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SUMMARY

Protein-protein interactions play a central role in all
cellular processes. Insight into their atomic architec-
ture is therefore of paramount importance. Cryo-
electron microscopy (cryo-EM) is capable of directly
imaging large macromolecular complexes. Unfortu-
nately, the resolution is usually not sufficient for
a direct atomic interpretation. To overcome this,
cryo-EM data are often combined with high-resolu-
tion atomic structures. However, current computa-
tional approaches typically do not include informa-
tion from other experimental sources nor a proper
physico-chemical description of the interfaces.
Here we describe the integration of cryo-EM data
into our data-driven docking program HADDOCK
and its performance on a benchmark of 17 com-
plexes. The approach is demonstrated on five sys-
tems using experimental cryo-EM data in the range
of 8.5–21 Å resolution. For several cases, cryo-EM
data are integrated with additional interface informa-
tion, e.g. mutagenesis and hydroxyl radical footprint-
ing data. The resulting models have high-quality
interfaces, revealing novel details of the interactions.

INTRODUCTION

Protein interactions underlie most of the complexities encoun-

tered in the cell. They play a determining role in processes ran-

ging from protein translation to muscle contraction. Numerous

diseases are the result of mutations at the interface of protein

complexes (Joerger and Fersht, 2007; Lage, 2014). For a thor-

ough and fundamental understanding of these processes and

rational drug design, knowledge of these interactions and inter-

faces at an atomic level is of paramount importance (Wells and

McClendon, 2007; Nero et al., 2014). Unfortunately, the number

of available high-resolution structures of protein complexes

determined by either X-ray crystallography or nuclear magnetic

resonance (NMR) spectroscopy remains rather sparse com-

pared with the size of the interactome (Mosca et al., 2013; Petrey

and Honig, 2014).

Cryo-electron microscopy (cryo-EM) is a technique capable of

imaging large biomolecular complexes in their native hydrated

state (Orlova and Saibil, 2011). The resolution is, however, usually
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limited tosuchanextent that adirectatomicviewof the interface is

out of thequestion. Inorder to remedy this, cryo-EMdataareoften

combinedwith high-resolution atomic structures (Esquivel-Rodrı́-

guez and Kihara, 2013). The simplest and most common way of

building macromolecular assemblies into cryo-EM maps is by

manual fitting of atomic structures using dedicated graphics soft-

ware (Baker and Johnson, 1996; Goddard et al., 2007). A more

objective but less used method is full-exhaustive search rigid-

body fitting, for which a plethora of software has been developed

as reviewed in Esquivel-Rodrı́guez and Kihara (2013). Still, as the

resolution decreases, placement of subunits becomes ambig-

uous and more models need to be sampled and/or additional

data incorporated into themodeling to generate sensiblemodels.

Protein-protein docking is in principle well suited for this task

(Moreira et al., 2010; Huang, 2014), since it naturally samples a

large number of conformations and can take into account addi-

tional sources of information for scoring and/or for driving the

docking process (Karaca and Bonvin, 2013a; Rodrigues and

Bonvin, 2014). Several docking programs have incorporated

cryo-EM data into their work flow. MultiFit automatically seg-

ments the cryo-EM density using a Gaussian mixture model to

deduce anchors, subsequently docking the components of the

complex onto the anchors (Lasker et al., 2010). EMLZerD uses

the cryo-EM data to score the models using 3D Zernike descrip-

tors (Esquivel-Rodrı́guez and Kihara, 2012). A recent approach

has been implemented in ATTRACT-EM (De Vries and Zacharias,

2012), which represents the cryo-EM data by a Gaussianmixture

model and fits the subunits into the map in a procedure reminis-

cent of Kawabata’s approach (Kawabata, 2008); the resulting

models are then refined. Most of thesemethods, however, sepa-

rate the use of the cryo-EM data from the use of other sources of

information: They first fit the structures in the density and only af-

terwardmight take into account the physico-chemical properties

(energetics) of the interface. Furthermore, they usually do not

actively use additional orthogonal information that may be avail-

able, such asmutagenesis ormass spectrometry cross-link data.

Only a few approaches have been published that can incorpo-

rate a variety of data (Alber et al., 2008), one of which is the Inte-

grative Modeling Platform (IMP) developed by the Sali group,

which has the capability of integrating cryo-EM data among

others (Topf et al., 2008; Schneidman-Duhovny et al., 2012; Ve-

lázquez-Muriel et al., 2012). Another approach is our in-house

data-driven docking software HADDOCK (Dominguez et al.,

2003; De Vries et al., 2010a), which is already capable of actively

using information from various sources, such as mutagenesis,

NMR H/D exchange and cross-links data, to name only a few.

In addition, it is able to deal with multiple subunits (Karaca
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Figure 1. Representation of the Rigid-Body Docking Protocol in HADDOCK-EM

(A) Simulated 15-Å cryo-EM data of the 7CEI complex.

(B) The density with centroids (gray spheres) representing the approximate center of mass (COM) of each subunit.

(C) Initial docking setup in HADDOCK. Distance restraints are defined between the COM of chain A (light gray) and B (dark gray) of 7CEI and their corresponding

centroids.

(D) An initial complex is formed after a rigid-body energy minimization (EM).

(E) The position of the subunits is approximately correct but their orientation in the cryo-EM map should still be determined.

(F) A fine rotational search is performed around the axis that is formed by the line joining the two centroids. The orientation with the highest cross-correlation value

is chosen.

