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a b s t r a c t

In seismology, waveform cross correlation has been used for years to produce high-precision hypocenter
locations and for sensitive detectors. Because correlated seismograms generally are found only at small
hypocenter separation distances, correlation detectors have historically been reserved for spotlight
purposes. However, many regions have been found to produce large numbers of correlated seismograms,
and there is growing interest in building next-generation pipelines that employ correlation as a core part
of their operation. In an effort to better understand the distribution and behavior of correlated seismic
events, we have cross correlated a global dataset consisting of over 300 million seismograms. This was
done using a conventional distributed cluster, and required 42 days. In anticipation of processing much
larger datasets, we have re-architected the system to run as a series of MapReduce jobs on a Hadoop
cluster. In doing so we achieved a factor of 19 performance increase on a test dataset. We found that
fundamental algorithmic transformations were required to achieve the maximum performance increase.
Whereas in the original IO-bound implementation, we went to great lengths to minimize IO, in the
Hadoop implementation where IO is cheap, we were able to greatly increase the parallelism of our
algorithms by performing a tiered series of very fine-grained (highly parallelizable) transformations on
the data. Each of these MapReduce jobs required reading and writing large amounts of data. But, because
IO is very fast, and because the fine-grained computations could be handled extremely quickly by the
mappers, the net was a large performance gain.

& 2014 The Authors. Published by Elsevier Ltd.

1. Introduction

It has long been recognized that in collections of seismic data
recorded by the same instrument from sources in similar locations
there will be many similar seismograms (e.g. Geller and Mueller,
1980, Poupinet et al., 1984). Geller and Mueller (1980) attributed
the similarity to the fact that for small magnitude earthquakes,
propagation results in an effective low-pass-filtering of the signals
to become essentially the Green's functions, so repeated ruptures
of the same asperity produce the same seismogram.

Since the initial observations of doublets, researchers have
exploited the phenomenon in a variety of different ways. Much
work has centered on producing high-precision relocations of
clustered seismicity by correlating the waveforms to obtain high-
precision relative picks used to relocate the events. For example
Fremont and Malone (1987) and Got et al. (1994) imaged struc-
tures underneath active volcanoes by relocation of multiplets.
Rubin et al. (1999) imaged seismicity on creeping sections of the

Hayward fault. Hauksson and Shearer (2005) relocated 327,000
Southern California earthquakes using waveform cross correlation.

Seismic tomography based on correlation of ambient seismic
noise (Shapiro et al., 2005), seismic coda (Campillo and Paul,
2003), and higher-order methods e.g. C3 (Stehly et al., 2006) has
become a very important means of building high-resolution
models of the Earth's crust and upper mantle. Although not the
topic of this paper, these are data-intensive operations and could
conceivably benefit from a Hadoop implementation at a suffi-
ciently large scale of implementation.

Waveform correlation can also be used as the basis for highly
sensitive detectors. This application has been known since at least
the 1960s (Anstey, 1966) and has been employed on numerous
occasions since. Because the correlation “footprint” of high fre-
quency signals is generally quite small, correlation detectors have
been used almost exclusively as “spotlight” detectors aimed at
small regions of interest. Harris and Dodge (2011) used correlation
in combination with subspace detectors (e.g. Harris, 2006) in an
automated system to track events in an aftershock sequence.

However, interest in using correlation to process events over
broader regions has grown. For example Schaff and Richards
(2004, 2011) discovered that about 13% of 18,000 earthquakes
recorded at regional distances in China were sufficiently well
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correlated that they could be detected and located using waveform
correlation.

To make better use of correlation relationships in seismic data
analysis we need to understand what fraction of observed seismicity
displays correlation relationships as functions of observed properties
(e.g. source-receiver distance, window-length, bandwidth), and cor-
related source differences (e.g. location, depth, magnitude). The
longer-term goal is to understand the physics underlying observed
correlation behavior in terms of source similarity and path effects.

However, an impediment to our ability to investigate seismo-
gram correlation is the computational costs of determining these
relationships for the tens of thousands of seismic events each year
observed at each of the tens of thousands of stations where data is
available. Without an extremely efficient way of performing these
computations, it is simply too difficult and time consuming to
perform the many correlation runs that may be required to
achieve a deep understanding of the phenomena under study.

