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a b s t r a c t

The inverse opal architecture, a class of mechanical metamaterials recently shown to exhibit high specific
strength andmodulus, is further investigated here using carefully coupled experiments and finite element
modeling. We demonstrate that this architecture can be exploited to achieve optimized specific strength
andmodulus, while simultaneously offering tunable optical bandgaps and large-area fabrication. Starting
with a silica inverse opal structure and adding different thicknesses of titania (10–34 nm) the strength
was gradually increased from 41 to 410MPa and the elastic modulus from 1.7 to 8.3 GPa, within densities
of 300–1000 kg m−3. Simulations confirmed that the inverse opal structure can outperform the state-
of-the-art octet- and isotropic-truss designs in terms of Young’s, shear and bulk modulus, as well as in
structural efficiency (total stiffness). Simulations also predict stresses in the titania coating and in the
silica that are on the order of the theoretical tensile yield stresses at failure, indicating that size effects
controlling defect population are responsible for the high strengths.
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1. Introduction

The inverse opal (IO) architecture – a design based on the
inverse FCC (face-centered cubic) geometry – has recently been
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presented as a class of mechanical metamaterials that opens a
new design space for the development of microscaled lightweight
structures [1]. The IO is a known class of photonic crystal,
with its characteristic photonic-bandgap controlled by the size
of its pores. This combination of classical photonics and high
mechanical performance makes this architecture interesting for
multi-functional applications.

In the last few years, much effort has been put into developing
microscaled lightweight structures with high strength and mod-
ulus [2–12]. Novel combinations of design and fabrication tech-
niques have allowed many metamaterials to populate unexplored
areas of design space with high specific properties (desired prop-
erty per density). These metamaterials often rely on a size effect,
i.e. the ‘‘smaller is stronger’’ paradigm, to achieve high specific
strength at themicrometer and nanometer scale.Many of these ex-
perimental investigations of metamaterials are based on the work
ofDeshpande et al. [13,14] and the octet-truss [3,4,7–10]. Other lat-
tice designs [2,4,6,12] and honeycomb structures [4,12] have also
been shown to have interesting properties. Nevertheless, the IO
architecture structures have only been outperformed by carbon-
based microscaled metamaterials [2,12].

Our previous work showed that the silica based IO structure
has substantial stiffness and strength, but the addition of a stiffer
and stronger coating (titania) by atomic layer deposition (ALD)
is responsible for a significant increase in performance. These
materials, uncoated and coated silica IO, possess exceptionally
high specific stiffness and strength, and up until recently, are only
rivaled by highly anisotropic honeycomb structures [4,12].

In this work, experiments and modeling are used to further
understand the properties of IO, and how the addition of a stiff,
strong coating affects mechanical properties. Experimentally, we
show that the strength and modulus of silica IO can be gradually
increased by adding different thicknesses of a titania coating
(namely 10, 20 and 34 nm). Average strengths from 41 MPa up
to 410 MPa and average elastic moduli from 1.7 GPa up to 8.3
GPa were achieved while varying the density from 330 kg m−3

up to 890 kg m−3. Simulations show that the addition of this
stiffer, stronger coating can decrease stress concentrations in the
silica by 60%. Using simulations, we are able to quantify the
structural efficiency and performance of the IO geometry, based
on theoretical bounds as metrics. We calculate the Young’s, shear
and bulk moduli, as well as structural efficiency and isotropy,
of the IO geometry. As practical benchmarks for performance,
we compare the properties of IO to two high-performance truss
geometries, the octet-truss and a truss with maximum stiffness
for an isotropic lattice material, recently identified by Gurtner and
Durand [15]. The IO is found to have higher structural performance
than optimized lattice designs due to its quasi-closed cell geometry
which helps to support membrane stresses, while the addition of a
robust titania coating increases the absolute performance greatly.

2. Materials and methods

2.1. Opal fabrication

Silica IO films were fabricated by vertical co-assembly based
on the procedure described by Hatton et al. [16] 0.6 ml of a
10w/v% stock suspension of monodispersed colloidal polystyrene
(PS) spheres with a diameter of 756 ± 20 nm (Microparticles
GmbH) was mixed with 0.450 ml of a hydrolyzed TEOS (tetraethy-
lorthosilicate) solution in deionized water to a total volume of 50
ml. The TEOS solution was composed of 1:1:1.5 ratio by weight of
TEOS, 0.10 M HCl and EtOH stirred for 1 h. Soda-lime silica glass
substrates were vertically positioned in PTFE beakers containing

