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The entanglement renormalization flow of a (1 + 1) free boson is formulated as a path integral over 
some auxiliary scalar fields. The resulting effective theory for these fields amounts to the dilaton term 
of non-critical string theory in two spacetime dimensions. A connection between the scalar fields in the 
two theories is provided, allowing to acquire novel insights into how a theory of gravity emerges from 
the entanglement structure of another one without gravity.
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1. Introduction

Currently, striking connections between the spacetime struc-
ture in gravitational theories and patterns of entanglement in dual 
quantum theories have emerged [1–5]. These incipient insights 
have been mostly understood in the framework of the AdS/CFT cor-
respondence [6–8]. The holographic formula of the entanglement 
entropy [1] is a dazzling manifestation of these connections. It has 
been also noteworthy to observe how hyperbolic geometries come 
associated to the entanglement renormalization tensor networks 
(MERA) [9] used in numerical investigations of the ground states 
of quantum critical systems [10]. Using MERA and particularly its 
continuous version, cMERA [11], geometric descriptions of relevant 
states in field theories have been provided [12–14]. However, it has 
not been possible to establish if these geometrical representations 
correspond to solutions of any known theory of gravity.

Our objective in this Letter is to provide a simple example in 
which the cMERA representation of a free (1 + 1) dimensional 
quantum field theory can be described in terms of the solutions 
of a gravity theory. As usual in physics, useful information can be 
gained by considering low-dimensional models. Here, we find that 
the cMERA representation of the ground state of a free massive 
boson amounts to a known solution of string theory in two space-
time dimensions. This theory, despite being the ‘simplest’ string 
theory, retains many interesting features of its more complex peers 
in higher dimensions and remarkably, it can be nonperturbatively 
formulated in terms of a model of nonrelativistic fermions via the 
c = 1 matrix model [15].
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SCOAP3.
2. Entanglement renormalization for QFT

The Multi-Scale Entanglement Renormalization Ansatz (MERA) 
[9,11] is a real-space renormalization group procedure on the 
quantum state which represents the wavefunction of the quantum 
system (usually in its ground state) at different length scales la-
belled by u. In MERA, u = 0 usually refers to the state at short 
lengths (UV-state |�U V 〉). In general, this state is highly entangled 
and acts as a starting reference point for the renormalization flow. 
MERA carries out a renormalization transformation at each length 
scale u in which, prior to coarse graining the effective degrees 
of freedom at that scale, the short range entanglement between 
them is unitarily removed through a disentangler. The procedure 
is applied an arbitrary number of times until the IR-state |�IR〉 is 
reached.1

The MERA flow can be implemented in a reverse way: start-
ing from |�IR〉, it works by unitarily adding entanglement at 
each length scale until the correct |�U V 〉 is generated. To fix 
the concept, let us generate the state |�(u)〉 obtained by adding 
some amount of entanglement between left and right propagating 
modes of momentum |k| ≤ �e−u to the state |�IR〉,

|�(u)〉 = P e
−i

∫ u
uIR

dû (K(û)+D) |�IR〉. (1)

The symbol P is a path ordering operator which allocates opera-
tors with bigger u to the right and � is a UV momentum cut-off. 

1 For massive theories, |�IR〉 is a completely unentangled state. In massless CFT, 
|�IR〉 amounts to the entangled vacuum of the theory.
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The operator K(û) creates a definite amount of entanglement at a 
given scale u and, in its most general form can be written as,

K(û) =
∫

ddk �(k/�) g(û,k)Ok, (2)

where Ok is an operator acting at the energy scale given by k and 
�(x) = 1 for 0 < x < 1 and zero otherwise. The function g(û, k)

depends on the state and the model that one deals with and rep-
resents the strength of the entangling process at a given scale. The 
operator D corresponds to coarse-graining [11,12]. To focus only in 
the entanglement flow along cMERA while avoiding the effects of 
the coarse graining process it is useful to rescale the cMERA states 
as,

|�̃(u)〉 = eiu D |�(u)〉 = P e
−i

∫ u
uIR

dû K̃(û) |�IR〉. (3)