This paper presents a methodology to significantly improve the
speed at which massive amounts of seismic event data can be
processed to look for correlation behavior using a Hadoop archi-
tecture. A result is to explore and expose the correlation behavior
of large collections of seismic data. An expected outcome after
analysis of these results is completed will be to make correlation a
more useful tool in both geophysical research and seismic event
cataloging operational systems.

2. Applying correlation to next-generation seismic pipelines

Organizations tasked with monitoring seismicity around the
world (e.g. the United States Geological Survey National Earthquake
Information Center, the Comprehensive nuclear-Test-Ban Treaty
(CTBT) International Data Center, the US National Data Center, the
International Seismological Center) and many in specific regions use
a processing paradigm that was developed in the 1980s when
average computer processing power was a tiny fraction of what is
commonly available now. A single pass is made over the waveform
data to extract a compact set of parameters such as seismic phase
arrival time, amplitude and period. These are input to a phase
associator, and the associated phases are fed to a locator, which
produces the hypocenter solution. Although numerous refinements
have been added over time, the basic procedure is unchanged.

For a variety of purposes, from improving the monitoring of the
CTBT, to better characterization of earthquake hazard, to natural

resource extraction and reservoir monitoring, it is necessary to
detect, locate, and identify seismic events down to very low
magnitudes even in the presence of interfering signals. As we near
the limits of what can be done using the approach discussed above,
pattern-matching-based processing looks increasingly attractive. A
correlation between a new signal and a reference one, with a
sufficiently high statistic, is at once a detection, location, and
identification, assuming those properties are known for the template.
A correlation detection and identification can be made with as little
as one channel, without needing an associator. Since correlation
detectors are much more sensitive than the power detectors used in
current systems, it is likely that the detection threshold could be
pushed down in all regions for which correlators are available.

Before considering the engineering aspects of a large-scale
correlation-based seismic pipeline, it is crucial to understand how
effective we can expect it to be. We need to know how much of the
Earth's seismicity is correlated and how it is distributed. It may be
that an appropriate system could only usefully target specific regions,
and therefore its scope should be limited accordingly.

At Lawrence Livermore National Laboratory (LLNL) we operate
a research database of seismic events and waveforms for nuclear
explosion monitoring and other applications. The waveforms are
digital time series of ground motion recorded by seismometers
installed at the seismic stations. Typically, the seismometers
produce output on multiple channels corresponding to different
orientations and pass bands, so often a single event will be
recorded on multiple channels at many stations. The LLNL data-
base contains several million events associated with more than
300 million waveforms at thousands of stations (Fig. 1). We have
correlated the waveforms in this database as a first step towards
understanding the global distribution of correlated seismicity and
to begin construction of a library of pattern detectors that could be
used in a template-based seismic processing pipeline. We pro-
cessed all channels to ensure no data are missed even though this
entails some redundancy.

In this exploratory effort we correlated catalog events in a
number of specific seismic phase windows (e.g. P, S) and the entire
signal length, as well as in a number of frequency bands for each
window. For each of the distinct station-channels (STA-CHAN) for
which we have waveforms, we found all events whose catalog
locations are separated by 50 km or less (“islands”) and with average
event-station distance o¼901. For each pair of waveforms we
applied the processing illustrated in Fig. 2. In all �6.8 billion
waveform windows were processed.

Fig. 1. The waveform density (number of waveforms in database per cell divided by the total number of waveforms). Color is proportional to log(density) with black lowest
and white highest. Note that although the data set has global coverage, the density is highest in the Middle East, Eurasia, and Western North America.
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A significant step in processing each window was identification
of low SNR windows and artifacts. Low SNR is only a problem
because it wastes CPU time, but corrupted and/or bad data (e.g.
glitches, dropouts, severe clipping, no recorded signal, etc.) corre-
late quite well with each other and produce invalid results.

We used a decision tree classifier framework for quality control
(QC) to automatically remove the problem signals from the
correlation results. In the initial implementation we performed
this step as part of results post-processing, and it resulted in the
removal of nearly 280 million correlation pairs. In the Hadoop
implementation we used the classifier to remove problem data
prior to the correlation step. This gives a significant performance
improvement, because for STA-CHAN “islands” with large N, each
segment removed for QC reasons, results in N fewer correlations
being computed.

