) By (a) above and Proposition 3.7(a), it suffices to prove that ,EZ is cancellative. 

Let xtu, xvw be two equivalent finite initial computation sequences of ,GZZ with 

ev(t)=ev(w)=a, ev(u)=ev(v)=h and a # h. Then xtu and xuv have the same codo- 

main, say z, and letting cod(x)=x’, we obtain yr, yz~Do with X’X yi< z for i= 1,2 

and a=[x’,y’I]x ,h=[x’,~‘~]~. Hence a /IX. h as required. 

(c) As shown in [lo], the canonical automaton associated with any concurrency 

domain is concurrent. Hence, the result follows from (a) and Proposition 3.7(b). 0 

Note that by Corollary 3.14(b), the functor A maps the objects of NLDom into 

CAut. We will denote the restriction of A to the subcategory NLDom also simply by A. 

Now we show that there is a close relationship between the automata & and 

Al> D(,d). 

Proposition 3.15. Let 31 be an automuton with concurrency relations in which euch state 

is reachable, and let .cR’ = A cj D(d). Then ~~~~ = (ids, id6 ) : ~2 -+ d’ is a morphism. More- 

over, v,d is an isomorphism and ~2 = .d’, ifund only $‘sr2 is cancellative. 

Proof. Let &=(S,E, T,*, 11) and &“=(S,E, T’, *, II’). We first show that T= T’. Let 

(s, e, S’)E T. Choose a finite initial computation sequence u of G? with codomain s, and 
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put u’=U(s,e,s’). Then in D(d) we have [u]% [u’], &([u])=s, and &([u’])=s’, so 

(s,e,s’)~ T’. Conversely, let (s, e,s’)E T’. Then there are x, YEDO with x> y, 

&(x)=s and Is(y)=s’. Hence, if x=[u], then y=[u(s,e,s’)] and (s,e,s’)ET. 

Next we show that IIs 5 11; for each SEX Indeed, let e, llse2. Choose any UECS~(&‘) 

with cod(u)=s. There are transitions (s,ei,Pi),(Pi, es-i,q)ET and 

[~]-r<: [u(S,et,pt)]e~‘[u(S,et,pt)(pt,e~-i,q)]=zt for i=l,2 and zI=z~ by er /lse2. 

Hence e, IIke, in d’. Thus, s&d:&+&’ is a morphism. 

It follows that E& is an isomorphism iff &‘=z&” iff 11: c IIs for each SGS. The latter 

condition means that whenever e, and e2 are weakly observably concurrent in D(d) 

at SES, then e1 llse2, i.e., & is cancellative. 0 

Now we can derive the second main result of this section. 

Theorem 3.16. The finctors A: NLDom + CAut and D: C Aut -+ NLDom form an 

equivalence of categories; A0 D is the identity functor on CAut. 

Proof. By Propositions 3.4, 3.10 and Corollary 3.14(b), D and A are functors. By 

Propositions 3.15 and 3.13, ~~:att’+A~D(d’) and qB:9-+DoA(9) are 

isomorphisms. Since &‘= A0 D(d), A0 D is the identity functor. It only remains to 

prove the commutativity of the diagram: 

9 - DoA 
via 

1 h.L 4) Jo-Acm.l,s) 

9f x+ DoA 

But the equality of the two morphisms q~,o(cp,f; g) and (DoA(cp,f, g))~q~ from 

_Q to Do A(W) is immediate by Proposition 3.3. 0 

As a consequence, for the important class of concurrent automata, Theorem 3.16 

cuts down to the following result. 

Corollary 3.17. The categories of concurrent automata and nicely labelled concurrency 

domains are equivalent. 

Proof. By Proposition 2.9, each concurrent automaton & is cancellative, and, futher- 

more, (D(d), <) is a concurrency domain, cf. [lo]. Together with Corollary 3.14(c) 

and Theorem 3.16, this implies the result. 0 

Using results of [lo], similarly we also obtain equivalences between certain sub- 

categories of concurrent automata and categories, e.g., of nicely labelled event do- 

mains, or nicely labelled dI-domains. The formulation of these is left to the reader. Let 

us call a morphism (J g): zZ+&‘strong, if whenever e /lse’ in &, then g(e) 11; ts,g(e’) in 
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&‘. For this kind of morphisms, an adjunction between a category of automata with 

concurrency relations and a category of Petri nets with capacities has been recently 

derived in Droste and Shortt [ 111. Let us call a morphism (cp,,f; g) : 9 + 97 between 

two labelled domains strong, if whenever s,yi,z ED’ with .Y< )‘i~ z (i= 1, 2) and 

y, # y2, then also cp(y, ) # cp(y2). Then we have the following corollary. 

