
Theoretical Computer Science 281 (2002) 31–36
www.elsevier.com/locate/tcs

Nivat’s processes and their synchronization

Andr%e Arnold
Universite de Bordeaux I, LABRI, CNRS UMR 5800, 351 cours de la Liberation,

F-33405 Talence, France

Abstract

This short paper retraces how the notion of synchronization of processes introduced by Maurice
Nivat in 1979 has evolved over more than 20 years. c© 2002 Elsevier Science B.V. All rights
reserved.

At the end of the 1970s, Maurice Nivat took interest in the semantics of parallel
and concurrent systems. With G. Ruggiu of the Laboratoire central de recherches
of the French company Thomson-CSF, he organized a joint seminar on this topic.
That is why his seminal paper on the synchronization of processes [14] appeared in
a technical journal of this company and, therefore, was unfortunately not widely known.
An extended version of this paper [15] was published in a yet more con;dential place.

However, the ideas expressed in these papers have made their way; for instance,
they are implemented in the model-checker MEC [4] and are the basis of the AltaRica
formalism [6].

In this paper, we wish to explain how these ideas have evolved along time and to
compare them with some other similar ideas.

In [14], a process is de;ned as a set of in;nite sequences of actions or events. Each
action or event is denoted by a letter from an alphabet A, so that a process is de;ned
as a set of in;nite words over A. It appeared very soon that this de;nition was not
general enough, in particular, because it did not include the notion of a deadlocking
process, which was nevertheless considered as a very important notion in the last part
of the paper.

Therefore, in [15], a process is de;ned as a triple of languages over A: the set
of in;nite sequences, the set of ;nite terminated sequences, and the set of all ;nite
sequences the process is able to perform. Clearly the latter set contains all the pre'xes
(or initial subsequences) of the former two.

Such a process is said to be deadlock-free (or nonblocking) if each ;nite sequence
which is not terminated can be extended by at least one letter into another ;nite

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00006 -3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82192669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


32 A. Arnold / Theoretical Computer Science 281 (2002) 31–36

sequence. It follows that every ;nite sequence which is not terminated can be extended
into a terminated sequence or into an in;nite word over A all of whose pre;xes are in
the process. But it is not guaranteed that such an in;nite word belongs to the process.
If it is always the case, the process is said to be safe.

The above de;nitions are intuitively quite natural and it is not a surprise that they
appear elsewhere, for instance, in the fundamental papers by Ramadge and Wonham
on the control of discrete event systems [16,17]. They de;ne a discrete event system as
a Nivat’s process without in;nite sequences, with the restriction that both languages
(of all ;nite sequences and of all terminated ones) are recognizable, and they say that
it is nonblocking if every non terminating sequence can be extended into a termi-
nated one, which is exactly the notion of safeness for a process which has no in;nite
sequences.

The restriction to recognizable processes is quite natural as soon as one is interested
in decision problem (whether a process is safe or not) or eDective constructions (e.g.,
of the greatest safe subprocess of a given process) and was considered in [15]. The
paper [8] investigates such problems for some kinds of algebraic (or context-free)
processes.

The main idea of [14] is to de;ne the interactions between processes (communica-
tions, synchronizations) on a very high level of abstraction, so that almost all mech-
anisms encountered so far in the literature become particular cases of a very general
concept: the synchronization vectors.

Actually, the eDect of a synchronization mechanism is to force some actions of
some processes to be performed simultaneously, or, on the contrary, to forbid their
simultaneous occurrences. Therefore, it can be described by giving the list of tuples
of action that must or may occur simultaneously (or its complement, the set of tuples
that can never occur simultaneously).

Formally, for i= 1; : : : ; n, let Li be a process over the alphabet Ai. Let A0
i be the

set Ai ∪{�}, where � is a symbol to be interpreted as “no action”. A synchronization
vector is any element of the product A=A0

1 × · · · ×A0
n. A synchronization constraint

is a set I ⊆A of synchronization vectors
The synchronized product of L1; : : : ; Ln with respect to I is the process over I de;ned

as follows. Its ;nite (terminated) sequences are those whose projections are ;nite
(terminated) sequences of the corresponding component, its in;nite sequences are those
whose projections are in;nite or terminated.

It is not diIcult to convince oneself that communication mechanisms of CSP [10],
CCS [13], COSY [12] can be described in this way. Even Petri nets can be seen as
synchronized products where the processes are places and synchronization vectors are
transitions.

Indeed, the synchronization mechanism proposed in [15] is a little more general:
the synchronization constraint is a process over I , acting as a controller or supervisor,
and the synchronized product is de;ned by the additional condition that its sequences
must also belong to the control process. The former de;nition is a particular case of
the latter when the control process consists of all ;nite and in;nite sequences over I .
The diDerence between them is quite similar to the diDerence between vector addition
systems and vector addition systems with states.