Our first full-scale attempt at this process was run on an
architecture consisting of 4 servers with 44 cores and 613 GB of
RAM. All metadata and results were stored in an Oracle database,
and the �50 TB of waveform data were managed by a 2-head
Hitachi file server. The time required to process the data was about
42 days. Over 370 million correlated waveform segments were
found, and these results are still being analyzed.

Because we anticipate repeating this processing with even
larger datasets and with variations such as multi-channel correla-
tions, we must reduce the processing time significantly. This
motivated our decision to move the entire workflow to a MapRe-
duce architecture, which is the subject of the rest of this paper.

The transition of architectures from client–server to Hadoop is
just the latest in a series of optimizations aimed at making the
correlation processing fast. The client–server architecture used to
process the dataset was itself the product of months of tuning. We
knew at the outset that the correlation processing would have to
be efficient, so we implemented a frequency-domain correlator
that cached FFTs and autocorrelations. This made the cost of
correlation O(N) rather than the O(N2) expected in a naive

implementation. We also parallelized the STA-CHAN processing
at the same time. Later improvements included switching to an
FFT object that used pre-computed butterflies and caching those
objects.

Profiling showed that often the cores were mostly idle because
the threads were blocked reading waveform data. We were able to
partially address this by replacing our simple cell-based nearest-
neighbor calculation with a calculation using an R-Tree (Guttman,
1984). This elimination of redundancy gave about a factor of
3 speedup. At this point, most of the remaining tuning addressed
2nd order issues, but we did discover one major and somewhat
surprising performance hit. The application was creating and
destroying objects at such a high rate, that the garbage collector
started to soak up a significant fraction of CPU. In the end we had
to revert to primitive types for a number of classes that were
particularly troublesome.

3. Hadoop software framework

Apache Hadoop is an open source software framework for
deploying data-intensive distributed applications. It implements a
computational paradigm called MapReduce and the Hadoop Dis-
tributed File System (HDFS) derived from Google's MapReduce and
Google File System (GFS) respectively (Dean and Ghemawat, 2004;
Ghemawat et al., 2003).

The primary motivation of the MapReduce programming
model is to create independent tasks that operate on arbitrary
partitions of the input dataset in parallel during the map phase.
During the subsequent reduce phase, data that must be rejoined or
summarized are shuffled together and processed. When run over a
distributed file system such as HDFS with nodes connected to
dedicated storage, this framework naturally leverages data locality,
whereby tasks running on a particular node process data resident
to that node. By moving computation to the data, Hadoop allows

Fig. 2. A schematic illustration of the processing applied to a single channel for a pair of events observed by a single station. For each of B bands the seismograms are filtered
and cut into W phase windows. For each window pair, the cross correlation function is computed and the max and its associated shift are recorded in the database.
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exceedingly fast IO and compute performance for highly paralle-
lized algorithms.

Hadoop is written in Java, and thus writing MapReduce jobs in
Hadoop most commonly involves writing explicit mappers and
reducers in Java as well. This deliberate approach to MapReduce
programming can encourage the developer to attempt to find a
simple mapping of the problem to a single mapper and a single
reducer. For many applications, including the waveform correlator,
limiting the implementation to one MapReduce job means limit-
ing parallelism where it could be of the greatest benefit. Moreover,
the standard Java approach requires significant boilerplate for each
job and provides little guidance for chaining jobs into a workflow.
Consequently, we explored Pig (Natkovich, 2008) in an effort to
find a higher-level tool for applying the MapReduce model.

Apache Pig is a platform for creating MapReduce workflows
with Hadoop. These workflows are expressed as directed acyclic
graphs (DAGs) of tasks that exist at a conceptually higher level
than their implementations as series of MapReduce jobs. Pig Latin
is the procedural language used for building these workflows,
providing syntax similar to the declarative SQL commonly used for
relational database systems. In addition to standard SQL opera-
tions, Pig can be extended with user-defined functions (UDFs)
commonly written in Java. We adopted Pig for our implementation
of the correlator to speed up development time, allow for ad hoc
workflow changes, and to embrace the Hadoop community's
migration away from MapReduce towards more generalized DAG
processing (Mayer, 2013). Specifically, in the event that future
versions of Hadoop are optimized to support paradigms other than
MapReduce, Pig scripts could take advantage of these advances
without recoding, whereas explicit Java MapReduce jobs would
need to be rewritten.