(G) A final rigid-body EM is performed now directly against the cryo-EM data using a cross-correlation-based potential without the centroid-based distance

restraints.
et al., 2010), can handle proteins, peptides (Trellet et al., 2013),

DNA (Van Dijk et al., 2006), and RNA complexes and any combi-

nation thereof. HADDOCK leverages its unique ability to combine

multiple structural data into the modeling process to implement

powerful strategies to deal with large domain conformational

changes (Karaca and Bonvin, 2011). Here we describe how we

have incorporated cryo-EM data into HADDOCK, such that the

density is actively used as an additional energy termduring dock-

ing, scoring, and flexible refinement. These cryo-EM restraints

can be combinedwith all other already available sources of infor-

mation and restraints supported in HADDOCK.We first report on

the optimization and benchmarking of our method on 17 com-

plexes from the protein-protein docking benchmark 4.0 (Hwang

et al., 2010) using simulated data of 10, 15 and 20 Å, and a

multi-component symmetrical complex. Then we demonstrate

its applicability in five cases using available experimental data

for two ribosome complexes, based on 9.8 Å (Guo et al., 2011)

and 13.5 Å (Boehringer et al., 2012) data; two virus-antibody

complexes using 8.5 Å (McCraw et al., 2012) and 21 Å (Wang

et al., 2013) resolution data; and a symmetric pentamer using

16 Å negative stain data (Daudén et al., 2013). In several cases,

additional interface information is included based on mutagen-

esis data and the biology of the system. The resulting models

have high-quality interfaces without the clashes usually found in

manually fitted models, revealing new details of the interactions.

RESULTS AND DISCUSSION

Implementation of Cryo-EM Data into HADDOCK
We first describe the implementation of cryo-EM restraints into

the rigid-body docking stage of HADDOCK (HADDOCK-EM,

Figure 1). The approximate position of the center of mass

(COM) of each chain in the density map is represented by a

centroid. The positions of these centroids can be determined
950 Structure 23, 949–960, May 5, 2015 ª2015 Elsevier Ltd All rights
in multiple ways: subunits can first be placed manually in the

density in the correct position after which the COM can be

calculated; a full-exhaustive cross-correlation search of the

chains in the density using rigid-body fitting software can be

used (e.g. Hoang et al., 2013) to extract positions corresponding

to high cross-correlation values; several automatic methods

have been devised for simultaneous centroid placement (Bir-

manns and Wriggers, 2007; Lasker et al., 2010; Wriggers

et al., 1998; Zhang et al., 2010); a more elaborate approach

combines cross-link data with the cryo-EM map to infer the po-

sitions of the subunits (Murakami et al., 2013).

Once the centroids have been determined, the docking can

start. First the chains are separated in space at an approximate

minimal distance of 25 Å from each other and given a random

orientation. Distance restraints are defined between the COM

of each protein to either a specific centroid if one is able to distin-

guish the two chains in the density, or ambiguously to all cen-

troids if the chains cannot be distinguished in the density. The

former can be interpreted as unambiguous and the latter as

ambiguous distance restraints. We thus transform the density

data into distance restraints for several reasons. First and fore-

most, this increases the radius of convergence of pulling the

chains into the density toward specified positions compared

with using a cross-correlation potential, making the approach

more robust. Indeed, when using only the cross-correlation,

we found that the chains often get stuck in local minima before

they can even interact with each other. Second, the distance

restraints approach falls within the original philosophy of

HADDOCK, making it easier to combine cryo-EM data with other

relevant information sources. Having defined the cryo-EM-

derived distance restraints, we then dock the initial complex by

means of rigid-body energy minimization, which effectively posi-

tions it into the cryo-EM map to fit the centroids. In the case of

binary complexes, the optimal orientation of the complex with
reserved



Table 1. Description of the Complexes in the Benchmark

PDB

Code Categorya Difficultyb i-RMSDc Residues A Residues B

1AVX E Easy 0.47 233 176

2OUL E Easy 0.53 241 110

1AY7 E Easy 0.54 96 89

4CPA E Easy 0.62 307 39

1AHW A Easy 0.69 428 206

7CEI E Easy 0.70 130 87

2OOB O Easy 0.85 41 71

2FD6 A Easy 1.07 428 279

1AK4 O Easy 1.33 164 137

1B6C O Easy 1.96 329 107

1BGX A Medium 1.48 822 423

1R6Q O Medium 1.67 141 89

1M10 E Medium 2.10 266 207

1ACB E Medium 2.26 245 70

1JK9 O Hard 2.51 220 153

1BKD O Hard 2.86 479 166

1JMO O Hard 3.21 385 280

The 17 protein-protein complexes used during the optimization and

benchmarking of HADDOCK-EM. The complexes were taken from the

protein-protein docking benchmark 4.0 (Hwang et al., 2010).
aThe category of the complex: E, enzyme/inhibitor or enzyme/substrate;

A, antibody/antigen; O, others.
bThe difficulty of the complex according to the CAPRI standard.
ci-RMSD: RMSD of Ca atoms of interface residues calculated after

finding the best superposition of bound and unbound interfaces.
respect to the density still needs to be determined since the

centroid-based docking allows for rotational ambiguity. There-

fore, we perform a fine rotational search of the complex around

the axis formed by the line joining the centroids and score each

orientation using the cross-correlation value between the model

and the map. The orientation corresponding to the highest

cross-correlation value is further refined using rigid-body energy

minimization where the energy consists of the nonbonded inter-

action terms of classical force fields (intermolecular van der

Waals and electrostatic energies) and an added cross-correla-

tion potential. Typically 10,000 solutions are generated at the

rigid-body docking stage. All calculations are performed with

CNS (Crystallography and NMR System) (Brunger, 2007) (see

the Experimental Procedures section for details).