Corollary 3.18. The category af all cancellative automata with concurrency relations 

and strong morphisms is equivulent to the category of all nicely lahelled weak concur- 

rency domains and strong morphisms. 

Proof. Let (1; g) : d + ,d’ be a morphism, where .ti and .d’ are cancellative, and let 

(cp,f; g):D(.d) + D(&“) be the induced morphism. Because ofTheorem 3.16, it suffices 

to show that (f; Q) is strong iff (cp,j; g) is strong. 

First assume (.A g) is strong, and let .u,yi,z~O(.d)‘, x2 ?‘i~ z (i= 1, 2) and 

\jl # yz. Then e, and e2 are weakly observably concurrent in D(d) art s=ls(x). 

Hence er llse2, since .d is cancellative. Then, in particular, g(ri) # g(ez), as (,f; g) is 

strong. Since ~p(.x)~~‘cp(y~) for i= 1, 2, we obtain cp(yi) # (p(y2), proving that (cp,j; g) 

is strong. 

For the converse, let (q,,f, g) be strong, and let er Ilsez in ~1. Then ei and e2 are 

weakly observably concurrent in D(.d) at s, so we obtain x2 ~i’~’ z (i = 1,2) in 

D(.zZ) with y, # j12 and cod(.x)=s. Then ~p(~~)g~~v)(~~i)g~~~~(p(z) (i= 1, 2) in D(.d’) 

and I # cp(yz). So g(e,) #y(e,). As cod(cp(x))=,f(cod(x))=,f(s) and &’ is cancel- 

lative, we have q(e,) ll;(s,g(e2). 0 

Putting Corollary 3.18 and the results of [l l] together. we obtain an adjunction 

between a category of Petri nets with capacities and nicely labelled weak concurrency 

domains. We note that the computation sequences of the “intermediate” automata 

correspond to the possible firing sequences of events of the underlying Petri nets, 

starting from the initial marking. Restricting the morphisms considered further to 

reductions, we obtain the following result. 

Corollary 3.19. The category of all cancellative automata with reductions as arrows is 

equivalent to the category of all nicely lahelled weak concurrency~ domuins with order- 

morphisms as arrows. 

Proof. Immediate by Theorems 3.16 and 3.6 and Proposition 3.10. U 

Next we obtain a partial converse of Theorem 3.6. 

Corollary 3.20. Let &, d’ he two cancellatice automata, let (.f; g):Cd + .d’ he a mor- 

phism, and let (cp,f g): D(d)+ D(&‘) he the induced domain-morphism. Lf cp is an 

order-isomorphism, (f; g) is a reduction. 
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Proof. By Propositions 3.10 and 3.15, (f, g) = A (cp,f; g) is a reduction from &’ = 

AoD(%!Z!) to A~D(&?Z’)=%!Zz’. 0 

As noted in the introduction, in general a given weak concurrency domain can be 

generated by various automata with concurrency relations. The following is a solution 

of the “unique representation problem”. 

Corollary 3.21. For each nicely labelled weak concurrency domain 9 there exists, up to 

isomorphism, a unique cancellative automaton _zI which generates 9. 

Proof. By Proposition 3.13 and Corollary 3.14(b), A (9) is a cancellative automaton 

generating 9. Let &’ be any cancellative automaton generating 9, i.e. with D(d) g $9. 

By Proposition 3.15, &=AoD(d) z A(9). 0 

Corollary 3.21 indicates how to construct, given a weak concurrency domain 

(D, <), a cancellative automaton d generating (D, <): we have to find event- and 

state-labelling functions lE, 1s such that 9=(D, <, lE, 1s) is nicely labelled; then put 

& =A (9). We illustrate this by a simple example. Let 9= N u {a} with the natural 

order of N and such that x < cc for each x~fV. There are the following ways to make 

(D, 6, lE, 1s) into a labelled domain. 

(1) 1s: N + S is a bijection, and Intn-tE is an arbitrary surjection. 

(2) Sisafiniteset,sayISI=n.ThenEisalsofinite,IEldISI,wehave1,(i+n)=l,(i) 

and l,([i+n, i+n+l])=lE([i,i+l]) for all ieN, and S={ls(i):l<i,<n}. 