3.1. First proof of concept

As part of a pilot project facilitated by Livermore Computing
(LC), LLNL's institutional high-performance computing group, an
effort began to explore porting the waveform correlator to
Hadoop. LC's development cluster consisted of 10 Westmere nodes
with 12 cores and 96 GB of RAM each. Most importantly for the IO
bound waveform correlator, each node also featured dedicated
storage to promote data locality. To compare the performance of
the existing solution to Hadoop, a 1 terabyte (TB) test dataset was
derived from a seismically dense region of the western United
States and copied into HDFS.

Taking full advantage of the increased computational power and
IO throughput of a Hadoop cluster requires significant parallelism of
the application-level algorithms. Because every STA-CHAN in the
original waveform correlator implementation was an independent
task, and there were over 10,000 such tasks to perform, it would
seem that the work was more than distributable enough to keep 10
hard-drives and 120 compute cores busy. In practice, however, there
was significant imbalance in the effort performed by each task, as
illustrated by Fig. 3, which shows the original implementation's time
to completion for each task on the 1 TB test dataset.

As the histogram shows, most tasks in the original implemen-
tation executed in a matter of seconds. For these tasks, IO is the
natural bottleneck as they do very little beyond reading a wave-
form, rejecting it, and requesting the next candidate. However, a
handful of STA-CHANs containing dense clusters of high-quality
data required several hours to fully process, imposing clear
computational constraints on the performance. Any single job
MapReduce implementation would be similarly constrained by
these outliers, given that each mapper and reducer is run within
its own single thread of execution. In order to increase the
parallelism of the Hadoop correlator, and consequently improve
performance, the problem needed to be broken up into finer-grained

sub-problems that could be more evenly distributed across the
cluster topology.

3.2. Overview of Pig workflow

The IO limitation of the original waveform correlator hardware
lent itself to an architecture that attempted to minimize IO, going
so far as to ensure that each waveform was read no more than
once. In contrast, the Hadoop implementation takes advantage of
the improved IO throughput by trading reads and writes to gain
increased parallelism. As Fig. 4 shows, the first proof of concept
Hadoop implementation added many additional reads, writes, and
transformations to the data that did not exist in the original
implementation. Despite this increase in design complexity, IO,
and computation, a dramatic increase in parallelism across each of
the steps allowed us to take full advantage of the cluster hardware.
This increased problem granularity meant reduced work done in
the bottlenecks, and spread the most computationally intensive
procedures over many more threads of execution. A discussion of
the major processing steps implemented in this pipeline follows.

3.2.1. Join metadata
For the purpose of minimizing disk usage and promoting con-

sistency, LLNL maintains a highly normalized relational database
management system (RDBMS) for storing seismic STA-CHAN and
waveform metadata. This solution has worked well for our more
typical interactive, single-workstation use cases, but creates an
immediate bottleneck for highly parallel applications. Specifically,
any application spread across tens of nodes and hundreds of cores
can quickly saturate both the database's CPU and the bandwidth of
the network interconnect. So it makes sense in an environment such
as Hadoop to denormalize the dataset up front. We pre-join all tables
to produce a single table containing all the columns required by the
algorithm. By doing so, the need to request data randomly is
eliminated, and the dataset can easily be partitioned and sent to
independent tasks for processing. In contrast, a normalized solution
would require each task to make requests for missing chunks of
metadata, imposing a network limitation on the task.

Pig provides a native “join” function for taking two structured
datasets and denormalizing them by some join predicate. Using
Apache Sqoop, a command-line tool for transferring data between
relational databases and Hadoop, we ingested all necessary Oracle
tables into HDFS, and then used Pig to join the datasets into one
denormalized metadata table containing the origin and station
information for all waveforms as well as the waveform metadata.