After the rigid-body stage, the generated solutions are scored

with the HADDOCK-EM-it0 score, which corresponds to the

original HADDOCK score (see Equation 1) complemented with

a local cross-correlation-based energy (see the Experimental

Procedures; Equations 6 and 7). The 400 best-scoring models

are then refined using the standard HADDOCK refinement proto-

col with an additional correlation-based potential to further fit the

chains into the density, while reckoningwith the energetics of the

system.

Impact ofCryo-EMData in theRigid-BodyDockingStage
Since the HADDOCK protocol consists of several stages (rigid-

body docking and scoring [it0] and flexible refinement stages
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in a vacuum [it1] and explicit solvent [itw]), we discuss the impact

of incorporation of cryo-EM data on each stage separately. We

investigated the use of 10-, 15-, and 20-Å simulated cryo-EM

data on a benchmark consisting of 17 complexes taken from

the protein-protein docking benchmark 4.0 (Hwang et al.,

2010). These complexes consist of ten easy, four medium, and

three hard cases (based on the degree of conformational

changes taking place upon complex formation) and are listed

in Table 1. Even though the complexes in the benchmark are

significantly smaller than what can be imaged by cryo-EM, their

use is still justified to optimize our protocol and investigate the

limits of using density data during the docking.

As a reference to assess the performance of using cryo-EM

data in the it0 stage, we used the ab initio mode of HADDOCK

(HADDOCK-CM), which uses COM distance restraints between

molecules to drive the docking (Karaca and Bonvin, 2013b). We

investigated two different performance indices at this stage,

namely the interfacial quality of the best-generated solution, or

interface root-mean-square deviation (i-RMSD) as defined by

the CAPRI standards (Janin et al., 2003), and the number of

acceptable solutions at the rigid-body docking stage among

the 10,000 models generated. We define an acceptable solution

as having an i-RMSD % 4.0 Å from the native complex.

As can be seen in Figure 2A, HADDOCK-CM generates at the

rigid-body stage at least one acceptable solution of 10,000 in 11

of the 17 cases, of which nine are from easy and two are from

medium difficulty targets. The HADDOCK-EM protocol gener-

ates at least one acceptable solution in 13 of 17 cases, indepen-

dent of the resolution of the simulated density maps used for the

docking, of which ten were easy targets, two were medium and

one was a hard target. The quality of the best-generated model

improves for all complexes compared with HADDOCK-CM,

except for the smallest 2OOB complex when using 15- and

20-Å resolution data. The average i-RMSD improvement is 1.2,

1.5, and 1.6 Å when using 20-, 15-, and 10-Å data, respectively.

Even for complexes for which no acceptable solutions were

generated, there is a considerable increase of quality, e.g. the

i-RMSD of the hard 1JMO complex decreases from 6.13 Å for

HADDOCK-CM to 4.66, 4.35, and 4.51 Å when using 20-, 15-,

and 10-Å data, respectively.

Moreover, not only the quality of the interface of the best

model benefits from the use of cryo-EM data, but the number

of acceptable solutions generated also increases significantly

(Figure 2B). For HADDOCK-CM, the median number of

acceptable solutions generated is 1, while for HADDOCK-EM

it increases to 8, 17, and 46 when using 20-, 15-, and 10-Å

data, respectively. The only complex where HADDOCK-CM

actually generates more acceptable solutions compared with

HADDOCK-EM is again the small globular 2OOB complex.

As our protocol is dependent on the input of centroid coordi-

nates, we also investigated its sensitivity to incorrect centroid

placement. To this end, we repeated the docking for five cases

where both centroids were separately displaced by 3, 5, and

7 Å in a random direction. The total error in placement was

thus 14 Å total in the latter case. The difference in the number

of acceptable solutions generated in the top 400 differed per

case (see Table S2). Only at 7-Å displacement of both centroids

does the number of acceptable solutions in the top 400 decrease

consistently, but is still significantly larger compared with
, 949–960, May 5, 2015 ª2015 Elsevier Ltd All rights reserved 951



Figure 2. Quality and Number of Acceptable Models Generated after Rigid-Body Docking

(A) Interface RMSD (i-RMSD) of the best model generated after the it0 stage for the 17 complexes of the benchmark. White bar, HADDOCK-CM (ab initio docking

modewith center ofmass restraints); light gray, gray, and dark gray bar, HADDOCK-EM using 20-, 15-, and 10-Å simulated cryo-EM data, respectively; black bar,

minimal i-RMSD of unbound compared with bound complex. The complexes are ordered according to their difficulty level. The dashed line represents the cutoff

for a solution to be acceptable (i-RMSD %4 Å).

(B) Number of acceptable solutions generated after the it0 stage and the number of acceptable solutions in the 400 best-scoring models. The height of each bar

represents the number of acceptable solutions generated in the 10,000 models; the height of the inner solid bars represents the number of acceptable solutions

that are in the top 400 after scoring. Only complexes for which acceptable solutions were generated are displayed. Light gray, HADDOCK-CM; gray, dark gray,

and black bar, HADDOCK-EM using 20-, 15-, and 10-Å simulated cryo-EM data.
HADDOCK-CM. Thus, our approach is robust against centroid

placement errors up to at least 7 Å.

Impact of Cryo-EM Data on the Scoring of Rigid-Body
Docking Solutions
To incorporate the cryo-EM data into the scoring function, we

supplemented the original HADDOCK score with a local cross-

correlation (LCC) energy term (HADDOCK-EM score). The effi-

ciency of this combined score is shown in Figure 2B. The

HADDOCK-CMmodels were scored with the original HADDOCK

score, which resulted in at least one acceptable solution in the

top 400 models for 7 of the 11 successful cases, where at least

one acceptable solution was generated. The HADDOCK-EM

models were scored with the HADDOCK-EM score, which re-

sulted in at least one acceptable solution for all 13 successful

cases, irrespective of resolution, with the exception of the

2OOB complex using 20-Å resolution data.