We now show that by defining labelling functions, lE, 1s of (D, <) satisfying 

restriction (1) or (2), the automata associated with 9=(L), <, lE, 1s) provide up to 

isomorphism all automata with concurrency relations and only reachable states 

generating (D, <). Indeed, let d be any such automaton. Since (D, <) is linearly 

ordered, no two events of & can be weakly observably concurrent in the induced 

domain D(d) at s (sES); hence /Is = C#J for each state s of -Qz, and & is cancellative. Thus 

& = A 0 D(d) g A (9), proving our claim. 

An automaton with concurrency relations & is finite, if both its event set and its 

state set are finite. Next we characterize which weak concurrency domains can be 

generated by finite cancellative automata. 

Corollary 3.22. Let (D, <) be a domain. The following are equivalent. 

(1) (D, <) can be generated by a$nite cancellative automaton. 

(2) (D, <) is a weak concurrency domain, and there exist event- and state-labelling 

functions lr, 1s for (D, <) with E and S finite such that 9=(D, <, lE, ls) is nicely 

labelled. 

Proof. Straightforward by Theorem 3.16. 0 



We note here that for any event-labelling function lE for (D, <) (for instance, with 

E finite), the proof of Theorem 4.3 below shows how to construct a state-labelling 

function Is with S of minimal cardinality such that (II, <, IE, I,) is nicely labelled. 

Finally, we turn to an application of our results in trace theory. 

A trace alphaher 8 =(E, 11) consists of a countable set E together with a symmetric 

irreflexive binary relation 11 on E. The free partially commutative monoid M(b) is the 

quotient of the free monoid E* over E modulo the congruence generated by ah - bu 

whenever a /I h (a, /TEE), cf. [ 17, S]. We denote this congruence on E* also by -. We 

define a partial order on M(b) by putting .X <a iff .xy=~ for some yam. Let 

(D(a), < ) be the ideal completion of the partial order (M(b), < ); then (D(G), < ), the 

domain c~full truces of 8, is a Scott-domain with (D’(6). < ) z (M(b), < ). It is known 

that (D(b), <) is, in fact, a coherent df-domain. 

Our goal is to characterize the domains of this form. Given a concurrency domain 

(D, <), for each XED’ we define an associated trace alphabet $,=(E,, II,) as follows. 

(1) E,= ([X,y]: .Y< y), 

(2) [.x,JJ] IIX[x,z] iff yfz and [y,z ) is bounded in D. (Recall that then y< y v z 

and Z< J’ v z by axiom (C).) 

The following provides a characterization of the domains (D, < ) isomorphic to 

(D(8). <) for some trace alphabet &; we are thankful to an anonymous referee who 

provided a characterization similar to the one of (l)-(3) below. 

Corollary 3.23. Let (D, <) he a partially ordered wt. The jbllowing ure equivulent. 

(1) (D, <) E (D(a), <),fbr some truce alphabet 8. 

(2) (D, <) is concurrency domain, and there exists un event-labelling,function lE OH 

(D, <) with the jtillowing two properties: 

(i) Whenever s,y, s’ED’ with s; ~1, then there is ~/ED’ with .Y’> ~1’. 

(ii) Whenever r,yi,~,.w’,y~,z~~Do with x2 yir%‘z and ~‘2 ~~~e%‘z~,fi)r i= 1, 2. and 

y1 #y2, then z; =z;. 

(3) (D, <) is a concurrency domain, und ,fiw .uny s,y~D’ bvitk .Y< y there is NH 

isomorpkism cpxY : 8, + &Yy betkt’een tke ussociuted truce ulpkubets witk tke,following t\vo 

properties: 

(i) cp,,( [x, z]) = [y, y v Z] whenever y # z and { y, z) is bounded. 

(ii) Whenever x, yi, zcD” with .x< y-c zfor i= 1, 2 then (pglz cpxyl =cpB2z~~~DxY2. 