Fig. 3. The time to completion for each STA-CHAN task on the original architecture
for the test dataset. Outlier tasks take several orders of magnitude longer to
complete than average.
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Fully denormalized, our metadata took just over 50 GB of usable
space on disk.

We also joined the metadata to the binary waveform signal
data directly by attaching a STA-CHAN-EVENT key onto the wave-
form data itself. By defining a simple schema consisting only of
two fields (the unique key and the binary waveform data), we
were able to perform a similar join in Pig to create a fully

denormalized table containing all the necessary data for a given
waveform in a single row along with the trace itself.

3.2.2. Get candidates
Having the dataset fully denormalized into rows of waveforms

along with all relevant STA-CHAN and event metadata, we next

Fig. 4. The first proof of concept implementation of the waveform correlator as a Pig workflow consisting of many finely-grained passes over the data.
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approached the issue of cutting and filtering the waveforms into
valid candidates for correlation. This was in contrast to the original
processing pipeline that took raw waveforms, checked for nearest
neighbors, then cut and filtered the set of neighbors together. In a
scenario where IO is the primary performance consideration, it
makes sense to avoid cutting and filtering as a preprocessing step,
as it necessarily requires reading all raw waveforms once, then
writing and reading back in all cut and filtered waveforms in a
second pass.

But, when IO is cheap, additional passes over the data to
massage them into a more workable state can offer significant
parallelization benefits. Cutting and filtering a waveform is an
independent operation, and can thus be parallelized more finely
than the complete set of operations on a STA-CHAN. For the 1 TB
test dataset consisting of nearly 10 million traces on about 10
thousand STA-CHANs, that represents a factor of 1000 more tasks
to be spread across the cluster. Such smaller tasks are necessarily
less variable in the amount of work to be done, and thus distribute
the computational effort more evenly.

Another benefit of performing the candidate generation task early
in the processing is that it creates an opportunity to filter the input
dataset down to something smaller and more manageable. This may
seem counter-intuitive considering that S waveforms cut into W
windows and filtered into B bands yields as many as SWB candidates.
In practice, however, the majority of these preliminary candidates are
discarded for having low signal-to-noise ratios or otherwise failing
one of the decision tree classifiers used to assess the quality of the
data. For the 1 TB test dataset, only about 1/2 S, or 4.5 million
candidates were output from the candidate generation task.

3.2.3. Nearest neighbors
Left with only the cut and filtered waveforms that passed the

initial quality control tests, the nearest neighbor calculation, too,
can be parallelized beyond the STA-CHAN granularity with fewer
events per task. This is because we only wish to correlate wave-
forms that are cut into the same window and filtered into the
same band, and many of the events for a particular window and
band were discarded in the previous step. Thus we can have a
separate task for every STA-CHAN-WINDOW-BAND with only a
fraction of the events to be processed per task.

An important implementation detail of the nearest neighbor
calculation is that every task requires all of its event spatial data
(latitude/longitude coordinates) to be in memory at once. At this
point in the processing, this event metadata is currently in a
denormalized table with all the binary waveform data, which will
certainly not all fit in memory at once for a given STA-CHAN-
WINDOW-BAND. Fortunately, Pig provides a mechanism to specify
a subset of the fields (or columns, in relational database terms) to
be sent to a given function. To reconcile the fact that the spatial
event data are small enough to fit in memory, but the waveform
data are not, we calculate the nearest neighbors only once.

The output from the nearest neighbor calculation will provide
two additional pieces of metadata for each waveform: an “island”
identifier and a step number. An island of events is a connected
component in graph terminology. Given our criterion that a
neighboring event is within 50 km, we can say that no two events
in separate islands are within 50 km of each other. This is useful
for the purpose of defining finer-grained sub-problems, as indivi-
dual STA-CHAN-WINDOW-BAND-ISLANDs can now be correlated
entirely independently, in parallel. However, even islands of events
can be too large to fit entirely in memory, and so we need one
additional piece of information to constrain the problem.

