Two results on homogeneous Hessian nilpotent polynomials

Arno van den Essen ${ }^{\text {a }}$, Wenhua Zhao ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics, Radboud University Nijmegen, Postbus 9010, 6500 GL Nijmegen, The Netherlands
${ }^{\mathrm{b}}$ Department of Mathematics, Illinois State University, Normal, IL 61790-4520, United States

ARTICLE IN F O

Article history:

Received 27 April 2007
Received in revised form 10 January 2008
Available online 2 May 2008
Communicated by E.M. Friedlander

MSC:

14R15
31B05

Abstract

Let $z=\left(z_{1}, \ldots, z_{n}\right)$ and $\Delta=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial z_{i}^{2}}$, the Laplace operator. A formal power series $P(z)$ is said to be Hessian Nilpotent (HN) if its Hessian matrix $\operatorname{Hes} P(z)=\left(\frac{\partial^{2} p}{\partial z_{i} \partial z_{j}}\right)$ is nilpotent. In recent developments in [M. de Bondt, A. van den Essen, A reduction of the Jacobian conjecture to the symmetric case, Proc. Amer. Math. Soc. 133 (8) (2005) 2201-2205. [MR2138860]; G. Meng, Legendre transform, Hessian conjecture and tree formula, Appl. Math. Lett. 19 (6) (2006) 503-510. [MR2170971]. See also math-ph/0308035; W. Zhao, Hessian nilpotent polynomials and the Jacobian conjecture, Trans. Amer. Math. Soc. 359 (2007) 249-274. [MR2247890]. See also math.CV/0409534], the Jacobian conjecture has been reduced to the following so-called vanishing conjecture (VC) of HN polynomials: for any homogeneous HN polynomial $P(z)$ (of degree $d=4$), we have $\Delta^{m} P^{m+1}(z)=0$ for any $m \gg 0$. In this paper, we first show that the VC holds for any homogeneous HN polynomial $P(z)$ provided that the projective subvarieties \mathcal{Z}_{P} and $\mathcal{Z}_{\sigma_{2}}$ of $\mathbb{C} P^{n-1}$ determined by the principal ideals generated by $P(z)$ and $\sigma_{2}(z):=\sum_{i=1}^{n} z_{i}^{2}$, respectively, intersect only at regular points of \mathscr{Z}_{p}. Consequently, the Jacobian conjecture holds for the symmetric polynomial maps $F=z-\nabla P$ with $P(z)$ HN if F has no non-zero fixed point $w \in \mathbb{C}^{n}$ with $\sum_{i=1}^{n} w_{i}^{2}=0$. Secondly, we show that the VC holds for a HN formal power series $P(z)$ if and only if, for any polynomial $f(z), \Delta^{m}\left(f(z) P(z)^{m}\right)=0$ when $m \gg 0$.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and main results

Let $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be commutative free variables. Recall that the well-known Jacobian conjecture which was first proposed by Keller [8] in 1939 claims that: any polynomial map $F(z): \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ with the Jacobian $j(F)(z) \equiv 1$ is an automorphism of \mathbb{C}^{n} and its inverse map must also be a polynomial map. Despite intensive study by mathematicians for more than sixty years, the conjecture is still open even for the case $n=2$. In 1998, Smale [10] included the Jacobian conjecture in his list of 18 important mathematical problems for the 21st century. For more history and known results on the Jacobian conjecture, see $[1,6]$ and references therein.

Recently, M. de Bondt and the first author [2] and Meng [9] independently made the following remarkable breakthrough on the Jacobian conjecture. Namely, they reduced the Jacobian conjecture to the so-called symmetric polynomial maps, i.e. the polynomial maps of the form $F=z-\nabla P$, where $\nabla P:=\left(\frac{\partial P}{\partial z_{1}}, \frac{\partial P}{\partial z_{2}}, \ldots, \frac{\partial P}{\partial z_{n}}\right)$, i.e. $\nabla P(z)$ is the gradient of $P(z) \in \mathbb{C}[z]$.

For more recent developments on the Jacobian conjecture for symmetric polynomial maps, see [2-5].
On the basis of the symmetric reduction above and also the classical homogeneous reduction in [1,12], the second author in [13] further reduced the Jacobian conjecture to the following so-called vanishing conjecture.

[^0]Let $\Delta:=\sum_{i=1}^{n} \frac{\partial^{2}}{\partial z_{i}^{2}}$, the Laplace operator, and call a formal power series $P(z)$ Hessian nilpotent (HN) if its Hessian matrix $\operatorname{Hes} P(z):=\left(\frac{\partial^{2} p}{\partial z_{i} \partial z_{j}}\right)$ is nilpotent. It has been shown in [13] that the Jacobian conjecture is equivalent to:

Conjecture 1.1 (Vanishing Conjecture of HN Polynomials). For any homogeneous HN polynomial $P(z)(o f$ degree $d=4)$, we have $\Delta^{m} P^{m+1}=0$ when $m \gg 0$.

Note that it has also been shown in [13] that $P(z)$ is HN if and only if $\Delta^{m} P^{m}=0$ for $m \geq 1$.
In this paper, we will prove the following two results on HN polynomials.
Let $P(z)$ be a homogeneous $H N$ polynomial of degree $d \geq 3$ and let $\sigma_{2}(z):=\sum_{i=1}^{n} z_{i}^{2}$. We denote by \mathcal{Z}_{P} and $\mathcal{Z}_{\sigma_{2}}$ the projective subvarieties of $\mathbb{C} P^{n-1}$ determined by the principal ideals generated by $P(z)$ and $\sigma_{2}(z)$, respectively. The first main result of this paper is the following theorem.