Proof. (l)+(2): Let &=(E, 11). We define an automaton with concurrency relations 

&‘=(S,E,T,*,l[‘) as follows. Let S=(*i, a singleton set, T=((*,e,*):e~Ej and 

11’ = ( II.+ ) with II* = I/. Then initial computation sequences of .d correspond uniquely to 

words over E, i.e. elements of E*, and this correspondence yields a canonical isomor- 

phism from (D(.d), < ) to (D(a), < ), as is easy to see. Clearly, .d is concurrent and 

D(._&) is a nicely labelled concurrency domain. Observing that ISI = 1, properties (i) 

and (ii) are thus immediate for II(&). Since (D. <)g(D(.c/), <), our claim 

follows. 
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(2)*(l): Let S= {s} be a singleton set and ls:D’-+S the uniquely determined 

function onto S. Then properties (i) and (ii) say that 9=(D, 6, lE, ls) is nicely 

labelled. Put & =A (9) and d =(& 11) where // = Ils from JZZ. Then d is a trace 

alphabet, and as above we have (O(d), <) g (D(b), <). Since .9 g D(d), the result 

follows. 

(2)*(3): Let x,yeD’, with XX y. For any ZED’ with XX z we put 

cp,,( [x,z])= [y,z’] where z’ is the uniquely determined element of Do with 

lE([y,~‘])=IE([~,~]). If here y #z and {y,z} is bounded, we obtain z’=y v z since 

(D, <) is a concurrency domain. It follows that cpXy:d,+d, is an isomorphism 

satisfying condition (3)(i), and condition (3)(ii) is straightforward from the definition of 

‘PXY. 

(3)=(2): For any XED’, we define an isomorphism cpX: BI + 8, as follows. If x = I, 

let cpI = id. If -L < x, choose a covering chain I =x0+ x1 -C ... -C x,=x from I to x. 

Thenputcp,=(p,n_,x,o...o(Px~,xl, the composition of the given trace alphabet isomor- 

phisms ~p~,~,+, (i=n-1, . . . . 0). Since any concurrency domain is a weak concurrency 

domain, in particular satisfies axiom (E) of Definition 2.3, by requirement (3) (ii), cpX is 

well-defined and hence an isomorphism as claimed. Now put E = { [I, z] : 1-c z}, 

and we define a function 1,: Znt, + E by letting IE( [x, y]) = [I, z] if cpX( [ I, z]) = [x, y] 

(i.e. 1, is the extension of the mappings cp;‘(x~D’)). It easily follows that lE is 

an event-labelling function satisfying condition (2)(i). To check (2)(ii), let 

x,yt,z,x’,yj,z~~D~ with XT yie~‘z and ~‘2 yie%‘zt for i= 1,2 and y, #y2. Since 

[x,yl]lI,[x,yZ] in 8, and cpX,~cp;i:b,+b,, is an isomorphism, we obtain 

[x’,y;] II,,[x’,y;] in b,., so y;“%‘y’, v y; for i-1,2, and thus 

z;=y; v y;=z;. 0 

4. Minimal automata generating given domains 

Let (D, <) be a given weak concurrency domain. In this section we will study the 

problem whether the collection of all automata with concurrency relations generating 

(D, 6) contains with respect to the preorder induced by the existence of reductions, 

maximal or minimal automata. The same question arises by considering only auto- 

mata with a fixed set E of events; for example, can every such automaton be reduced to 

a minimal automaton of this kind, i.e. can the state set be made as small as possible? 

Dually, we may consider automata with a fixed state set and try to minimize the event 

set. We will show that all these questions under slight additional assumptions have 

positive answers. 

We introduce some notation. An event-morphism (cp, g):(D, <, IE) -+(D’, 6, IE,) 

between two event-labelled domains will be called an isomorphism, if both cp and 

g are bijective. Let & be an automaton with concurrency relations and 

D(sd)=(D(at’), d, jE, Is) its induced labelled domain. We say that & generates 

(D’, <, lET), if (D(d), 6, lE) and (D’, 6, lEf) are isomorphic. Also, & generates 
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(D’, <,ISS), if D(d) is isomorphic to 9’=(D’ < 1 , ,, p, Is,), for some event-labelling 

function Is* making 9’ a labelled domain. A reduction (A g):& +&’ will be called 

a state-reduction, if g is bijective, and an event-reduction, iff is bijective. First we study 

state-congruences for a given event-labelled domain. 

Lemma 4.1. Let (D, ,<, I,) be an event-labelled domain. Then the system (Y, G ) of all 

nice state-congruences for (D, <, lE), ordered under inclusion, forms a complete lattice. 

In particular, (9, G ) contains a smallest and a greatest element. 