As mentioned previously, we output a step number for each
waveform, representing the order in which we traversed the
waveform's event within its island in the nearest neighbor

calculation. We traverse the events within a task by first drawing
an event from the set at random. We then use an R-Tree (Guttman,
1984) to fetch all neighboring events within 50 km with logarith-
mic asymptotic time complexity, and add the neighboring events
to a queue. The events on the queue are the next to be processed
in a similar manner, adding their previously unseen neighbors to
the queue until no more neighbors exist, at which point we have
discovered an island. Concretely, we say that for an island of N
events, the waveformwith step 1 corresponds to the first event we
draw at random to seed the island, and the waveform with step N
corresponds to the last event drawn from the queue that has no
previously unseen neighbors. By processing events in a queue,
instead of simply drawing them at random, we perform a breadth-
first traversal of the island's corresponding graphical representa-
tion. This enables us to process neighboring events together,
keeping them in memory while we process their neighbors, then
discarding them as we migrate towards sections of the island
farther away. Outputting the step value enables us to recreate this
migratory processing without needing to keep all the spatial event
information in memory during future processing tasks.

With the island and step metadata generated, this information
is then rejoined to the complete waveform dataset, and grouped
together by STA-CHAN-WINDOW-BAND-ISLAND using standard
Pig functions.

3.2.4. Correlate
Every STA-CHAN-WINDOW-BAND-ISLAND can be processed

independently. First, all events within an island are ordered by
ascending step number. This ordered bag of waveform data is then
fed to a user-defined function: CORRELATE. This is a special kind of
user-defined function called an “accumulator” that processes
elements within the ordered bag individually as opposed to
loading them into memory at once. In this way, the CORRELATE
function is stateful, invoked with one waveform at a time, and
outputting to a separate bag of correlations as neighboring events
are fed in. These correlations form the final output of the pipeline
once flattened into a conventional comma-delimited text file with
appropriate metadata attached.

Before we accumulate our first waveform, we define an event
queue we will add to in the same order as we accumulate events,
and we set a variable “current” to define the waveform against
which all incoming waveforms will be correlated until they are no
longer neighboring events, at which point we can safely discard
the current event. This works because of the way we have ordered
our events by step number, such that if an event follows another,
either it is a neighbor or there are no more neighbors to process.

Fig. 5. A comparison of processing times for the test dataset on the original
architecture (left) and the first Hadoop implementation (right). Times are in
seconds.
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A formal proof of this claim, with accompanying pseudo-code of
the CORRELATE algorithm, can be found in Appendix.

Once there are no more neighbors to process, we remove the
next event from the queue and declare it to be the current event.
Necessarily, the incoming event must be a neighbor of the newly
declared current event, or there are no unseen events for the
current event. This is shown by Lemma 1 (Appendix). Once there
are no more incoming events to accumulate, we drain the queue of
its remaining events: correlating each newly removed event
against all remaining events on the queue. In practice, we again
speed up the neighbor calculation with an R-Tree.

3.3. Performance improvements and bottlenecks

Implementing the MapReduce workflow described above and
deploying it on the Hadoop test cluster yielded a significant

performance improvement over the original implementation of
the correlator. However, certain bottlenecks in the processing
pipeline remained. As Fig. 5 illustrates, processing time for 99%
of the 1 TB test dataset went from nearly 28 h on existing
hardware to 45 min on Hadoop. However, we observe that for
the last 1% of the 1 TB test dataset the performance gap does not
close as much between the two implementations: 30 h on existing
hardware to over 6 hours on Hadoop.

Our initial suspicion was that the loose connectivity constraint
imposed on the islands was leading to sprawling, yet sparse,
islands of events that could be broken up into smaller, and
minimally overlapping components. However, experimentation
with algorithms including minimum graph cuts (Hao and Orlin,
1994) and the density-clustering DBSCAN (Ester et al., 1996)
showed that our dataset contained a handful of large, highly
dense islands of quality events. This made the prospect of further

Fig. 6. The revised Hadoop processing flow with the added “Get Bounds” and “Fourier Transform” processing steps.
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refining the granularity of our tasks difficult, since a fully con-
nected graph of events requires that every event be correlated
against every other event. In other words, in places where
seismicity concentrated there can be a very large number of
events within 50 km of each other that require all possible pairs
of correlations to be generated.