To investigate the effect of the LCC term in the HADDOCK

score, the total number of acceptable solutions in the top 400

was calculated for the HADDOCK-EM models using the regular

HADDOCK and HADDOCK-EM score. The influence of the

LCC term in the HADDOCK score is significant, as the median

number of acceptable solutions in the top 400 increases from

3 to 5, 4 to 13, and 13 to 38 when using 20-, 15-, and 10-Å

data, respectively. The HADDOCK-EM score is able to rank
952 Structure 23, 949–960, May 5, 2015 ª2015 Elsevier Ltd All rights
52%, 69%, and 78% of the generated acceptable solutions in

the top 400 compared with 38%, 39%, and 41% when using

the regular HADDOCK score with 20-, 15-, and 10-Å resolution

data, respectively.

The discriminative ability of the LCC term increases with the

resolution, as expected. When plotting the LCC versus the

i-RMSD (see Figure S1), we observe a funnel shape for most

complexes, with high LCC values found for complexes with

low i-RMSD values. This becomes even more pronounced as

the resolution of the data increases. For higher i-RMSD, the cor-

relation is lost and the LCC is no longer indicative of the quality of

the solutions as was observed before (Shacham et al., 2007). It

should further be noted that the absolute value of the LCC

term is not indicative of the quality of the model. For example,

when using 20-Å data, correlation values of >0.9 are routinely

found for non-native models. As such, the correlation value

only has meaning in a comparative setting, highlighting the

need to sample and score multiple conformations.

Effect of Cryo-EM Data on the Flexible Refinement
Stage
Next we investigated the impact of incorporating cryo-EM

restraints on the flexible refinement stage of HADDOCK. We

calculated the i-RMSD improvement of the 400 best-scoring

it0 models after each refinement stage for all complexes. A
reserved



Figure 3. Effect of the Flexible Refinement Stage with Cryo-EM Restraints on i-RMSD

The i-RMSD improvement (i-RMSD it0–i-RMSD itw) for all refined complexes after itw when using 10- (A), 15- (B), and 20-Å (C) data plotted as a histogram.

Positive values indicate a decrease in i-RMSD toward the native structure. The dashed vertical line in the figures represents the average i-RMSD improvement.
histogramof i-RMSD improvements after the it0 and itw stages is

shown in Figure 3. The average i-RMSD improvement after

refinement when using 20-Å data is 0.20 Å with a maximum of

2.49 Å. This increases to an average of 0.33 and 0.45 Å and a

maximum of 3.34 and 4.37 Å when using 15- and 10-Å data,

respectively. The average i-RMSD improvements between

it1 and itw are modest: 0.04, 0.05, and 0.10 Å when using 20-,

15-, and 10-Å data with maximums of 0.25, 0.34, and 0.43 (see

Figure S2). So the bulk of the improvement is gained during
Table 2. i-RMSD Values of the Best-Generated Complex after the

Rigid-Body Docking and Final Water Refinement Stages

PDB Code

i-RMSD of Best Solution (Å)

20-Å Data 15-Å Data 10-Å Data

It0 Itw It0 Itw It0 Itw

1AVX 1.32 1.20 1.04 0.84 0.96 0.67

2OUL 0.68 0.89 0.66 0.70 0.66 0.63

1AY7 1.45 1.05 0.75 0.73 0.72 0.66

4CPA 1.55 1.53 1.48 1.24 1.44 0.94

1AHW 1.70 1.05 1.09 1.03 1.04 0.91

7CEI 1.51 1.50 1.14 0.91 1.01 0.78

2OOB 2.85 4.04 2.73 2.31 1.06 0.97

2FD6 1.71 1.36 1.71 1.17 1.62 1.13

1AK4 2.58 2.58 1.93 1.54 1.93 1.22

1B6C 2.89 2.33 2.78 2.09 2.71 1.88

1BGX 6.95 5.42 5.65 4.07 6.29 4.85

1R6Q 2.41 2.74 1.91 1.68 1.83 1.26

1M10 4.55 3.81 4.48 3.20 4.47 2.82

1ACB 3.00 2.73 2.80 2.45 2.86 2.43

1JK9 3.04 2.83 2.84 2.37 2.83 2.32

1BKD 4.56 4.21 4.43 3.82 4.37 3.62

1JMO 4.66 4.55 4.35 4.20 4.51 4.23

The quality in terms of i-RMSDa values of the best solution generated af-

ter it0 and itw stages is given for each complex at the three cryo-EM den-

sity resolutions.
aThe i-RMSD is calculated by fitting the solution on the backbone atoms

of the residues involved in intermolecular contacts in the native complex

within a cutoff of 10 Å.
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the it1 stage, which was also previously noted (see Figure 2 in

De Vries et al., 2007). The maximal improvement observed with

cryo-EM restraints is about two times larger than what was pre-

viously observed in an analysis of our CAPRI predictions. This

substantial improvement is also reflected in the increased num-

ber of acceptable solutions after the refinement for each com-

plex (Table S1). The number of cases with at least one accept-

able solution increases from 13 for 20-Å resolution data to 15

for the 15- and 10-Å resolution data (Table 2). The resulting

models are ultimately re-scored using the itw-HADDOCK-EM

score (Equation 7). The enrichment of models in the top 400,

10, and 1 compared with HADDOCK-CM are given in Table S3.