Proof. Clearly, the state-congruence corresponding to the identity function idvo is the 

smallest element of (9, G). Now let 4 # %? c 9. Let = be the transitive closure of 

lJcEw C. It is easy to see that = is a state-congruence for (D, 6, lv). To show that = is 

nice, let x,yi,z,x’,yf,zlEDO with [x,yi]-_E[~',yI], [yi,z] =E[Y;,z;] for i= 1, 2, 

y, # y, and x = x’. There are x0, . . , x,EDO such that x=x~, X)=X, and Xj -jXj+l for 

some = Jo C (j = 0, . , n - 1). Since each = j is a nice state-congruence, inductively 

we obtain elements yj, l,yj, ,,zjEDO (j=O , ,n) with yi=yo,i, Z=Z~ and 

[xj~yj,il =E[Xj+i,yj+i,il, [yj,i,zl =E[yj+i,i,zl and yj,r fyj,2 for i=l,2 and 
j=O ,...,n-1. It follows that [x',Y~] ~E[x',y,,i] and [Y;,z;] EE[y",i,z,], SO 

.vj=yn,i and thus zi=z, for i= 1,2. 

Clearly = is the smallest state-congruence for (D, <, Iv) containing all congruences 

in %?. Hence = is equal to sup% in (9, G). So (9, G) is a complete lattice with 

greatest element sup Y. We just note that the infimum of a nonempty subset V? of Y in 

(Y, C) is simply the intersection of +Z, as is easy to see. 0 

Under the assumptions of Lemma 4.1, we will denote by ~~0 the smallest state- 

congruence for (D, <, lE). Let 1s) Is, be two state-labelling functions for (D, <, lE), 

and let =, =’ be the corresponding state-congruences. We note for later 

purposes that clearly = c =’ iff there is a function fi S+S’ with &,=f‘“ls. Then 

(id,,,f; idE) is a morphism from (D, 6, I,, Is) to (D, 6, Iv, Is,). The following is straight- 

forward. 

Lemma 4.2. Let 9 =(D, <, Iv, 1,) be a labelled domain and (D’, <, lEf) an event-labelled 

domain. Assume (q, g):(D’, <, l,.)+(D, 6, lE) is an isomorphism, and let I$= 1s” cp 1v’0. 

Then 9’ = (D’, <, lEC, I$) is a labelled domain, and (cp, ids, g) : 9’ + 9 is an isomorphism. 

Now we can show the following result about the existence of maximal and minimal 

automata generating a given weak concurrency domain. 

Theorem 4.3. Let (D, <, lE) be an event-labelled weak concurrency domain. Then there 

exist two cancellative automata d,,, and ~,i”, each generating (D, <, IE), with the 

,following two properties. 

(1) For any cancellative automaton & generating (D, 6, lE) there exist state-reduc- 

tions from sZ,,, to .zZ and ,from & to ~2~~~. 
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(2) Jf ~2 is any automaton with concurrency relations having only reachable states, 

then any reduction from d to L@‘,,, is an event-reduction. Any state-reduction from 

dmin to d is an isomorphism. 

In particular, d,,, and JZ!,,,~” are unique up to isomorphism with property (1). 

Proof. Let idDo be the trivial state-labelling function, and let g0 =(D, 6, IE, idDO). By 

Lemma 4.1 there exists a greatest state-congruence = s, such that 9,=(D, d, lE, Is,) 

is nicely labelled, where ls, is the state-labelling function on Do corresponding to 

--sm. Let JzI,,, =A (so) and &,i, = A (a,,,). By Corollary 3.14(b) and Proposition 

3.13, d,,, and ~min are each cancellative and generate (D, <, le). 

Now let d be a cancellative automaton generating (D, d,lE). Let 

D(d)=(D(d), <,lES, II,) be its induced (nicely labelled) domain. Since (D(d)<,l,,) 

is isomorphic to (D, <, IL), by Lemma 4.2 there is a state-labelling function 1s: Do -+ S 

such that D(d) is isomorphic to 9 = (D, <, lE, 1s) which is hence nicely labelled. If = s 

is the state congruence corresponding to Is, clearly we have = Do E = s G Ed,,,. So 

(idD, Is, idE) is an order-morphism from a0 to 9, and there is also an order-morphism 

(id,,,f; idE) from 9 to 9%,. Applying the functor A, by Proposition 3.10 we get 

state-reductions (Is, idE) from d,,, to A (9) and (J idE) from A (9) to &min. But by 

Proposition 3.15, d = A 0 D(d), which is isomorphic to A (9). Hence property (1) 

follows. 