In graph theory terms we can think of an island of neighboring
events as a connected component of V vertices (events) and E edges
(neighboring relations). In the CORRELATE process described above,
we take time-domain waveform segments, and align themwith their
neighboring event segments before converting them into the fre-
quency domain via a Fast Fourier Transform (FFT). Once the event and
all its neighbors are in the frequency domain, we correlate them to
produce a correlation coefficient between 0 and 1. Thus we must
perform O(E) FFTs per STA-CHAN-WINDOW-BAND-ISLAND task. For
the extremely dense outlier islands mentioned above, E � V2, which
implies that O Eð Þ ¼ OðV2Þ. For our test dataset, the largest complete
island consisted of about 10,000 events, and thus roughly
100,000,000 FFTs confined to a single thread of execution. Naturally,
this led us to consider ways to do better.

3.4. Refined proof of concept

The goal we had in mind for improving the performance of
CORRELATE was to reduce the OðV2Þ FFTs down to a more
manageable OðVÞ. An ideal solution would be to simply compute
all FFTs once per event (vertex) and use the transformed, fre-
quency domain segments in the CORRELATE step. This solution
would have the added benefit of being embarrassingly parallel,
capable of being performed as a pre-processing step with one task
per waveform segment. However, calculating the FFTs once per
event requires additional information about all the events to be
correlated that is missing a priori. Before we can transform the
segmented data into the frequency domain we need to know the
minimum pre- and post-picked arrival times for which all seg-
ments to be correlated together have data. Once this information is
obtained for a given STA-CHAN-WINDOW-BAND-ISLAND, all the
segments can be trimmed down to the same length in seconds.
Without trimming the segments to the intersection of their
lengths in this manner, we run the risk of producing separate
power-of-two length output segments from the FFTs. For the
frequency-domain multiplication to work, the basis must of course
be the same, and so the minimum pre- and post-pick times must
be known prior to performing the FFT.

Under the constraint that a given waveform could only be read
from disk once, calculating island-wide pre- and post-pick times
would be impossible without exhausting heap memory, so in our first
implementation we opted instead for performing more FFTs in
exchange for less IO. However, that implementation revealed that
reading and writing the entire dataset to HDFS could be performed on
the order of seconds and minutes. Consequently, our revised solution
was simple: add two more passes over the data to the pipeline.

The first new task would accumulate an entire STA-CHAN-
WINDOW-BAND-ISLAND and calculate the pre- and post-pick
times (GetBounds). Those two pieces of additional metadata
would then be appended onto the segment-level metadata, and
all FFTs would be calculated (FourierTransform). Each task would
take a single waveform and produce exactly one transformed
segment, allowing this step to be massively parallelized. This
revised workflow is shown in Fig. 6. Fig. 7 shows that adding the
two additional passes over the data, in spite of the increased IO
cost, yielded a factor of 10 performance improvement in the
CORRELATE routine. The added cost incurred by the highly dense
outlier islands was greatly diminished.

Both of the additional processing steps contributed negligibly to
the overall runtime of the system (less than 15 minutes combined).

Most importantly, the CORRELATE runtime was reduced to under an
hour of processing. In aggregate, the refined Hadoop implementation
yielded a factor of 19 improvement over the original waveform
correlator, going from 48 h on the 1 TB test dataset to under 3 hours
in total.

These performance gains include the time to read and write the
data from and to HDFS, and were obtained in spite of the dramatic
increase in total IO over the original implementation shown in Fig. 8.

4. Discussion

The Hadoop model of distributing the data with the computa-
tions presents a paradigm shift for the data-intensive scientific
computing community. It demonstrates the need to change
algorithmic priorities to fully take advantage of these powerful
systems. Instead of asking ourselves how we can decrease the IO
burden, as we did in our original implementation of the waveform
correlator, we now find ourselves asking how we can increase the
parallelism of our algorithms. Whereas before we had lots of CPU
which could not be fully utilized, now we have blazingly fast IO
and imbalanced CPU load. The process of finding new ways to
break apart one’s algorithms into finer-grained sub-problems is at
the heart of the Hadoop philosophy: scale out, not up.