A. Arnold / Theoretical Computer Science 281 (2002) 31–36 33

However, in a few lines argument, we explained in [15] that a speci;c control
process is not really needed and that the ;rst de;nition is quite suIcient, because
one can apply it to a vector of processes containing also this control process as
an additional component and then hide the actions of this control process by taking
a homomorphic image of the synchronized product. Actually, the notion of a control
process no longer appeared in subsequent papers on synchronized products [2,3] and
felt into oblivion. This forgetting was an unforgivable blunder, we completely missed
the point that a controller for a system of interacting processes is not a process similar
to others as it was established by Ramadge and Wonham [16,17] and, however strange
it may appear, the notion of a speci;c control process was reintroduced in AltaRica [6]
without any conscious reminding of this ;rst attempt.

Recognizable processes are those each of the three languages of which is recogniz-
able. Therefore, they can be represented by a ;nite automaton (or labeled transition
system), and the synchronized product of recognizable processes is easily represented
by the automaton obtained as a kind of product of the automata representing the com-
ponent processes. We privately used this construction to build up examples, and even
to prove some basic results, until it appeared that the synchronized product of labeled
transition systems was indeed “the” basic notion. This is why, in [2], the synchro-
nized product is de;ned on transition systems, and no longer on processes, although
transition systems are just seen as a way of specifying Nivat’s processes. Actually,
it is conceptually easier to work with transition systems than with languages. As an
example, Bergeron [7] drastically simpli;ed some proofs of Ramadge and Wonham
just by considering that the supervisor of a “plant” is a transition system rather than
a language.

The next step, that still took some time, was to make explicit the fact that a transition
system allows us to de;ne not only a triple but a whole bunch of languages, according
to the acceptance condition that is chosen for each of them. Then, the process is indeed
the transition system, and the triples that actually started the story de;nitively went
out of the picture. It only remained the notion of synchronized products of transition
systems [3].

However, the fact that we arrived at this notion as it is explained had an important
consequence: the states play no role at all in the synchronization mechanism (in con-
trast, for instance, with the s=r model of Kurshan [11]) and only the actions or events
of each component can be used to synchronize them. Indeed, the states of a transition
system are inside a black box, that the designer is allowed to open, but the other com-
ponents of the system to be synchronized are not. It follows that the synchronization
product is congruent with respect to the bisimulation equivalence.

The emergence of the synchronized product of transition systems as a basic notion
followed many experiments by hand. But it appeared very soon that it was impossible
to manage by hand the “combinatorial explosion” and it was obviously necessary to
implement this product in a software tool. Under the supervision of Maurice Nivat,
Alaiwan realized such a tool, together with some algorithms to analyze the structure
of transition systems [1]. It was the preliminary version of the tool christened MEC by
Maurice Nivat (it is a shortening of “Meccano”, the french name of the game also
known as “Erector set”).



34 A. Arnold / Theoretical Computer Science 281 (2002) 31–36

Fig. 1. A synchronized product of transition systems.

Several versions of the tool have been developed, until the last one, which is de-
scribed in [4] and which diDers from Alaiwan’s one by a much larger set of proper-
ties which can be checked on a transition system, so that MEC can be considered as
a model-checker for a logic described by Dicky [9].

This tool was used to design and check the embedded software of a household
electricity meter, as reported in [5] (Fig. 1 is a picture of this meter). Did Maurice



A. Arnold / Theoretical Computer Science 281 (2002) 31–36 35

Nivat imagine, when he published his paper [14], that, some years later, synchronized
products of transition systems would be installed in thousands and thousands of homes?

More recently, the synchronous product has been introduced as one of the conceptual
bases of the AltaRica formalism for describing complex industrial systems [6]. This
formalism is intended to serve as an input language for a software workbench devoted
to risk analysis. In order to comply with industrial needs, the synchronization product
has been extended in several ways. Some of these extensions are just notational short
cuts, others consist in minor modi;cations of the basic notion of synchronization prod-
uct, such as the introduction of priorities on the synchronization vectors. Two of them
oDer a special interest in the perspective of this review.

First, the complex systems are usually designed in a hierarchical way, and direct
interactions between components at a diDerent level of the hierarchy are forbidden for
modularity reasons (replacement of a subsystem by another one functionally equiva-
lent). Only indirect interactions are allowed. To implement this constraint, we have
reintroduced in the synchronization mechanism, the controller that was so early and
unwisely given up, but with an additional role: to provide an interface between the
lower and upper levels of the hierarchy.