Docking Two Ribosomal Proteins Using Experimental
9.8-Å Cryo-EM Data
As a test case using experimental cryo-EM data, we docked the

S7 and S19 proteins of the 30S E. coli ribosome using a 9.8-Å

cryo-EMmap (EMD-1884). Themap has a corresponding atomic

structure (2ykr), which has been modeled by manually fitting a

crystal structure of the full ribosome in the map as a rigid

body, shown in Figure 4A.

We docked the two proteins using only the fraction of the cryo-

EM density that can be attributed to the two proteins. The cen-

troids were determined by calculating the position of the COM

of each protein as they were currently placed in the density (Fig-

ure 4B). Applying HADDOCK-EM resulted in 15 clusters, with the

best-scoring cluster containing 105 of the 400 generated solu-

tions of which the best-scoring complex has an i-RMSD of

1.56 Å compared with the crystal structure (Figure 4C).

Integrative Modeling of KsgA with rRNA Using 13.5-Å
Cryo-EM Data
As amore realistic example, we applied HADDOCK-EM tomodel

the binding of KsgA, a methyltransferase, to the 30S maturing

E. coli ribosome. Crystal structures are available for the 30S ribo-

some and KsgA together with a 13.5-Å cryo-EMmap of the com-

plex (EMD-2017). The rRNA can be unambiguously fitted in the

density because of the higher density of the phosphates in the

backbone. The cryo-EM data clearly show the density of KsgA,

revealing that helices 24, 27, and 45 of the rRNA are involved

in the interaction (Figure 5A), which has been corroborated by
, 949–960, May 5, 2015 ª2015 Elsevier Ltd All rights reserved 953



Figure 4. Cryo-EM Driven HADDOCKing

Docking of the Ribosomal Proteins S7 and

S19 onto the 30S E. coli Ribosome

(A) 30S E. coli ribosome structure (PDB: 2YKR) as it

is currently fitted in the 9.8-Å cryo-EM map (EMD-

1884). The ribosomal proteins S7 (light gray) and

S19 (dark gray) and their corresponding density

are circled.

(B) Docking setup used in HADDOCK showing the

S7 and S19 protein, the centroids, and the density.

(C) The HADDOCK-EM score of the 400 refined

models plotted versus their i-RMSD from the 2YKR

structure. Next to it the solution with the best

HADDOCK score and an i-RMSD of 1.56 Å is

shown in the cryo-EM density.
hydroxyl radical footprinting data (Xu et al., 2008). Mutagenesis

data show that the positively charged residues R221, R222,

and K223 of KsgA are important in the interaction (Figure 5B)

(Boehringer et al., 2012).

The 13.5-Å cryo-EM map has a corresponding current PDB

model (4ADV). This model, however, contains a large number

of clashes at the interface (>100). Furthermore, it reveals no

favorable interactions and fails to give a clear explanation for

the importance of the arginine residues identified by mutagen-

esis (Figure 5C). This is a typical side effect from manual

rigid-body fitting. Running HADDOCK-EM using the radical foot-
954 Structure 23, 949–960, May 5, 2015 ª2015 Elsevier Ltd All rights reserved
printing, mutagenesis, and cryo-EM data

results in a single cluster (Figure 6A) of

which the best solution has an i-RMSD

of 2.8 Å compared with the 4ADV model.

The placement and orientations of the

chains in the density are similar to the

rigid-body fitted model as defined by

the cryo-EM data. The HADDOCK-EM

model is, however, of much better quality;

it contains no clashes and reveals favor-

able hydrogen bonds made by R221,

R222, and K223 with the backbone of

the rRNA. Moreover, new potentially key

residues can be identified, such as R147

and R248 (Figure 6B). Coincidentally,

these newly identified residues are also

highly conserved, corroborating our

docking results (see Figure S3).

Modeling Virus-Antibody
Complexes Using 8.5- and 21-Å
Cryo-EM Data
To show the diverse range of systems that

can be handled with HADDOCK, we

applied our protocol on the adeno-asso-

ciated virus 2 and immature Dengue virus

complexed with antibodies for which 8.5-

and 21-Å cryo-EM data and deposited

models (3J1S and 3J42) are available,

respectively.

For both cases, we performed a

HADDOCK run combining the cryo-EM
data with interface information. Since the binding regions on

the antibody are known as well as the virus capsid proteins,

residues that were within 5 Å of the other chain in the deposited

atomic models were used as active residues. The solutions of

the adeno-associated virus 2 converge into one cluster with

an i-RMSD less than 1.5 Å from the deposited model (Fig-

ure 7A). However, when zooming in on the interface of the

best-scoring HADDOCK model, the interactions show an

extensive hydrogen bond network between the envelope pro-

tein and the antibody in contrast to the deposited model

(Figure 7B).



Figure 5. Cryo-EM andMutagenesis Data of

the 30S Maturing E. coli Ribosome and its

Current Model

(A) The 13.5-Å cryo-EM map of the maturing 30S

E. coli ribosome with its current PDB model fitted

inside. The density of KsgA is shown in blue and

the helices of the rRNA are shown in orange (h24),

green (h27), and pink (h45). The binding site of

KsgA is shown below enlarged.

(B) The crystal structure of KsgA of E. coli with the

three key residues shown in red.

(C) A ribbon representation of the 4ADV model is

shown in the middle. The left and right figures are

close ups of the interface. Atoms displayed as

yellow balls are clashes.
The HADDOCK solutions of the Dengue virus cluster into two

groups, with an approximate i-RMSD of 2.0 and 4.5 Å with

respect to the deposited model (Figure 7C). Inspecting the inter-

face of the best-scoring HADDOCK model again shows favor-

able interactions between the prM protein of the Dengue virus

with the antibody, while the 3J42 model lacks side chains and

shows a backbone clash (Figure 7D).