To check property (2), let d be any automaton with concurrency relations having 

only reachable states and let (,fi g) be either (a) a reduction from & to A,,,; or (b) 

a state reduction from Amin to r;4. Then d is cancellative by Proposition 3.7, and 

D(d)=(Z)(&), <, Ii,, 1;) is a nicely labelled domain. Applying the functor D, in case 

(a) we get an order-morphism (cp,f, g) from D(d) to D(&,,X), and by Proposition 

3.13 there is an isomorphism (7~;‘) idDo, idE) from D(dol,,,) to go. Thus, 

nG ’ 0 cp JDO,,NIj=f 1 li, so f (and 1;) must be injective. Hence (.f; g) is an event-reduction. 

In case (b), similarly we obtain an order-morphism ($,A g) from 9,,, to D(d). Then, 

by Lemma 4.2, 1: = 1; 0 $ IDo is a state-labelling function with which (D, <, lE, 1: ) is 

nicely labelled. Since 1: =,fi ls,, we obtain that the congruence corresponding to 

1.: contains, and hence equals -SW, showing that .f is injective. So, (J g) is an 

isomorphism. 

For the final statement, let d* be a cancellative automaton with property (1) as, 

say, for ,al,,, (for dminr the argument is analogous). Then there exists a state- 

reduction from d* to .d,,, which, by property (2) must be an event-reduction and 

thus an isomorphism. So &‘* g xZ,,,. 0 

Theorem 4.3 shows that the class of all cancellative automata & having a fixed (up 

to bijective relabelling) event set E and generating a given weak concurrency domain 

(D, <) contains, with respect to state-reductions, a greatest automaton ,al,,, and 

a smallest automaton dmin. Moreover, these two automata are unique up to isomor- 

phism. In combination with Lemma 4.1, the proof also gives us an explicit description 

of these automata. 
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In this context we note that if (L g): d + &’ and (,f’, g’): &’ -+ AZZ are state-reduc- 

tions between cancellative automata JZZ, &‘I, it does not follow that (,A g) and (f’, g’) 

are isomorphisms. Indeed, let &=(S, E, T, *, 11) where 

(1) S={*,a,,b,:n,m~Z,mdO}, 

(2) E={e,: rz~Z}, 

(3) T= {(*,e,, a,),(a,,e,,b,),(b,,e,,b,): ndO}u{(*,e,,a,),(a,,e,,a,):n>O}, 

(4) II =( Ils)sss with II,=@ for each SE,!?. 

Definef:S-+S byf(*)=*,f(u,)=u,+, for each nEZ,f’(b,)=b,+I for each m<O, 

andf(bO)=ul. Let g(e,)=e,+, for each nEZ. Then (J g): & + & is a state-reduction, 

but not an isomorphism. 

However, if (J g): ~2 + &’ and (f”, g’): &” + & are state-reductions and & is finite 

then l&l =)&“I since f; f’ are onto, and thusf;f’ are bijective. From this it easily 

follows that (f;g) and (f’, g’) are isomorphisms. 

Next we wish to derive a similar result as Theorem 4.3 for cancellative automata 

d with a fixed state set S and generating a given weak concurrency domain (D, <). 

We first show that the canonical automaton associated with (D, <) is the greatest 

element of this class, with respect to event-reductions. 

Theorem 4.4. Let 9=(D, <, I,, Is) be a nicely labelled domain, where lE denotes the 

canonical event-lubelling function on (D, <). Then A( 9) is cancellutive, generates 

(D, <, 1s) and has the following properties. 

(1) For any cuncellutive automaton S? generating (D, <, Is) there exists an event- 

reduction from A(9) to d. 

(2) Jf .d is any cuncellative automaton, then any reduction from SC! to A(9) is 

a state-reduction. 

In particular, A(9) is unique up to isomorphism with property (1). 

Proof. By Corollary 3.14(b), A(9) is cancellative, and by Proposition 3.13, it gener- 

ates 9. Now let ~2 be any cancellative automaton generating (D, 6, ls). Then there 

exists an event-labelling function lE, on (D, <) such that O(&‘) is isomorphic to 

9’ =(D, <, lE,, Is), which is hence nicely labelled. If g : E -+ E’ is defined by 

g ([x, y] - ) = lE I ([x, y] ) (for [x, y] 6 Int,), we obtain an order-morphism 

(idD, ids,g):9+9’. By Proposition 3.10, (ids,g):A(9)+A(3’) is a reduction. 