Now, the entangler operator is given in the interaction picture,

K̃(û) = e−iûD K(û) eiûD =
∫

ddk �(k eû/�) g(û,k eû) Õk, (4)

with Õk = e−iûDOk eiûD = e−dû Ok eû .
This Letter will consider the ground state of a d = 1 free bosonic 

theory with an action given by,

S =
∫

dtdx
[
(∂t φ)2 + (∂x φ)2 − m2φ2

]
. (5)

For this model, K̃ reads as [12],

K̃(û) = − i

2

∫
dk

(
gk(û)a†

k a†
−k − gk(û)∗ ak a−k

)
, (6)

with gk(û) = �(keû/�) g(û, k). The operators a†
k, ak are defined as 

the creation and annihilation operators of a field mode with mo-
mentum k with respect to |0〉, the ground state of the theory 
at u = 0. The commutation relations are 

[
ak,a†

p

]
= δ(k − q), and 

zero otherwise. With this, the cMERA state |�̃(u)〉 amounts to the 
SU(1, 1)/U(1) generalized coherent state [16],

|�〉 = N exp {−1

2

∫
dk

[
�k(u) K+ − �k(u) K−

]} |0〉, (7)

with �k(u) = ∫ u
0 gk(û) dû, �k(u) ≡ �∗

k (u) and a normalization con-
stant given by N = exp{−1/2 

∫
dk |�k(u)|2}. The bilinear bosonic 

operators defined by

K+ = a†
k a†

−k, K− = ak a−k, (8)

together with K0 = 1
2 (a†

k ak + a†
−k a−k + 1), satisfy the Lie algebra 

commutation relations of the group SU(1, 1)

[K0, K±] = ±K± [K−, K+] = 2K0, (9)

and

K− |�〉 = �k(u) |�〉, 〈�| K+ = �k(u) 〈�|. (10)

From this point of view, the cMERA flow amounts to a sequen-
tial generation of a set of coherent states | �〉 where the state |0〉
acts as the reference state.2 This set of coherent states satisfy,∫

dμ(�) |�〉〈�| = I, (11)

2 We refer to [14] for an analysis of the differential generation of entanglement 
required to construct the set of cMERA coherent states (7).
where dμ(�) is the SU(1, 1)-invariant Haar measure on SU(1, 1)/

U(1). Furthermore, each one of these states are one-to-one corre-
sponding to the points in the coset SU(1, 1)/U(1) manifold except 
for some singular points [17]. Namely, the states |�〉 are em-
bedded into a topologically nontrivial space corresponding to a 
2-dimensional hyperbolic space. In other words, each cMERA state 
|�〉 corresponds to a point on a two dimensional hyperbolic space. 
It may be argued that once provided a suitable measure of the dis-
tance between the states |�〉, then a geometric description of the 
cMERA renormalization flow should correspond to the metric of a 
two dimensional AdS space [14]. More to be said about this point 
later in this work in which, we turn to ask whether the cMERA 
renormalization flow for the model (5) may be considered in terms 
of a concrete gravitational theory (see also [18]).

3. cMERA path integral and effective action

Here, we formulate cMERA as a path integral using the coherent 
state formalism. To this aim, we consider the amplitude

G(uF , uIR) = 〈�F |P exp {−i

uF∫
uIR

dû K̃(û)} |�IR〉. (12)

Recalling that ∂u �k(u) = gk(u), then if one follows the standard 
procedure of dividing the renormalization scale interval (uF − uIR)

into N intervals, each with ε = (uF − uIR)/N , then inserting the 
resolution of identity (11) at each interval point,3 and finally let-
ting N go to infinity while dropping O(ε2) terms, the amplitude 
(12) can be written as a formal generalized coherent state path 
integral,

G(uF , uIR) =
∫

dμ(�,�) exp {i Seff[�,�]}, (13)

where

Seff[�,�] = −
uF∫

uIR

du
[
L[�,�; u] + 〈� | K̃(u)|�〉] ,

L[�,�; u] = 1

2i

∫
dk

[
�k(u) ∂u�k(u) − �k(u) ∂u�k(u)

]
. (14)