Symmetrical Multibody Docking with Cryo-EM Data
HADDOCK is capable of using symmetry restraints to drive the

docking of symmetrical assemblies. In order to combine symme-

try and cryo-EM restraints, the rigid-body docking protocol was

slightly modified compared with nonsymmetric complexes, with

the main difference in the initial placement of the subunits (see

Figure 8A; Experimental Procedures). We tested HADDOCK-

EM with symmetry on the cyclic pentamer of the trypsin inhibitor

(1B0C, Figure 8A). The ab initio mode of HADDOCKwith C5 sym-
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metry restraints results in two acceptable

solutions after the refinement stage, with

the best solution having an i-RMSD of

3.2 Å compared with the 1B0C structure.

Adding cryo-EM data results in an in-

creased number of acceptable solutions

of 54, 400, and 400 when using 20-, 15-,

and 10-Å resolution data, respectively,

with the best models having i-RMSDs of

1.6, 1.0, and 0.7 Å (Figure 8B). Using

higher-resolution data also results in

more compact clusters, i.e. the distribu-

tion of i-RMSD values is reduced. When

using 10-Å data only, a single near-native

cluster is observed. At 20-Å resolution,

multiple clusters appear and require the

HADDOCK-EM score to discriminate the

near-native cluster, which indeed has

the best (lowest) HADDOCK-EM score.

Weapplied the symmetricalHADDOCK-

EMprotocol tomodel the pentameric large

terminase complex of bacteriophage T7

using 16-Å negative stain EM data (EMD-

2355, Daudén et al., 2013). As in the previ-

ous cases, the corresponding deposited

model (4BIJ) shows clashes at the inter-
faces (Figure S8). The 400 generated HADDOCKmodels resulted

in 33 clusters, with the best-scoring cluster having an i-RMSD of

2.9 Å compared with the 4BIJ model. Again, the interface of the

best-scoring HADDOCK model alleviates the clashes and shows

favorable interactions, while agreeing with the general binding

mode of the 4BIJ model.

Conclusions
We have fully integrated cryo-EM data into HADDOCK, allowing

the direct combination of cryo-EM data with all other available

sources of information that HADDOCK supports, including

symmetry and ambiguous interaction restraints. The perfor-

mance of this integrative docking protocol was demonstrated

using simulated cryo-EM data for a benchmark of 17 nonredun-

dant protein-protein complexes: Including the cryo-EM data into

the docking significantly increases both the quality and quantity

of acceptable solutions, with higher-resolution data having a
ª2015 Elsevier Ltd All rights reserved 955



Figure 6. Cryo-EM Driven HADDOCKing of

KsgA on Top of the 16S rRNA of E. coli

(A) The HADDOCK-EM score of the 400 refined

models plotted versus the i-RMSD compared with

the 4ADV model.

(B) Binding mode of the best-scoring HADDOCK-

EM model, together with the 13.5-Å cryo-EM map.

(C) Close up of the binding of KsgA with the rRNA.

The right bottom figure shows the favorable

hydrogen bonds formed by the three key residues,

R221, R222, and K223. At the left and upper right

side, the additional evolutionary conserved resi-

dues R147 and R248 are shown forming favorable

hydrogen bonds with the backbone of the rRNA.
larger impact. Its applicability was demonstrated on two ribo-

somes, two virus antibodies, and a symmetrical case using

experimental data ranging from 8.5 to 21 Å. The integration

of cryo-EM data with a proper physics-based force field and

all other available information sources provides a powerful

and user-friendly tool to generate high-quality, high-resolution

models of macromolecular assemblies.
EXPERIMENTAL PROCEDURES

HADDOCK Protocol

HADDOCK has been described in details in previous work (Dominguez et al.,

2003; De Vries et al., 2010b). Its docking protocol consists of three stages: an

initial rigid-body docking stage (it0), a semi-flexible refinement stage using

simulated annealing in torsion-angle space (it1), and a final flexible refinement

stage in explicit water (itw). See the Supplemental Information for a detailed

description of each stage.

After each stage, the models are scored with the following pseudo-energy

functions:

Eit0 = 0:1,EvdW + 1:0,Eelec +0:01,EAIR + 1:0,Edesolv � 0:01,BSA Equation 1

Eit1 = 1:0,EvdW + 0:2,Eelec +0:1,EAIR + 1:0,Edesolv � 0:01,BSA Equation 2

Eitw = 1:0,EvdW + 0:2,Eelec + 0:1,EAIR + 1:0,Edesolv Equation 3

where Eit0, Eit1, and Eitw are the scoring functions after the it0, it1, and itw

stages, respectively, EvdW is the intermolecular van der Waals energy, Eelec

is the intermolecular electrostatic energy, EAIR is the ambiguous interaction
956 Structure 23, 949–960, May 5, 2015 ª2015 Elsevier Ltd All rights reserved
restraints energy, Edesolv is an empirical desolvation

energy (Fernández-Recio et al., 2004), and BSA is

the buried surface area in Å2. The energies are

calculated with an 8.5-Å cutoff based on OPLS

(optimized potentials for liquid simulations) parame-

ters (Jorgensen and Tirado-Rives, 1988).

HADDOCK-EM Protocol

As HADDOCK uses CNS (Crystallography and NMR

System) (Brunger, 2007) as its computational en-

gine, all crystallographic tools and energy functions

available in CNS are available to HADDOCK. So the

cryo-EM data, represented by a 3D real scalar field,

can be directly read into the CNS framework and

specific energy functions, typically in reciprocal

space, can be used and applied. The HADDOCK-

EM protocol uses in particular the xref energy

term in CNS. It is very similar to the original

HADDOCK method with some adjustments mainly

in it0. A graphical representation of the adjusted

it0 protocol is given in Figure 1. An integral part of
our protocol is the use of centroids, where each centroid represents the

approximate position of the COM of a subunit in the density map. When the

resolution of the cryo-EM data decreases, the orientation of the subunits

can be ambiguous but the approximate placement can still be determined.