the prepared suspension. The beakers were placed in a humid-
ity chamber at 60 °C for 3–5 days resulting in a growth rate of
0.5 cm/day of the FCC structure. The substrates were cleaned by
soaking in and brushing with an alkaline detergent solution and
rinsing with hot tap water and deionized water. Finally, the sub-
strates were dried with filtered nitrogen, and subsequently O2-
plasma cleaned for 20 min. After the co-assembly was carried out
the films were calcined at 500 °C for 30 min in order to burn-out
the PS template resulting in an inverse opaline structure of amor-
phous silica. The final IO structure is an inverted FCC elliptical pore
arrangement with pore size of 725 nm parallel to the substrate
and 670 nm perpendicular to the substrate. The elliptical shape
arises from an anisotropic shrinkage upon calcination. The pores
are interconnected by holes of approx. 170 nm in diameter. Subse-
quently, some samples were ALD-coated at 95 °C with an amor-
phous TiO2-layer with different thicknesses (10, 20 and 34 nm).
The ALD-coating thicknesses were measured in a spectroscopic el-
lipsometer from a thin film deposited on a silicon wafer during the
infiltration with an error of ±1 nm.

2.2. Opal density determination

The density of the silica IO was estimated by four independent
methods: gravimetric, pycnometric and two optical methods. The
density of the silica IO coated with TiO2 was measured by two
independent methods: gravimetric and optical. In summary, the
densities of pure silica IO and 10, 20 and 34 nm-TiO2 ALD-coated
silica IO are 330, 500, 660 and 890 kg m−3, respectively. The
average among different methods lies within a maximum of 10%
uncertainty. For more details, see Appendix A (supplementary
data).

2.3. Micropillar preparation and microcompression tests

Focused ion beam (FIB) milling was employed to fabricate
pillars with square and rectangular cross section using a Nanolab
200 DualBeam microscope (FEI, Co.). Minimal exposure of the
fabricated pillars to the Ga ion beam was achieved since no direct
imaging of the structure with the ion beam was required. Cross
sectional milling was used to fabricate the four planar sides, with
the final milling steps imposing beam currents of 300 pA, at an
accelerating voltage of 30 kV. A series of microcolumns, all milled
into the underlying soda-lime glass substrate, were prepared. This
design is advantageous to the analysis of the compression data,
since the underlying glass substrate serves as a stiff and hard
platen; no filleting at the bottom of the pillar is present, in contrast
to pillars that are FIB-milled from the bulk. Here, the deformation
is strongly limited to the IO film, with a single deformation volume
and in turn a straightforward analysis of the uniaxial stress–strain
response.

The compression tests were conducted using a Nanoindenter
XP outfitted with a flat ended 60° conical diamond indenter at a
constant displacement rate of 10 nm s−1 in the (111)-direction to
a specified target depth. In all tests a target of 700 nmwas chosen,
whichwas in all cases greatly surpassed, as amechanical instability
at the critical failure stress occurred; a large displacement burst up
to a fewmicrons typically resulted at failure. In some cases a partial
unloading segment prior to failure was included to assess whether
an elastic regime is truly present. The stress, σ , and strain, ε, were
computed using the load, P , and displacement, h, data along with
the geometric parameters, namely the height, H , and the top cross
sectional area,A, of the pillars, asmeasured fromSEMmicrographs.
The stress and strain were computed as σ = P/A and ε = h/H , re-
spectively. The elastic modulus was assessed with the continuous
stiffness measurement (CSM) method, using a dynamic displace-
ment amplitude of 2 nm at a frequency of 45 Hz superimposed
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Fig. 1. Unit cells of coated inverse opals, 10, 20 and 35 nm (left to right). The underlying SiO2 inverse opal geometry remains the same in all calculations. Coatings were
composed of 2–4 layers of quadratic elements through the thickness.

during loading. Once full contact between the indenter and sam-
ple is achieved, the dynamic stiffness, SCSM, can be used to compute
the elastic modulus: ECSM = SCSM(H/A). During the initial loading,
the contact area develops leading to an increasing stiffness up until
full contact is achieved; the elasticmodulus is therefore only estab-
lished at the plateau. For simplicity, the elastic displacements of the
underlying soda-lime glass substrate are ignored since its modulus
of is 10 times (or more) greater than that of the inverse opal. These
displacements only slightly affect the strain, but do not influence
the stress.