We have explicitly dropped out the projection operators onto 
the initial and final states but it must be noted that the Euler–
Lagrange equations derived from Seff[�,�] are accompanied by 
the boundary conditions �k(uF ) ≡ �k(uN ) and �k(uIR) ≡ �k(u0)

respectively. Regarding this, the effective action only contains two 
terms. The second term is tantamount to the matrix element of 
the entangler operator K̃ in the coherent state basis while the 
first term L[�,�; u] is pure geometric; it is indeed a Berry phase 
that describes how the quantum entanglement is created along 
the cMERA flow. Using the expressions (6), (8) and (10), it can 
be shown that L[�,�; u] = 〈� |K̃(u)| �〉, so Seff[�,�] totally ac-
counts for the quantum fluctuations along the cMERA flow and can 
be written as,

Seff[�,�] = i

uF∫
uIR

du dk
[
�k(u) ∂u�k(u) − �k(u) ∂u�k(u)

]

= −2

uF∫
uIR

du dk
[
�k(u) ∂u�k(u)

]
. (15)

3 We also must note that the transition amplitude between two different co-
herent states (7) is given by 〈�′| �〉 = exp

[−1/2 ∫ dk
( | �k(u′)|2 + | �k(u)|2 −

2 �k(u′) �k(u) )].
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Here, we will be mainly interested in the amplitude G(0, uIR), 
i.e., the amplitude whose effective action Seff[�,�] relates to the 
full cMERA renormalization coordinate u. Furthermore, we turn to 
a real-space description instead of the k-space one such that,

Seff[�,�] = −2
∫

du dx
[
�(u; x) ∂u�(u; x)

]
. (16)

This result has been derived using the interaction picture. Never-
theless, to portray the full cMERA renormalization flow one might 
also take into account the coarse graining process, which amounts 
to recover the Schrödinger picture of cMERA (eq. (1)). Noting that 
K̃(u) = e−u K(u) (see eq. (4)), this can be used to show that the 
full cMERA flow can be expressed in terms of a path integral with 
an effective action given by,

Seff[�,�] = −2
∫

du dx
[
�(u; x) e−u ∂u�(u; x)

]
. (17)

As stated above, in [12,14] it has been shown that the coherent 
state description of cMERA for the model (5) yields a natural ge-
ometric representation of the renormalization flow by means of a 
two dimensional metric defined on a manifold with coordinates u
and x. This is given by,

ds2 = guu du2 + e−2u dx2, (18)

with guu = gk(u)2. For the ground state of the free scalar theory 
with mass m, the cMERA variational parameter �k(u) is obtained 
by minimizing the energy density E = 〈�IR | H(uIR)| �IR〉, with H
the Hamiltonian function derived from (5). The result reads as [11,
12],

�k(u) =
[
−1

4
log

k2 + m2

�2 + m2

]
k=�e−u

= −1

4
log

e−2u + m2

1 + m2
, (19)

with m = m/� � 1. This variational solution immediately leads to,

gk(u) = ∂u �k(u) = 1

2

e−2u

(e−2u + m2)
. (20)

As a consequence, both �k(u) and gk(u) are real and have no ex-
plicit dependence on k (or x). Said that, our aim now is to interpret 
(17) as the action of a gravitational theory. To this end, let us first 
notice that according to (18),

e−u ∂u �(u) = √
guu e−u = √

g, (21)

where g = det gab with gab = diag { guu, e−2u }. With this, one may 
formally write,

Seff[�, g] = 1

4

∫
d2σ

√
g R(2) �(u), (22)

with d 2σ = du dx and R(2) = −8 corresponding to the scalar 
curvature of the metric tensor gab . The explicit dependence of 
Seff[�, g] on both gab and �(u) in (22), is to suggest that, de-
spite these quantities are related by 

√
guu = ∂u�(u), they could be 

treated as two independent dynamical variables under some cir-
cumstances. This point will be clarified in the next section.

Regarding (10) one notices that �(u) = 〈� | K− | �〉. This 
amounts to see �(u) as a condensate of bosonic scalar particles. 
As coherent states are the most classical states of a quantum sys-
tem, thus the expectation value of an operator in a basis of these 
states is expected to behave mostly as a classical variable. In ad-
dition, [14] has argued that the field �(u) of the 2-dimensional 
effective theory (19) may be understood as an information-the-
oretic quantity. Namely, it amounts to the entanglement entropy 
between the left and right moving modes ak and a−k needed to 
create the cMERA state (3) at each length scale u.
4. cMERA effective action and two dimensional string theory

The aim in the following is to show that Seff[�, g] may be in-
terpreted as the dilaton term of the generalized nonlinear sigma 
model that describes the worldsheet action of strings moving on 
a curved background [19–21]. Namely, we show that �(u) in (19)
corresponds to a known solution of the equations of motion of 
the background fields. The discussion above also indicates that the 
background fields of the string worldsheet action might be seen 
as the expectation values of field operators in the cMERA coherent 
state basis.