This is obvious in cases where several density maps are obtained with some

subunits being alternately present and absent in the set, such as in the case

of the ribosome (Xu et al., 2008). The position of the centroids can be deter-

mined in multiple ways. An objective way is to perform a full-exhaustive

cross-correlation search to deduce regions of high cross-correlation values;

the centroid can then be placed on the position with the highest value. They

can be placed manually using graphics software; for example, UCSF Chimera

has an option to place centroids in high-density regions in the map. Another

option is to place an atomic structure in the density at an approximately correct

position, calculate its COM, and use this as the position of the centroid.

Methods for automatic simultaneous detection of centroids have also been re-

ported (Birmanns and Wriggers, 2007; Lasker et al., 2010; Wriggers et al.,

1998; Zhang et al., 2010). A more elaborate approach uses experimental

data in conjunction with the cryo-EMmap to infer the positions of the subunits,

as was shown for RNA polymerase II (Murakami et al., 2013). The centroids are

entered into HADDOCK-EM as Cartesian coordinates in the start parameters.

Together with the cryo-EM map and its resolution, they represent all the input

required to run HADDOCK-EM.

During the docking, each subunit is given a random orientation and initially

placed on a sphere centered on the midpoint of the centroids. In the case of

two chains, the subunits are placed opposite each other on the sphere with a

minimal distance of 25 Å between them. Afterward, for each docking trial,

they are given a random rotation and translation within a 10-Å box to

enhance the sampling. Distance restraints are defined between the COM

of each subunit and either all determined centroids are ambiguous restraints

in cases where the placement of the subunit in the density is ambiguous or a



Figure 7. Virus-Antibody HADDOCKing Using 8.5- and 21-Å Cryo-EM Data

(A) The HADDOCK-EM score of the 400 generated models of the adeno-associated virus 2-antibody complex versus their i-RMSD using 3J1S as a reference.

(B) Best-scoring HADDOCK model shown in the cryo-EM density. The envelope protein (blue) forms favorable interactions with the antibody A20 chains (orange

and pink). The 3J1S interface is shown under the interface close up.

(C) The HADDOCK-EM score of the 400 generated models of the Dengue virus-antibody complex versus their i-RMSD using 3J42 as a reference results in two

clusters.

(D) Best-scoring HADDOCK model shown in the cryo-EM density. The Dengue envelope protein (green) with the prM protein (blue) forms favorable interactions

with the 2H2 Fab-fragment (orange and pink).
specific centroid if the placement is unambiguous. The distance restraint is

described by a soft square potential between two pseudo-atoms, one of

which corresponds to the centroid and the other to the COM of the subunit.

An initial complex is formed by rigid-body energy minimization, where the en-

ergy is a combination of the force field, the centroid-based distance re-

straints, and other possible experimentally based distance and orientation

restraints.

After the initial energy minimization, for binary systems we properly orient

the complex in the density by performing a fine full-exhaustive search around

the axis that is formed by the line joining the centroids in 4� increments. Each

orientation is scored by the vector residual energy term in CNS, given by

Evector =

P
H

ðFem � FcÞ2
P
H

Fem
2

Equation 4

where the summation is over all the Miller indices H up to the specified reso-

lution of the cryo-EMmap, and Fem and Fc are the complex-valued Fourier co-

efficients of the cryo-EM map and the calculated density, respectively. It

should be noted that minimizing the vector residual in reciprocal space is

mathematically the same as maximizing the cross-correlation in real space

(Navaza et al., 2002) and thus we refer to this potential simply as the cross-cor-

relation. The complex is reoriented in the density conforming to the optimal
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cross-correlation value found during the search. A final rigid-body energymini-

mization is performed directly against the map using the cross-correlation

(vector potential energy term in CNS), van der Waals, and electrostatic energy

terms. For each complex typically 10,000 models are generated this way.

The models are then scored by adding an LCC term to the regular

HADDOCK score (Equations 1–3), where the LCC is given by

LCC=

P
i

�
rem � rem

�
,
�
rc � rc

�

semsc

Equation 5

where the summation is over the voxels iwhich aremaximally 3 Å away from an

atom of themodel, rem is the density value at voxel i of the cryo-EMmap, rem is

the average density value of all the voxels i, rc is the density value at voxel i of

the calculated density, rc is the average density value of all the voxels i of the

calculated density and sem and sc are the SDs of the cryo-EM and calculated

density over the voxels i, respectively. The HADDOCK-EM scores are thus

given by

Eit0;EM =0:1,EvdW + 1:0,Eelec + 0:01,EAIR

+ 1:0,Edesolv � 0:01,EBSA �wit0,LCC
Equation 6

Eitw;EM = 1:0,EvdW + 0:2,Eelec + 0:1,EAIR + 1:0,Edesolv � witw,LCC Equation 7
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Figure 8. HADDOCK-EM with Symmetry Protocol Applied on the Trypsin Inhibitor and Large Terminase Pentamer

(A) Protocol of HADDOCK-EMwith symmetry during the rigid-body stage. After determining the centroids in the density, each subunit is placed on a circle with its

center on themidpoint of the centroids. C5 symmetry is imposed on the system from the beginning and ambiguous distance restraints are generated between the

COM of each subunit and each centroid. An initial complex is formed by a rigid-body energy minimization (EM). To orient the complex properly in the density, we

calculate the cross-correlation of two orientations of the complex with the cryo-EM data. A second round of rigid-body energy minimization is performed on the

orientation with the highest cross-correlation directly against the cryo-EM data.