Top down images are used to compute the top cross-sectional
area. While side-views of the pillars could be used to measure the
height of the column, errors associated with the combined tilted
view and slight taper of the pillar, along with the difficulty of
identifying the top edge of the pillar can lead to significant errors in
themeasurement of height. Therefore the height was alternatively
computed from the known FCC structure of the IO in combination
with the SEM images. For an FCC crystal the height, H , in the ⟨111⟩
direction is given by:

H = Nlayers

√
3
3


√
2D (1)

where Nlayers is the number of (111) layers, and D is the diameter
of the spherical pore in the ⟨111⟩, i.e., out-of-plane, direction. For
more details, see Appendix A (supplementary data). Pure silica IO
and silica IO coatedwith 10, 20 and 34nm-TiO2 pillars have 8.5, 6.5,
8.5 and 5.5 layers of pores along the ⟨111⟩ direction, respectively.
The number of layers yielded heights of 4.7 µm, 3.6 µm, 4.7 µm
and 3.0µm, respectively. Comparing these values to the estimates
from the SEM images, we find excellent agreement.

2.4. Modeling

Three types of calculations were performed in order to evaluate
performance of the IO structures and create a comparison with
the experimental results: (i) plain silica inverse opal, (ii) silica IO
coated with 10, 20, 28 and 35 nm of titania and (iii) silica IO coated
with 10, 20 and 35 nm of silica, the latter being uncoated systems
in essence, allowing for geometric effects to be assessed. As a
starting point, the plain silica IO is simulated, and the constitutive
inputs were fitted to experiment. Subsequently, the coated IO
samples were simulated using the appropriate coating thickness
and compared directly to experiments.

2.4.1. Finite element model and boundary conditions
Finite element (FE) models consist of single unit cells subject to

periodic boundary conditions. Models are generated using a com-
mercial FE code (ABAQUS CAE, 6.14). Unit cell model geometries

for the coated systems are depicted in Fig. 1. FE solutions are com-
puted using the static solver, Abaqus Standard. Nonlinear defor-
mations are allowed using the NLGEOM flag; however, the mag-
nitude of the applied macroscopic strains are small. All models
are subject to the same levels of macroscopic strain. We use sec-
ond order tetrahedral and brick elements, type C3D10 and C3D20
in ABAQUS. Coatings are modeled with 2–4 elements through the
coating thickness with negligible influence on the total strain en-
ergy. Models are composed of ∼7×105 elements. The coating and
IO substrate geometry are modeled as separate parts and the TIE
command (ABAQUS) used to constrain their relative motion. The
boundary nodes on the faces, corners, and edges of the cubic rep-
resentative volume element (RVE) are required to be periodic. Gen-
erating a unit cell octant and usingmirroring to form a full unit cell
enforces this symmetry.

Periodic sets of boundary nodes experience a relative displace-
ment consistent with the imposed macroscopic strains, enforced
through the displacements of ‘‘virtual nodes’’. The complemen-
tary reaction forces on the virtual nodes are used to calculate the
macroscopic stresses. A full description of this method is given by
Danielsson, Parks, and Boyce [17]. To prevent rigid body transla-
tions a single node is fixed in place. To prevent rigid body rotations
symmetry of the macroscopic strain tensor is enforced. We report
the First Piola Kirchhoff stress, which is equivalent to the Cauchy
stress when the strains are small.

Model geometries are scaled so that the characteristic length
of the cubic RVE, L = 1.0. The FCC structure repeats with a char-
acteristic dimension in the ⟨100⟩ directions of 1025 nm, normal-
ized to 1.0 in the model. The 725 nm pore size in the uncoated
SiO2 system is scaled to 0.707, and the coating thicknesses of 10,
20, 28 and 35 nm, scaled to 0.010, 0.020, 0.027, and 0.034 respec-
tively. The 10, 20, and 35 nm layer thicknesses correspond to the
geometries fabricated in this study, and the 28nm layer thickness
model is from a previous study [1], where no amorphous coating
experimental data are available. The relative density of the SiO2
structure is, ρ̄/ρS = Vf = 25.5%, the layers adding 5.3%, 10.7%,
15.0%, and 18.6%, for a total volume fraction of, Vf = 30.8%, 36.1%,
40.5%, and 44.1%; here the symbol ρ represents the density, Vf is
the fraction of the cubic RVE volume that is occupied by the solid
phases, and we use the bar notation to denote the effective prop-
erties of the metamaterial and the subscript s denotes the proper-
ties of the solid. Although the density of the titania layers may vary
with the coating thickness, in this analysis we are only concerned
with structural efficiency and therefore it is the volume ofmaterial
in a design, and not its specific properties, that are of interest.