The nonlinear sigma model worldsheet action for a closed 
bosonic string is given by,

Sws = 1

4πα′

∫


d 2σ
√

g
[

gabGμν(X) ∂a Xμ∂b Xν
]

+ 1

4π

∫


d 2σ
√

g R(2) �(X), (23)

where σ and gab are coordinates and the metric on the world-
sheet respectively; R(2) represents the corresponding scalar cur-
vature; Xμ denote target space coordinates with μ = 0 · · · D − 1
and D the dimension of the target spacetime, Gμν(X) is the tar-
get spacetime metric and �(X) the dilaton field. For convenience, 
the antisymmetric B-axion field has been set to zero. As usual, 
α′ is the inverse string tension. From the point of view of the 
2D quantum field theory on the worldsheet, changing the back-
ground fields Gμν and � amounts to consider a different theory. 
From the full string theory perspective, this merely means a differ-
ent background (state) within the same theory. The consistency of 
the string requires the local scale invariance of the quantum field 
theory on the worldsheet. This imposes the vanishing of the trace 
of the 2D worldsheet energy–momentum tensor Tab . To satisfy this 
constraint in non-critical dimensions, the metric on the worldsheet 
and the dilaton must be treated as independent quantum dynam-
ical variables although in the classical theory gab depends on �. 
The condition T a

a = 0 is accomplished by the vanishing of the non-
linear sigma model β-functions β G

μν and β � that, at one loop in α′
are,

β �

α′ = (D − 26)

6α′ + 1

2

[
4(∇μ�)2 − 2∇2� −R

]
,

β G
μν = Rμν + 2∇μ∇ν�, (24)

where ∇μ corresponds to the spacetime covariant derivative and 
R to the scalar curvature of the target spacetime. The vanishing 
of β G

μν and β � leads to the effective equations of motion for the 
background fields Gμν and �.

4.1. Linear dilaton background

A consistent background solution to the equations of motion 
(24) for arbitrary D consists in a flat target spacetime and a linear 
dilaton,

Gμν(X) = ημν, �(X) = Vμ Xμ, VμV μ = (26 − D)

12α′ . (25)

For D < Dcrit = 26, the dilaton gradient is spacelike.
Here, we will consider the case for D = 2 and �(X) lying 

along X1, i.e., �(X) = Q X1 and Q 2 = 2/α′ . Thus, the geometry 
seen by the propagating string is a two dimensional flat spacetime 
with a dilaton linearly varying along its direction X1. This is tanta-
mount to say that the strength of the string interactions varies as 
a function of the X1 coordinate. Indeed, the dilaton field defines a 
coupling constant,
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geff = e �(X). (26)

Then, in the linear dilaton background where � = Q X1, in the 
X1 → ∞ region of the target spacetime geff = eQ X1

diverges and 
string perturbation theory fails.

4.2. cMERA linear dilaton

With this, let us now analyze the variational cMERA solution 
to � given in (19) when m = 0, i.e., when considering the free 
massless scalar theory. In this case,

�(u) = Q u with Q = 1/2, (27)

and guu = 1/4. Choosing the target spacetime coordinates4 as 
Xμ = (X0, X1) = (x, u) and Gμν(X) = diag {1, guu}, the cMERA ef-
fective action reads as,

Seff = 1

4

∫
d2σ

√
g R(2) Q X1. (28)

In words, when m = 0, it is suggested that the cMERA effective ac-
tion describes a linear dilaton background with Q = 1/2. It must 
be noted that the consistency condition Q 2 = 2/α′ imposes that 
one has to work in units where α′ ≡ 8. This amounts to de-
fine a fiducial string interaction strength g2