(B) The HADDOCK-EM score versus the i-RMSD comparedwith the native complex (1B0C) are plotted for the 400 refinement complexes using 20-, 15-, and 10-Å

simulated data.

(C) The HADDOCK-EM score of the 400 generated large terminase models versus the i-RMSD. The 16-Å negative stain data together with the centroids is shown

in the left corner.

(D) Best-scoring HADDOCK model shown in the cryo-EM density. Two close ups of the interface are displayed to the right of it.

958 Structure 23, 949–960, May 5, 2015 ª2015 Elsevier Ltd All rights reserved



where wit0 and witw are weight terms for the LCC pseudo-energy that need to

be determined (see below). The top 400 best-scoring structures are selected

for further flexible refinement in it1 and itw. The refinement protocols are similar

to the standard HADDOCK protocol, however the energy now also contains

the additional cross-correlation-based energy term in addition to the other

force field and restraint energy terms.

It should be noted that themaximum number of subunits that can be docked

simultaneously is currently restricted to six (this limitation will be lifted in a

future version). Furthermore, in order to use the HADDOCK-EM protocol,

approximate knowledge of the position of each subunit in the form of centroids

is a requisite for a successful docking run. Other minor requirements are that

the number of voxels in each dimension of the cryo-EM data is a multiple of

two, three, and five to calculate the fast Fourier transforms (FFTs) used in

the cross-correlation potential, and that the density should be converted to

CNS/XPLOR format. For the latter two tasks, Python scripts are included in

the HADDOCK distribution. Finally, the time required for a HADDOCK-EM

run decreases with decreasing map size, since this speeds up the calculations

of the FFTs.

Optimizing and Benchmarking HADDOCK-EM

The HADDOCK-EM protocol relies on the optimization of two parameters

for the docking, namely the force constant for the centroid-based distance

restraints and the weight for the cross-correlation energy term. In addition,

the weight factors of the LCC term in the it0 and itw HADDOCK score need

to be determined. For this, we used a benchmark consisting of 17 com-

plexes taken from the protein-protein docking benchmark 4.0 (Hwang

et al., 2010) (see Table 1). Centroids were determined by calculating the

COM of each unbound chain that is optimally superimposed onto the native

complex. Simulated cryo-EM data were calculated using a Python script,

based on the molmap function in UCSF Chimera (see Supplemental

Information).

We first determined the centroid-based force constant by running the

benchmark at different values for the force constant, creating 10,000

models for each complex in it0. Since the force constant is only used in

it0, the structures were not scored or refined. The value for the force con-

stant that gave the most acceptable solutions, where an acceptable

solution is defined as having an i-RMSD %4.0 Å compared with the native

complex, was chosen (results not shown). The i-RMSDs were calculated

using ProFit (Martin, A.C.R., http://www.bioinf.org.uk/software/profit/). For

the determination of the weight factor for the cross-correlation term, we fol-

lowed the same protocol but with the optimized force constant for the

centroid-based distance restraints using simulated data at 10, 15, and

20 Å, which were generated as described above. This gave a value of 50

for the force constant and a weight factor of 15,000 for the cross-correla-

tion-based energy term, independent of the resolution (results not shown).

The weight factor for the LCC in the it0-HADDOCK-EM score was deter-

mined by running the benchmark using the optimized parameters and varying

the LCC weight in order to maximize the number of acceptable solutions in the

top 400 at the three resolutions of 10, 15, and 20 Å. This gave a value of�400.

The LCC weight factor in the itw score was determined by maximizing the

number of acceptable solutions in the top 20, which gave a weight factor of

�10,000.

To investigate the sensitivity of the protocol to incorrectly placed centroids,

we ran five cases of the benchmark with displaced centroids. Each centroid

was moved in a random direction by taking a random point on the unit sphere

with a displacement of 3, 5, and 7 Å. The solutions were analyzed as explained

above.

HADDOCK-EM with Symmetry

To leverage Cn symmetry in cyclical symmetric complexes, a few adjust-

ments were made to the nonsymmetric HADDOCK-EM protocol (Fig-

ure 8A). The main difference is in the initial placement of the subunits

in the it0 stage. Instead of placing the subunits on a sphere, we place

them on a circle with its center placed on the middle point of the cen-

troids and parallel to the plane of the centroids. The radius of the circle

is chosen such that the minimal distance between two subunits is at least

25 Å. The requested Cn symmetry is imposed on the system from the

start.
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After the initial placement, ambiguous centroid-based distance restraints

are generated, i.e. we create a distance restraint between the COM of each

subunit to each centroid. We form an initial complex again by performing

rigid-body energy minimization, where the energy includes the force field,

the centroid-based distance restraints, and the available symmetry re-

straints already in HADDOCK. Once the initial complex is formed, it needs

to be properly oriented in the density. Only two orientations need to be

sampled for this, namely the current orientation and the upside-down com-

plex. The orientation corresponding to the highest cross-correlation with the

cryo-EM data is chosen. A final rigid-body energy minimization is performed

against the map, using the cross-correlation potential in combination

with the force field and symmetry restraints. Typically, 10,000 models are

generated. They are scored with the it0-HADDOCK-EM and 400 models

are refined in the it1 and itw stages. The refinement protocol is similar to

the nonsymmetric HADDOCK-EM protocol, but with added symmetry

restraints.

Modeling Complexes Using Experimental Data

All high-resolution models were downloaded from the PDB and the cryo-EM

data were from the EMDataBank. Details about the determination of the cen-

troids and setup of the docking run for each specific case can be found in the

Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

eight figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.str.2015.03.014.
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