3. Results and discussions

3.1. Experimental characterization of inverse opals

Experimental results are presented in Fig. 2, namely those for
plain silica IO and silica IO coated with 10, 20 and 34 nm of amor-
phous titania. Typical stress vs. strain curves (black lines) and the
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Fig. 2. Typical stress–strain curves and associated elastic modulus (continuous stiffness measurements) and as-fabricated and fractured micropillars for (a) pure silica
inverse opal and silica inverse opal coated with (b) 10 nm, (c) 20 nm and (d) 34 nm TiO2 . (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

associated elastic modulus (continuous stiffness measurements,
red lines) show that both strength and elastic modulus increase
with reinforcement thickness. In all cases, the target displacement
was greatly surpassed. A mechanical instability developed at the
critical failure stress and a large displacement jump of a few mi-
crons typically resulted. It should be noted, that only the loading
and onset of failure portions of the tests are shown. In addition
to the mechanical response, Fig. 2 shows typical pillars before and
after compression for each type of structure tested. No clear dif-
ference in the fracture mechanism can be distinguished from the
post-fracture images.

In Fig. 3 the strength and elastic modulus (computed from the
loading slope and from CSM) are plotted as a function of the ti-
tania thickness. The strength seems to scale linearly with thick-
ness, while the elastic modulus appears to scale linearly up to
20 nm reinforcement, and tends to plateau with only a small in-

crease from 20 to 34 nm of reinforcement. Table 1 presents a sum-
mary of results for all samples tested for this work. The strength
achieved increased up to 10-fold, going from 41 ± 2 MPa up to
410 ± 31 MPa, in the plain silica IO and the silica coated with
34 nm titania, respectively. This difference corresponds to an in-
crease in specific strength from around 0.125 MPa/(kg m−3) up to
0.451 MPa/(kg m−3). On the other hand, the elastic modulus ex-
hibited a more than 5-fold increase, going from 1.7 ± 0.1 GPa up
to 8.3 ± 0.7 GPa, when calculated from stress–strain curve slopes.
This difference corresponds to an increase in specificmodulus from
5.15 MPa/(kg m−3) up to 9.33 MPa/(kg m−3). The different coat-
ings provide an interesting density range (300–1000 kg m−3) for
lightweight materials. Comparedwith other state-of-the-art strut-
based microarchitectures [2–12], only carbon-based designs out-
perform the titania coated silica IO [2,12].
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Table 1
Summary of the geometry and the mechanical properties of tested samples.

TiO2 thickness Porosity Density Area Height Strength Eloading,max ECSM, average
nm kg m−3 µm3 µm MPa GPa GPa

100.2 40.1 1.7 1.3
0 0.74 330 86.3 4.7 44.4 1.8 1.7

135.1 40.1 1.7 1.3
Average: 41.3 ± 2.3 1.7 ± 0.1 1.4 ± 0.2

108.3 156.9 4.1 4.2
10 0.68 500 94.8 3.6 159.7 4.4 4.5

103.4 144.7 4.0 4.4
Average: 153.8 ± 8.0 4.2 ± 0.2 4.3 ± 0.1

88.1 246.0 7.0 7.2
20 0.63 660 90.8 4.7 278.3 7.7 6.3

95.3 289.4 8.0 6.8
Average: 271.2 ± 22.5 7.6 ± 0.5 6.7 ± 0.4

77.0 424.6 8.6 8.2
70.9 430.4 8.3 8.5

34 0.56 890 66.9 3.0 441.3 9.0 8.1
89.7 384.4 8.6 7.2
79.5 369.2 7.0 7.2

Average: 410.0 ± 31.4 8.3 ± 0.7 7.9 ± 0.6

Fig. 3. Summary of the mechanical properties of tested samples: (a) strength and (b) elastic modulus as a function of TiO2 thickness.

3.2. Modeling

We assume that the silica is isotropic, with its elastic properties
thus fully characterized by the Young’s modulus ES , and Poisson’s
ratio νS . IO unit cells, having cubic symmetry, are characterized
elastically by three independent elastic constants, Young’s mod-
ulus Ē, shear modulus Ḡ and Poisson’s ratio ν̄, or Ē, Ḡ and bulk
modulus K̄ , all defined relative to a coordinate system with basis
vectors aligned with the edges of the cubic RVE shown in Fig. 1.
The properties of a-SiO2 are first assumed to be that of the bulk
solid, ES = 80 GPa, νS = 0.25, and ρS = 1297 kg m−3. From these
parameters and using the methods described below the proper-
ties of the uncoated IO system are calculated to be Ē = 5.28 GPa,
Ḡ = 3.16 GPa, K̄ = 4.75 GPa, ν̄ = 0.32 and ρ̄ = 593 kg m−3. The
modulus in the ⟨111⟩ direction is then Ē111 = 7.77 GPa. In subse-
quent calculations the solid modulus is scaled to ES = 17.52 GPa,
so that the effective ⟨111⟩ modulus matches the experimentally
determined value, Ē111 = ECSM = 1.7 GPa [1] (Fig. 4).