0 ∼ α′ which landmarks 
the regime geff � g0 where perturbation theory is valid. In the 
two dimensional string theory provided by the cMERA action (28), 
g2

eff = e2Q X1 = eu so perturbation theory is valid for small values 
of the u-coordinate. There g2

eff ≈ 1 � g0. From the entanglement 
renormalization point of view this translates into the following: 
cMERA states |�〉 close to the UV point, i.e., those in which the 
entanglement at all lengths scales has been added, correspond to 
regions of the “dual” target spacetime where string perturbation 
theory is valid. On the other hand, as one runs into the IR region 
of cMERA, the resulting states have been devoid of their entan-
glement at small length scales. This region where a significant 
amount of short range entanglement has been discarded corre-
sponds to the strong coupling region of the cMERA linear dilaton 
background. Furthermore, the inverse string coupling limits the 
number of the left–right moving entangled modes at the scale u
to those with momentum k ≤ � g−2

eff .
Now, in order to analyze the m �= 0 case, let us first review on 

another non-trivial background of two dimensional string theory.

4.3. Two dimensional black hole background

As a theory of quantum gravity, string theory is also able to de-
scribe settings involving strong gravitational fields like black holes. 
An example of a well known non-trivial solution to the background 
field equations (24) is that of the black hole in two spacetime 
dimensions [22]. In this solution, the spacetime manifold can be 
actually seen as parametrizing the coset group SL(2, R)/U (1). In 
Euclidean signature, with X1 ≥ 0 and making X0 periodic, the 
spacetime geometry seen by the string has the shape of a cigar. 
The non-trivial fields in spacetime are the metric and the dilaton 
given by,

Gbh
11(X) = 1

4
tanh2(2Q X1 + log M),

�bh(X1) = −1

2
log 2M − 1

2
log cosh (2Q X1 + log M), (29)

4 We are working on a Euclidean signature. The Minkowski case may be obtained 
by putting x → iθ .
with Gbh
00(X) = 1 and M being a mass constant. As M → 0, the 

background (29) approaches (25). The linear dilaton is also recov-
ered when X1 → 0 and then the manifold resembles a cylinder in-
stead of a cigar. Apart from being of great interest as a black hole, 
this solution arises in many other contexts in string theory, for 
example as the near-horizon limit of NS5-branes [23]. There, au-
thors have also considered these linear dilaton backgrounds from 
the holographic point of view.

4.4. cMERA 2D black hole

Now we turn to analyze the variational solution (19) for non-
zero mass. Regarding m � 1, one can write,

�(u) = Q u − 1

4
log

(
1 + m 2 e2u

)
+O(m 2), Q = 1/2, (30)

and

guu = g(u)2 = [∂ �(u)]2 = 1

4

(
1 − m 2

(m 2 + e−2u)

)2

. (31)

Again, we choose the target spacetime coordinates as Xμ =
(X0, X1) = (x, u) and Gμν(X) = diag {1, guu}. Two interesting lim-
its may be identified. First of all we consider the X1 → 0 one. In 
this case,

�(X1) ≈ Q X1, G11(X) ≈ 1

4
(1 − 2m 2e2X1

) ≈ 1

4
, (32)

thus recovering the cMERA linear dilaton background where g2
eff =

e2Q X1 ∼ 1. In order to justify the second limit, notice that the 
scalar curvature of gab ,

R(2) = −8 + 8m 4e4X1
, (33)

remains constant along the X1 coordinate before it exponentially 
vanishes when reaching X1∗ ∼ − log m. We interpret this as a break-
down of the linear dilaton behaviour at X1∗ . Namely, at this value 
of the X1-coordinate,

�(X1∗) ≈ −1

2
log m, (34)

while G11 in (32) changes its sign, which might be interpreted by 
the presence of an horizon. In this limit, the effective string cou-
pling g2

eff = e2Q X1∗ ∼ 1/m � g0, which is far from the perturbative 
regime. One notices that the behaviour of these cMERA background 
fields can be fairly accounted in terms of a two dimensional black 
hole solution (29) by taking Q = 1/2 and M ≡ m, i.e.,

Gbh
11(X) = 1

4
tanh2(X1 + log m),

�bh(X1) = −1

2
log 2m − 1

2
log cosh (X1 + log m)

= Q X1 − 1

2
log(1 + m 2e2X1

). (35)

With this identification one easily recovers the asymptotic value of 
the cMERA fields for X1 → 0,

�bh(X1) ≈ Q X1, Gbh
11(X) ≈ 1

4
(1 − 2m 2e2X1

) ≈ 1

4
, (36)

while �bh(X1∗) ≈ − 1
2 log m.