Second, we had to renounce the dogma that states play no role in the synchronization
mechanism. In fact, in the systems we are interested in, in contrast with purely soft-
ware systems, some components can communicate and exchange information on their
respective states even in the absence of events or actions (just think of a turbine and
a steam generator connected by a pipe). The solution proposed in AltaRica is to split
the state of a transition system into two parts, a control part, which remains hidden,
and a visible part whose value depends on the value of the control part. For instance,
let us imagine that there is a valve between the generator and the turbine. It can be in
one of the two control states open or closed. The visible part of a state is the pair
of steam pressures Pg and Pt at the generator and the turbine side of the valve, which
can be high or low. If the valve is open then Pg =Pt . If it is closed then Pt = low.
(This example explains why the visible parts of a state are named “Pows”.) In the
generator–valve–turbine system, the information exchanged between the components
are expressed by stating that Pg is equal to the pressure delivered by the generator, and
that the pressure on the turbine is Pt . An action can modify only the control part of
the state, while the visible part is modi;ed either as a consequence of the modi;cation
of the control part of the state, or because of interactions with other components (for
instance Pt can go from high to low if the valve is closed or if the generator fails).

Although this synchronization mechanism can be expressed by synchronization
vectors (but at the cost of dramatically increasing the alphabet of actions of each
component), it is more natural and more usable to describe complex computerized sys-
tems whose components interact in two very diDerent ways, by physical mechanisms
(pressure, voltage, etc.) as well as by electronic control devices (control program of
a valve).

The base of any concurrency theory is the de;nition of concurrent events. The
synchronization product of Maurice Nivat is the way he formalized his view of this
central question. Like many other notions introduced by him in computer science, it is
both simple and powerful, because it directly addresses the core of the problem.



36 A. Arnold / Theoretical Computer Science 281 (2002) 31–36

Since this notion is not “marvellously intricate” it could not be the starting point of
a large set of theorems, although it suggested or renewed many problems in language
and automata theory. However, along the time, it revealed itself as a very fundamental
notion on which many works about concurrent systems and their veri;cation are based.

References

[1] H. Alaiwan, Algorithmes d’analyse des automates ;nis et applications aux problQemes de synchronisation,
Ph.D. Thesis, Universit%e Paris VII, 1983.

[2] A. Arnold, Transition systems and concurrent processes, in: G. Mirkowska, H. Rasiowa (Eds.),
Mathematical Problems in Computation Theory, Banach Center Publications, Vol. 21, Polish Scienti;c
Publishers, 1988, pp. 9–20.

[3] A. Arnold, Finite Transition Systems. Semantics of Communicating Sytems, Prentice-Hall, Englewood
CliDs, NJ, 1994.

[4] A. Arnold, D. B%egay, P. Crubill%e, Construction and Analysis of Transition Systems with MEC, AMAST
Ser. Comput., Vol. 3, World Scienti;c, Singapore, 1994.

[5] A. Arnold, D. B%egay, J.-P. Radoux, The embedded software of an electricity meter: an experience in
using formal methods in an industrial project. Sci. Comput. Programming 28 (1997) 93–110.

[6] A. Arnold, G. Point, A. GriDault, A. Rauzy, The AltaRica formalism for describing concurrent systems,
Fund. Inform. 40 (2000) 109–124.

[7] A. Bergeron, A uni;ed approach to control problems in discrete event processes, RAIRO-Inform. Th%eor.
27 (1993) 555–573.

[8] L. Boasson, M. Nivat, Centers of languages, in: Proceedings of the Fifth GI Conference in Computer
Science, Lecture Notes on Computer Science, Vol. 104, 1981, pp. 245–251.

[9] A. Dicky, An algebraic and algorithmic method of analyzing transition systems, Theoret. Comput. Sci.
46 (1986) 285–303.

[10] C.A.R. Hoare, Communicating sequential processes, Commun. ACM 21 (1978) 666–677.
[11] R.P. Kurshan, Modeling concurrent processes, in: Proceedings of Symposia on Applied Mathematics,

vol. 31, American Mathematical Society, Providence, RI, 1985, pp. 45–57.
[12] P.E. Lauer, P.R. Torrigiani, M.W. Shields, COSY—a system speci;cation language based on paths and

processes, Acta Inform. 12 (1979) 109–158.
[13] R. Milner, Processes: a mathematical model of computing agents, in: H.E. Rose, J.C. Shepherdson

(Eds.), Proceedings of Logic Collo., 1973, pp. 157–173.
[14] M. Nivat, Sur la synchronisation des processus, Rev. Techn. Thomson-CSF 11 (1979) 899–919.
[15] M. Nivat, A. Arnold, Comportements de processus, in: Collo. AFCET Les Math%ematiques de

l’informatique, 1982, pp. 35–68.
[16] P.J.G. Ramadge, W.M. Wonham, Supervisory control of a class of discrete events processes, SIAM

J. Control Optim. 25 (1987) 206–230.
[17] P.J.G. Ramadge, W.M. Wonham, The control of discrete event systems, in: Proceedings of the IEEE,

Vol. 77, 1989, pp. 81–98.


	Nivat's processes and their synchronization
	References