The modulus of the ALD TiO2 coatings is known to depend
on thickness when thin. We use a linear curve fit to the data of
Colombi et al. [18] for coatings with a thickness less than 75 nm.
The Young’s moduli of the 10, 20, 28 and 35 nm coatings are 48.3,
58.4, 66.5, and 73.6 GPa respectively. The Poisson ratio for all coat-
ing thicknesses is taken to be 0.27. Such values are used for the
material properties of the titania coatings in the simulations de-
scribed below.

Fig. 4. Themodulus in the ⟨111⟩direction [experiment (triangles) and FE (squares)]
as a function of the solid volume fraction, Vf . The SiO2 properties are fitted to the
uncoated loading slope modulus (circle). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. The computednormalizedmoduli of inverse opal geometries (solid square) are plotted alongwith theoretical bounds (purple and blue dashed lines) and the properties
of two lattice materials, the octet-truss [14] (solid blue dots) and an isotropic lattice with maximum modulus (solid orange dots) [15]. The coated systems are either silica
on silica or titania on silica. Three phase bounds for silica, titania plus voidspace are a function of material properties and the volume fraction of the constituents. There are
a set of bounds for the pure SiO2 systems (purple dashed lines), and a group of three-phase bounds for the coated materials (blue dashed lines) whose properties vary with
coating thickness. The base, uncoated, system has 25.5% relative density, which becomes the minimum density for the coated systems. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

3.2.1. Modulus calculation and elastic characterization
In the simulations the elastic moduli, Ē, Ḡ and K̄ are calculated

by application of three states of strain, consistent with uniaxial
stress, shear stress, and hydrostatic stress. For example, for the case
of shear loading, ε̄12 = ε̄21 = ϵ, and all other ε̄ij, ij = 1, 2, 3,
are unconstrained degrees of freedom; here ε̄ij are the components
of the macroscopic strain tensor, and ϵ is the magnitude of the
strain. Alternatively, K̄ can be calculated using the Poisson ratio,
ν̄, requiring only two calculations to characterize the material. For
redundancy, and to plot stress and strain energy distributions, we
model hydrostatic loading.

To match FE with experiments, the modulus in the ⟨111⟩
directions is found using,

1
E111

= S11 − 2

S11 − S12 −

S44
2

 
α2
1α

2
2 + α2

2α
2
3 + α2

3α
2
1


(2)

where the Sij are components of the elastic compliance matrix and
theαi are the direction cosines between the ⟨111⟩direction and the
basis vectors of the original coordinate system [19]; for the ⟨111⟩
direction αi = 1/

√
3.

Results of the computations are shown in Fig. 4 for coated
and uncoated systems, where the coated systems are alternatively
those of silica on silica and titania on silica. The case of silica on
silica is shown with the results in the lower segment of the figure
connected by the pink dashed line, and those for titania on silica
in the upper part of the figure by the blue dashed line. It can be
seen that the results for the unit cells with titania coatings agree
with the experimental data reasonablywell, with somewhat better
results for the 10 nm and 20 nm thickness than for the 35 nm one.

The best-known theoretical bounds on the modulus of multi-
phase composites have been devised by Hashin and Shtrik-
man [20]. For a two-phase cellular material, composed of a solid
and void space, the bounds simplify to [21],

KHSU

Ks
=

4Gs (ρ̄/ρs)

4Gs + 3Ks (1 − ρ̄/ρs)
, (3)

GHSU

Gs
=

(9Ks + 8Gs) (ρ̄/ρs)

20Gs + 15Ks − 6 (Ks + 2Gs) (ρ̄/ρs)
, (4)

where the subscript HSU refers to the Hashin–Shtrikman (H–S)
upper bound. The bound on Young’s modulus,

EHSU =
9GHSUKHSU

3KHSU + GHSU
, (5)

is found from the assumption of linear elasticity with cubic
symmetry or isotropic properties. The bounds for a three-phase
system, with two solid phases, do not simplify to a similar degree
and are instead computed using the algorithm provided by Hashin
and Shtrikman [20].