In view of these results, one might think in reverse and come to 
conclude that the two dimensional string theory linear dilaton, ac-
tually provides the solution for the g(u) of the massive free boson 
as one considers the cMERA-like relation,
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g(u) =
[
∂X1 �bh(X1)

]
X1= u

= −1

2
tanh(u + log m), (37)

which asymptotes to (20) when u � − log m.
In regard to this, if it is assumed that a linear dilaton back-

ground may describe the massless scalar cMERA, one could ask 
which value of Q would make the correspondence to work. To 
this end we note on how two point functions are computed 
by cMERA. Given a scaling operator O of the theory, cMERA 
states that 〈�(0) | O | �(0)〉 = 〈�(u) | O(u) | �(u)〉 with O(u) =
U−1(0, u) O U (0, u) and U (0, u) = exp{−i 

∫ 0
u dû (K(û) + D)}. In 

the scalar free theory, the simplest scaling operators are φ(x) →
e−�φ φ(xe−u) and its conjugate momentum θ(x) → e−�θ θ(xe−u)

with �φ = 0 and �θ = 1 respectively. Noting that [12],

U−1 θ(x) U = e−�(u)−u/2 θ(xe−u), (38)

then,

〈�(0) | θ(x) θ(x′) |�(0)〉
= e−2�(u)−u 〈�(u) | θ(xe−u) θ(x′e−u) |�(u)〉. (39)

This expression is evaluated at the length scale u0 = log | x − x′ |
where the coarse grained distance between the UV locations of 
the operators has shrunk to one in units of the cutoff distance and 
〈�(u0) | θ(xe−u0 ) θ(x′e−u0) | �(u0)〉 ∼ constant. With this,

〈 θ(x) θ(x′) 〉 ∝ e−2�(u0)−u0 = e−(2Q +1) log | x−x′ |

= | x − x′ |−(2Q +1). (40)

As θ(x) is scaling operator with �θ = 1, its two point function 
reads as 〈 θ(x) θ(x′) 〉 ∝ | x − x′ |−2�θ . This allows one to write the 
on shell-like relation,

2�θ = 2Q + 1, (41)

which immediately fixes Q to its expected value of 1/2.
Finally, let us briefly discuss on the results presented in this 

Letter. The emergence of a subcritical string theory in two space-
time dimensions from the entanglement renormalization of a one 
dimensional free boson seems puzzling at least. One might also 
wonder about how general this scheme can be. First we note that 
a non-critical string theory in two spacetime dimensions is a c = 1
Liouville field theory whose Liouville field ϕL ∼ � ∼ X1 [24]. It is 
also known that, through a Bäcklund transformation it is possi-
ble to map the Liouville field ϕL onto a free field theory [25]. On 
the other hand, as it has been pointed out above, the cMERA flow 
for the free boson amounts to a coherent state evolution with a 
kernel given by equations (13) and (14). Remarkably, in [26], au-
thors showed how these kind of coherent state evolutions can be 
thought as a succession of infinitesimal local Bäcklund transforma-
tions. These facts together suggest that the cMERA flow of a free 
scalar field could effectively implement a Bäcklund transformation 
and yield a dual description in terms of a subcritical string theory. 
It would be desirable to explicitly check this proposal in subse-
quent works. This could also provide new insights on the nature of 
true degrees of freedom in two dimensional string theory.
5. Conclusions

We have shown how the cMERA representation of different 
ground states of the free scalar boson correspond to non-trivial 
backgrounds of two dimensional string theory. This brings up the 
question if another non-trivial backgrounds may consistently be 
ascribed to different kind of states of the theory apart from the 
ground states. In addition, we have provided some insights on how 
the background fields Gμν and � arise from the structure of the 
entanglement between the left and right moving modes that builds 
up the cMERA renormalization flow. The entanglement entropy in 
the linear dilaton background of 2D-string theory was computed 
some time ago using its dual c = 1 matrix model [27,28] and more 
recently in [29]. It would be worth to investigate to which amount 
this kind of entanglement can be related with the entanglement 
obtained there.
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