Fig. 7. The comparison of processing times for the test dataset on the original
architecture (left) and the final Hadoop implementation (right). Times are in
seconds.

Fig. 8. A comparison of read/write times for the original implementation and the
final Hadoop implementation. Times are in seconds.

T.G. Addair et al. / Computers & Geosciences 66 (2014) 145–154152



Based on our 1 TB test data set and the factor of 19 performance
increase found by moving to the HADOOP architecture, we expect we
will be able to re-correlate our entire �50 TB, �300millionwaveform
database in about 2 days instead of the original 42 days. This will
dramatically improve our ability to conduct research on massive
seismic datasets, and we intend to describe those results in future
papers. The lessons of this study, making use of HADOOP to increase
parallelism instead of reducing IO, can apply to many massive datasets
of time series data, which are common in geophysics and other fields.

There is an important caveat, however: Namely the time cost of
getting data into a Hadoop cluster. In our case the limitations are due
to our NAS speed and to network throughput limitations. We estimate
that one to two months may be required for an initial load of our
complete holdings. For academic users who use data held at remote
data centers, the latency would likely be much larger.

One solution may be to make the Hadoop cluster the only place
holding waveforms and their metadata. In this model, users
wishing to perform analytics submit jobs to the cluster, but users
wishing to retrieve data make requests to a server which in turn
retrieves the data from HDFS, packages it and returns it to the
requester. We are studying this option for our own use.

The Hadoop ecosystem is evolving very rapidly with numerous
SQL-over-Hadoop, streaming analytics, and time series databases
under development. While this makes it hard to decide on an
implementation right now, it seems very likely that in a year or
two there will be some clear winners whose technology can be
adopted for the seismological community.
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Appendix

The CORRELATE function, in pseudo code, works as follows:

Lemma 1. In the CORRELATE calculation, there is at all times a
current event being correlated against all incoming events being
removed from the queue. If an incoming event is not the neighbor of

the current event, then all of the current event’s neighbors have been
correlated against the current event.

Proof. In the NEAREST NEIGHBORS calculation, there is at all
times a current event whose step number corresponds to the order
it was removed from the queue in the breadth-first search. All of
the current event's unseen neighbors are added to the queue
together and assigned a step number greater than that of the
current event. All previously unseen neighbors will be processed
in a sequence together called the unseen sequence. □

By induction on the current event in the CORRELATE calcula-
tion, we will show that CORRELATE has correlated all of the
current event's neighbors (the current candidates) by the time
an incoming event is accumulated that is not a current candidate.

In the base case, at step 1, we accumulate the first incoming
event from the bag of island events ordered by step number and
promote it to be the current event. There are two possibilities:
either the current event has an unseen sequence of current
candidates to correlate, or it does not. If there is no remaining
unseen sequence to process, then our claim is correct by defini-
tion. Thus we assume that the current event has an unseen
sequence that needs to be processed. If the next incoming event
is not a current candidate, then it must be part of another event's
unseen sequence by definition of the connectivity of an island. By
definition of the current event, the incoming event must be part of
the unseen sequence of an event with a higher step number than
the current event. But the current event’s unseen sequence must
necessarily come before the unseen sequence of any subsequent
events by definition of the step number, and so this is a contra-
diction. Thus there are no more neighbors to correlate against the
current event.

Suppose the claim holds for current events up to step k�1. At
step k, we remove the kth event accumulated from the queue and
promote it to be the current event. We then proceed to correlate it
against all the elements on the queue. If the current event had any
neighbors with a lower step number than itself, they were
correlated earlier in the process by our assumption. Thus the only
current candidates remaining must come from incoming events.
Without loss of generality, we can apply the same reasoning
to incoming events as applied in the base case to demonstrate
that all remaining neighbors must be part of the next incoming

sequence, or there are none left to correlate against the current
event, and so the CORRELATE algorithm does not miss any
potential correlations.

current¼null

queue¼new Queue()

CORRELATE(incoming):

if current¼¼null:

current¼incoming

else:

queue.add(incoming)

if neighbors(current, incoming):

correlate(current, incoming)

else:

while not neighbors(current, incoming):

current¼queue.dequeue()

for w in queue:

if neighbors(current, w):

correlate(current, w)
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