The structural efficiency can be quantified by comparing
the effective moduli of the metamaterial to a density equiv-
alent continuum. Plots of


Ē/ES


/ (ρ̄/ρS),


Ḡ/GS


/ (ρ̄/ρS) and

K̄/KS

/ (ρ̄/ρS) are unity for a material that achieves the Voigt

bound, in which stress are uniformly distributed. Fig. 5 com-
pares the efficiency of the uncoated and coated systems to two-
and three-phase theoretical upper bounds, and to two high-
performance lattice materials. The lattice materials are the octet-
truss (OT) [14] and an isotropic truss (IT) with maximum modu-
lus for a lattice material [15]. Systems of SiO2 coated with SiO2
are computed to ascertain the role of structural stiffening and
strengthening. A description of these results will be given after the
introduction of the total stiffness, Eq. (7).

The three-phase theoretical bounds are computed for the four
coating thicknesses used in the simulations, beginning at the
volume fraction of the uncoated system, Vf = 25.5%. The addition
of a small amount of a relatively high modulus phase boosts the
theoretical performance most, achieving roughly 80% of the Voigt
bound. Past a point of diminishing return, at total volume fractions
in the neighborhood of 45%–60%, additional amounts of this phase
are relatively detrimental and the two-phase bounds exceed the
three-phase bounds. With the addition of &6% by volume of the
second solid phase a lower moduli ratio of the constituents is
favored.

Themoduli of the amorphous coatings are similar to the anatase
(crystalline) coatings [1], and the two material systems occupy
the same region of property space. Despite having very high
specific stiffness and strength relative to other known materials,
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Fig. 6. The anisotropy (Eq. (6)) of the inverse opal material decreases with the
addition of the coating. For comparison, the anisotropy of the octet-truss [14] and
an isotropic lattice with maximummodulus [15] are plotted.

Fig. 7. The inverse opal geometry has greater elastic structural efficiency than
optimal lattice materials, the octet-truss [14] and an isotropic lattice with
maximum modulus [15]. Addition of a titania coating degrades efficiency relative
to theoretical bounds when the coating is thin. As the thickness increases
the performance of the two- and three-phase inverse opals converge. Despite
significantly different degrees of anisotropy, the performance of the two truss
materials is nearly identical.

theoretical bounds indicate the structural performance of the IO
is only moderate at low densities, and that significantly higher
performing geometries exist. Three-phase systems may have
a significant performance advantage over two-phase systems,
presenting an opportunity for the development of new materials
with novel properties.

3.2.2. Structural anisotropy
To compute the degree of anisotropy we compare the normal-

ized Young’s and shear moduli. To preserve the isotropy of a con-
stituent material while adding a void phase, the ratio of the effec-

Fig. 8. The addition of a titania coating increases the maximum stress
concentration by as much as 55% (i-a, b), but can reduce the maximum stress
concentration in the SiO2 by 60% (i-b, c). Changes in geometry alone by addition
of a silica coating are responsible for a 45% reduction in stress concentration (ii,a,
b).

tive moduli must remain constant with relative density. The term,

a = 1 − |1 − (E/ES) / (G/GS)| , (6)

is unity for an isotropic metamaterial, and a ≤ 1, for all metama-
terials. The ratio, (E/ES) / (G/GS), can be replaced with the Zener
anisotropy ratio [19], a measure of anisotropy for cubically sym-
metric materials, without qualitatively altering results.

The IO geometry is generally anisotropic, being more efficient
in shear than axially (Fig. 5). The addition of the coating decreases
the anisotropy, independently of the geometric changes (Fig. 6).
This ismanifest as a relative reduction in shear performance (Fig. 5-
middle), where the advantage that the titania coating provides is
lost at a total volume fraction, Vf ≈ 44%, and the performance of
the titania coated and silica on silica systems is the same. Both the
titania coated and silica on silica systems are more isotropic than
the OT, which was believed, before proper characterization, to be
nearly isotropic [22].

3.2.3. Structural efficiency
A measure of total structural efficiency can be found by

summing the normalized moduli,

Ω =
Ē/ES + Ḡ/GS + K̄/KS

EHSU/ES + GHSU/GS + KHSU/KS
, (7)

where the subscript s denotes the properties of the constituent or,
in the case of a three-phase system, the volume average property
of the two solid phases. A material that achieves the H–S upper
boundwill haveΩ = 1. This is effectively a bound on strain energy
storage, so that a material that achieves the bound will have a
maximum average strain energy density.