Since A(W) g AoD(&)=& by Proposition 3.15, we have thus established property 

(1). 
To check property (2), let &’ be a cancellative automaton and (j; g) : d + A (3) 

a reduction. By Theorem 3.6 and Proposition 3.13, there is an order-morphism 

(cp,f; g) from D(&‘)=(D(&), <,lE,,lS,) to 9. In particular, for any x, yeDO with 

x+Y we have s~lE,(Cx,yl)=lE(C~(x), cp(y)l)=lv(~), v(y)lx. Hence, if 
st-4 )=s(ei) and, say, ei=lE,([xi, yi]) for i= 1,2 then [cp(xr), (c)(yi)]t( 

Iv@*), V(YZ)I in (R G), so CxI,yIl = Cx2,yzI in (D(4, <I, showing e;=4. 
Thus, g is bijective, and so (f; g) is a state-reduction. 

The uniqueness of A(9) can be checked similarly as for Theorem 4.3. 0 
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Next we turn to the existence of minimal cancellative automata J32 with a fixed state 

set and generating a given weak concurrency domain. We first need some preparation. 

Lemma 4.5. Let (D, <, lE, Is) be a nicely labelled domain, lE, an event-labelling of 

(D, <), and (id,,g):(D, <,l,)+(D, <,lES) an event-morphism. Then (D, d,l,,,ls) is 

nicely labelled. 

Proof. Let x,y,,z,x’,y~,zj~D~ with .x> yi%‘z and x/2 yi2zi where e;EE’ for 

i= 1,2, y, fy, and ls(x)=ls(x’). Then in (D, <,l,) we have x2 yie%‘z for some 

eieE (i= 1,2). Since (id,,g) is an event-morphism, for i= 1,2 we have g(e;)=e;; also, 

there is ~TED’ with x’< y: and ls(yi)=ls(y:). Then xf2 y:, so y:=y:. Applying 
e3-i 

the same argument again, we get y;< zi. So ~‘2 y;%‘z: for i= 1,2. Since 

(D, <, lE, 1s) is nicely labelled, we get z; =z; as needed. 0 

Now we can show the following theorem. 

Theorem 4.6. Let d be any cancellative automaton and D(&)=(D, 6, lE, Is). Then 

there exists a cancellative automaton Lc4,in generating (D, <,ls) with the following 

properties. 

(1) There exists an event-reduction from &’ to -Cumin. 

(2) Any reduction from drnin to an automaton with concurrency relations is a state- 

reduction. 

Proof. Let =E be the event-congruence corresponding to 1,. Since the union of any 

chain of event-congruences of (D, < ) is again an event-congruence, by Zorn’s lemma 

there is a maximal event-congruence = on (D, <) containing = E. Let M be the set of 

all =-equivalence classes of Int,, and let lM: Znt, -+ M map each prime interval onto 

its E -equivalence class. Since = E c --, putting g(e) = I!~( [x, y]) if e = lE( [x, y]) we 

obtain a well-defined function g: E+ M with I,,, =g 0 1,. Then 9 =(D, <, lM, 1s) is 

nicely labelled by Lemma 4.5. Put &‘4,in =A (9). Clearly, (idv, ids, g): D(d)+9 is an 

order-morphism. Hence, by Propositions 3.10 and 3.15, (ids,g) is an event-reduction 

from &‘=A 0 D(d) to ~,in, establishing (1). 

To check (2), let d* be any automaton with concurrency relations, and let 

(f, g): ~,in + d * be a reduction. By Proposition 3.7, &* is cancellative.By Proposi- 

tion 3.13 and Theorem 3.6, there are order-morphisms (7~9, ids, idE): 9 + D(&,i,) and 

(cp,f,g):D(,mZ,i,)~D(~*). Let D(&*)=(D(szJ*), <,lE*,ls*). Put $=qons, an 

order-isomorphism from (D, <) to (D(zd*), <). Then for any x, YGD’ with x< y we 

have ~E*(C~(X),~(~)I)=~O~~(C~,YI). I-I en=, defining 1’~ (Lx, ~1) + k* (C$(x), ti (Y)I 1 
for [x,y]~lnt~, we obtain an event-labelling function l& on (D, <) with l& =g~l~. 

Hence, the event congruence = E* corresponding to 1 & contains = and thus equals 3, 

by maximality of =. So, g is bijective. 0 



316 F. Brucho, M. Drost~, 

Fig. 6. 