The structural efficiency of the IO geometry, as a fraction of
theoretical upper bounds, exceeds that of lattice materials (Fig. 7).
Despite the significant increase in absolute performance provided
by the titania coating, surprisingly, the performance relative to
theoretical bounds is seen to only decrease.

The degree of affinity of the deformations, or stretch dom-
ination, in a material is the primary factor in determining the
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Fig. 9. Stress concentrations, measured in terms of the effective or Mises stress, in the uncoated, 10 and 35 nm coating FE models (top to bottom) under macroscopic
uniaxial stress (left) andmacroscopic shear stress (right), both defined relative to the coordinate axes aligned with the edges of the cubic representative volume element. All
geometries are subject to the same levels of macroscopic strain. The displacements, which are small in reality, are magnified in the images to reveal their nature. The local
tensile equivalent stress (TES), i.e. the effective or Mises stress, is normalized by the macroscopic TES. The range of the color contour has been truncated in a compromise
that allows a single scale to be used for all three geometries. Stresses are concentrated in thin regions near the intercellular holes that are aligned with the principal stresses.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

structural performance [15]. The suboptimal performance of the
IO then suggests that significant bending is taking place as it de-
forms (Fig. 5), and that the highest stresses should primarily be
near the surface. A high-performance coatingwould be expected to
increase structural performance as peak stresses will be contained
in the more robust material. It is surprising then, that the addi-
tion of a higher modulus coating, which increases absolute perfor-
mance (Fig. 4), and increases the degree of affinity under most of
the loading conditions and coating thicknesses (Fig. 5), actually de-
creases performance relative to theoretical bounds when the coat-
ing is thinnest (Fig. 7). The thicker coatings only regain the per-
formance of the silica on silica geometry, never exceeding it by a
significant amount.

3.2.4. Maximum stress concentration
Fig. 8 shows the maximum stress concentrations (MSC) as a

function of coating thickness for silica IO coatedwith silica (MSC at
outer silica surface) and for silica IO coated with titania. For silica
IO coated with titania the MSC in the silica and the titania coating
are plotted for each coating thicknesses.

At the experimental fracture strength of the uncoated system,
measured in the ⟨111⟩ direction, σ̄y,exp = 41.3MPa, FE calculations
of uniaxial stress (in the ⟨100⟩ direction) indicate that stress
concentrations can be as high as 37.6 (Fig. 8), and local stresses
as high as 650 MPa. Stress concentrations are highest near the
intercellular holes whose axis is tangential to the loading direction
(Fig. 9). There are 12 intercellular holes in each spherical pore,
each associated with one of the 12 nearest neighbor pores and



J.J. do Rosário et al. / Extreme Mechanics Letters ( ) – 9

Fig. 10. Strain energy distributions under uniaxial loading relative to coordinate axes aligned with the edges of the cubic representative volume element in the TiO2 (left)
and SiO2 (right) coated inverse opal systems. Local strain energy density is normalized by the average strain energy density in the solid material. The displacements, which
are small in reality, are magnified to reveal their nature. Strains and strain energy are of greatest magnitude in the regions near the intercellular holes. The scale of the color
contour is limited to the regime of greatest influence at the sacrifice of fidelity in the extreme regions. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

thus connecting nearest neighbor pores together. The periphery
of four of the twelve holes are stressed in this manner under
uniaxial stress applied in the ⟨111⟩ and ⟨100⟩ directions. Due
to the close packed planes of the spherical pores of the (111)
type, this critical orientation presents the smallest cross-sectional
area for load transmission. Loading in the ⟨111⟩ direction should,
therefore, produce the highest stress concentrations and the
lowest macroscopic strengths, and be the worst-case scenario in
regard to durability of the structure under load.

Despite increasing the absolute strength, the addition of the
titania coating increases the maximum stress concentration in the
system by 55%with a 10 nm coating, and 30%with a 35 nm coating
(Fig. 8). This concentration is, however, limited to the coating, and
the maximum stress in the SiO2 decreases significantly. Changes
in geometry alone – the thickening of thin regions and the
reduction in the intercellular hole diameter, both by addition of
a silica coating – are responsible for a 45% reduction in stress
concentration over the range of volume fractions, Vf = 25%–44%.
Similar results were found in our previous study [1].

The stresses in the 10 nm coating are calculated to be in excess
of 6.5 GPa under conditions of uniaxial stress in the ⟨111⟩ direction,
in excess of 8.2 GPa when the coating is 20 nm thick, and in excess
of 7.9 GPa when the coating is 35 nm thick. These stresses are 10%
to 15% of ES and on the order of the theoretical limit [23]. This
observation suggests that the material in these regions in the IO
that have been produced in practice are defect free. The stresses in
the SiO2 at failure are 1.5 GPa–1.8 GPa and 9%–10% of ES .

When a macroscopic shear stress is applied relative to the
coordinate system with axes aligned with the edges of the RVE
the internal stress in the IO is more uniformly distributed, and
the magnitude of the maximum concentration, measured in terms
of the effective or Mises stress, is significantly lower than under

uniaxial stressing (Fig. 9). Similar to uniaxial stressing in the ⟨100⟩
and ⟨111⟩ directions, four of the twelve intercellular holes align
with the principal stresses and are the locations of the highest
stress concentrations.

3.2.5. Strain energy distributions
Strain energy distributions under uniaxial (Fig. 10) and shear

loading (Fig. 11), both defined in terms of coordinate axes aligned
with the edges of the RVE, reveal that the thick regions, formed
from the interstitial sites in the FCC precursor sphere packings,
contribute little to the macroscopic stiffness in both the titania
coated and silica on silica systems. Strain energy is primarily
stored in the stiff networks of members that align with the
principal stresses. Material not stressed in these networks plays
only a small role in the storage of elastic strain energy. In the IO
geometry these stiff networks are heterogeneous, containing thin
and thick regions. The largest concentrations of stress and strain
are associated with these thin regions.

4. Conclusions

The results of finite element calculations for the deformation of
IO structures agree well with data from experiments. The addition
of a titania coating to the silica IO structure produces a measured
ten-fold increase in strength, and more than a five-fold increase in
modulus in the density range of 300–1000 kg m−3. The strengths
and moduli achieved outperform many state-of-the-art strut-
based structures whose properties are reported in the literature.
Simulations predict that the IO geometry should outperform strut-
based structures on the merit of structural efficiency; however,
this is not a surprising result. Closed-cell materials are known to
outperform open-cell materials, as cell faces constrain the bending
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Fig. 11. Strain energy distributions due to shear loading relative to coordinate axes aligned with the edges of the cubic representative volume element in the TiO2 (left) and
SiO2 (right) coated inverse opal systems. Local strain energy density is normalized by the average strain energy density in the solid material. The scale of the color contour
is limited to the regime of greatest influence at the sacrifice of fidelity in the extreme regions. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

modes of cell edges. Despite the permeability afforded by the
presence of intercellular holes, the IO geometry has some of the
features of a closed cell material. The dense interstitial regions are
connected by much thinner webs of material, having some of the
characteristics of cell edges and faces.

Simulations show that the IO structure can outperform the
state-of-the-art octet- and isotropic-truss designs in terms of
Young’s, shear and bulk modulus, as well as in structural efficiency
(total stiffness). Despite these significant properties, theoretical
bounds predict that the performance of the coating is suboptimal in
thedesign space of three-phase systems, and thatmuchhigher per-
forming geometries may exist. IO are shown to be nearly isotropic,
evenmore so than the extensively studied octet-truss design. Sim-
ulations predict stresses in the coating and substrate that are on
the order of the theoretical tensile yield stresses at failure, indicat-
ing that size effects controlling defect population are responsible
for the high strengths.

The high specific modulus and strength of the silica based IO
geometry, with its tunable optical bandgaps, and the possibility
of fabrication by self-assembly, makes it an attractive system for
further development. Optimization of design parameters is possi-
ble, as the highest stress concentrations aremitigated substantially
by geometric changes, allowing even greater performance to be
achieved. Strain energy distributions reveal that the thick regions,
associated with the interstitial locations of the precursor spheres,

contribute little to the total strain energy storage. Thus one strat-
egy for increasing structural performance may be filling these re-
gions with smaller spheres. Such a strategy has a high likelihood
of success as a polydispersed arrangement of hollow spheres is
known to achieve the Hashin and Shtrikman [20] upper bound on
bulk modulus [21]. Additionally, the introduction of a ductile coat-
ing to replace the titania may help dissipate the highest stress con-
centrations through yielding; a ductile coating may help delay the
catastrophic brittle failure seen in experiments. Many opportuni-
ties for the development of the IO geometry exist that have yet to
be explored. Further developments will allow new systems with
novel properties to be developed, and unpopulated regions of de-
sign space to be filled.
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