Yz 

Note that in Theorem 4.3 we obtained a smallest (unique minimal) automa- 

ton in the considered class of automata with fixed event set, whereas in 

Theorem 4.6 we derived the existence (not uniqueness) of minimal automata with fixed 

state set and given domain. The following example shows that in general these 

minimal automata are not unique up to isomorphism. It is due to D. Kuske and 

a slight simplification of a similar example obtained previously by the 

authors. 

Example 4.7. Let (D, <, IE) be the following event-labelled domain where 

E = (et, e2, e, e’} (see Fig. 6). 

Let Is = id,, be the trivial state-labelling. Let J&’ be any cancellative automaton with 

D(d) E (D, <, lE, Is). Consider the following two event-labellings II, l2 of (D, < ): 

~~(C~,~l)=~2(C~r~1)=~I([~,~1)=e~,~~(C~,~~l)=e~, ~j([x,Yil)=lj([Y3-i,Zl)=ei 

for i,j~ i 1,2}. The corresponding event-congruences are clearly maximal event-con- 

gruences on (D, <). Let GSj=(O, <,lj,l,) and dj=A(Sj) forj= 1,2. Then dr and 

d2 are non-isomorphic and each satisfy the assertions of Theorem 4.6. (Moreover, it 

can be shown that any cancellative automaton satisfying these assertions is isomor- 

phic to SZZ, or ~2~). 

Now we will deal with the class of all cancellative automata generating a given weak 

concurrency domain. First we show that this class contains, with respect to reduc- 

tions, a greatest automaton. 

Theorem 4.8. Let (D, < ) he a weak concurrency domain and sf’, the canonical automa- 

ton associated with (D, <). Let .d he any cancellatiae automaton. Then 

(a) ij’& generates (D, <), then there exists a reduction,ffom ~2~ to nl. 

(b) any reduction (,A 9): sf --+ Cdl, is an isomorphism. 



Labelled domains and automata with concurrency 

Proof. (a) We can choose labelling functions lE, 1s for (D, <) such that 

9 =(D, <, lE, Is) is isomorphic to the nicely labelled domain D(d). By Corollary 

3.14(a) and Proposition 3.15, there is a reduction from -01, to A(g), and 

A (9) g A 0 O(d)= d. For an alternative argument (and for the proof of (b)), let 
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I denote the canonical event-labelling function on (D, < ), and 9’ = (D, d, 1, idp). Then 

dD=A (9’). The automaton &,,, constructed in the proof of Theorem 4.3 for 

(D, <, I,) generates (D, 6, idDo), so by Theorem 4.4 there exists an (event-) reduction 

from ,_zI~ to d,,,. Since &’ generates (D, <, lE), by Theorem 4.3 there is a (state-) 

reduction from d,,, to d and the result follows by composing these two reductions. 

(b) Let (i g): d + &B be a reduction. By Theorem 4.3, (f; g) is an event-reduction, 

and by Theorem 4.4 a state-reduction, hence an isomorphism. 0 

Finally, we consider the existence of minimal cancellative automata generating 

a given weak concurrency domain. For this, we employ our previous corresponding 

results (Theorems 4.3 and 4.6). 

Theorem 4.9. Let (D, <) be a weak concurrency domain, and let S? be any cancellative 

automaton generating (D, <). Then there exists a cancellative automaton Yc4min generat- 

ing (D, d ) with the following properties. 

(1) There exists a reduction from ~2 to &min. 

(2) Any reduction from sZ,,,~” to an automaton with concurrency relations is an 

isomorphism. 

Proof. Let JZI, be an automaton given by Theorem 4.6 for d, and let ~min be the 

automaton given by Theorem 4.3 for (D(&‘,,,), 6, IE,), the induced event-labelled 

domain of ~2,. We obtain, correspondingly, reductions from d to ~2, and, say (f’, g’), 

from &,,, to ~min, proving (1). To check (2), let d* be an automaton with concurrency 

relations and (f; g): cc4,i, +J&‘* a reduction. By Proposition 3.7, d* is cancellative. By 

Theorem 4.6, the reduction (fif’, g 0 g ‘): &‘,,, + G+‘* is a state-reduction, so g is bijective. 

Hence, (J g) is a state-reduction and so, by Theorem 4.3, an isomorphism. 0 

As Example 4.7 shows, again the minimal automaton of Theorem 4.9 is in general 

not unique up to isomorphism. 

Finally, we note that further results on the relationship between domains and event 

structures, and, respectively, between domains, monoids and nondeterministic 

automata with concurrency relations will be given in [6, 151. 
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