Theorem 1.2. Let $P(z)$ be a homogeneous $H N$ polynomial of degree $d \geq 4$. Assume that \mathcal{Z}_{p} intersects with $\mathcal{Z}_{\sigma_{2}}$ only at regular points of \mathcal{Z}_{P}, then the vanishing conjecture holds for $P(z)$. In particular, the vanishing conjecture holds if the projective variety \mathcal{Z}_{P} is regular.

Remark 1.3. Note that, when $\operatorname{deg} P(z)=d=2$ or 3 , the Jacobian conjecture holds for the symmetric polynomial map $F=z-\nabla P$. This is because, when $d=2, F$ is a linear map with $j(F) \equiv 1$. Hence F is an automorphism of \mathbb{C}^{n}; while when $d=3$, we have $\operatorname{deg} F=2$. By Wang's theorem [11], the Jacobian conjecture holds for F again. Then, by the equivalence of the vanishing conjecture for the homogeneous HN polynomial $P(z)$ and the Jacobian conjecture for the symmetric map $F=z-\nabla P$ established in [13], we see that, when $\operatorname{deg} P(z)=d=2$ or 3, Theorem 1.2 actually also holds even without the condition on the projective variety \mathcal{Z}_{p}.

For any non-zero $z \in \mathbb{C}^{n}$, denote by $[z]$ its image in the projective space $\mathbb{C} P^{n-1}$. Set

$$
\begin{equation*}
\tilde{Z}_{\sigma_{2}}:=\left\{z \in \mathbb{C}^{n} \mid z \neq 0 ;[z] \in \mathcal{Z}_{\sigma_{2}}\right\} . \tag{1.1}
\end{equation*}
$$

In other words, $\tilde{Z}_{\sigma_{2}}$ is the set of non-zero $z \in \mathbb{C}^{n}$ such that $\sum_{i=1}^{n} z_{i}^{2}=0$.
Note that, for any homogeneous polynomial $P(z)$ of degree d, it follows from Euler's formula $d P=\sum_{i=1}^{n} z_{i} \frac{\mathrm{~d} P}{\mathrm{~d} z_{i}}$ that, for any non-zero $w \in \mathbb{C}^{n},[w] \in \mathbb{C} P^{n-1}$ is a singular point of \mathcal{Z}_{P} if and only if w is a fixed point of the symmetric map $F=z-\nabla P$. Furthermore, it is also well known that $j(F) \equiv 1$ if and only if $P(z)$ is HN.

By the observations above and Theorem 1.2, it is easy to see that we have the following corollary on symmetric polynomial maps.

Corollary 1.4. Let $F=z-\nabla P$ with P homogeneous and $j(F) \equiv 1$ (or equivalently, P is $H N$). Assume that F does not fix any $w \in \widetilde{Z}_{\sigma_{2}}$. Then the Jacobian conjecture holds for $F(z)$. In particular, if F has no non-zero fixed point, the Jacobian conjecture holds for F.

Our second main result is the following theorem which says that the vanishing conjecture is actually equivalent to a formally much stronger statement.

Theorem 1.5. For any HN polynomial $P(z)$, the vanishing conjecture holds for $P(z)$ if and only if, for any polynomial $f(z) \in \mathbb{C}[z]$, $\Delta^{m}\left(f(z) P(z)^{m}\right)=0$ when $m \gg 0$.

2. Proof of the main results

Let us first fix the following notation. Let $z=\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ be free complex variables and $\mathbb{C}[z]$ (resp. $\left.\mathbb{C}[[z]]\right)$ the algebra of polynomials (resp. formal power series) in z. For any $d \geq 0$, we denote by V_{d} the vector space of homogeneous polynomials in z of degree d.

For any $1 \leq i \leq n$, we set $D_{i}=\frac{\partial}{\partial z_{i}}$ and $D=\left(D_{1}, D_{2}, \ldots, D_{n}\right)$. We define a \mathbb{C}-bilinear map $\{\cdot, \cdot\}: \mathbb{C}[z] \times \mathbb{C}[z] \rightarrow \mathbb{C}[z]$ by setting

$$
\{f, g\}:=f(D) g(z)
$$

for any $f(z), g(z) \in \mathbb{C}[z]$.
Note that, for any $m \geq 0$, the restriction of $\{\cdot, \cdot\}$ on $V_{m} \times V_{m}$ gives a \mathbb{C}-bilinear form of the vector subspace V_{m}, which we will denote by $B_{m}(\cdot, \cdot)$. It is easy to check that, for any $m \geq 1, B_{m}(\cdot, \cdot)$ is symmetric and non-singular.

The following lemma will play a crucial role in our proof of the first main result.

Lemma 2.1. For any homogeneous polynomials $g_{i}(z)(1 \leq i \leq k)$ of degree $d_{i} \geq 1$, let S be the vector space of polynomial solutions of the following system of PDEs:

$$
\left\{\begin{array}{l}
g_{1}(D) u(z)=0, \tag{2.2}\\
g_{2}(D) u(z)=0, \\
\cdots \\
g_{k}(D) u(z)=0
\end{array}\right.
$$

Then, $\operatorname{dim} S<+\infty$ if and only if $g_{i}(z)(1 \leq i \leq k)$ have no non-zero common zeros.
Proof. Let I be the homogeneous ideal of $\mathbb{C}[z]$ generated by $\left\{g_{i}(z) \mid 1 \leq i \leq k\right\}$. Since all $g_{i}(z)$'s are homogeneous, S is a homogeneous vector subspace S of $\mathbb{C}[z]$.

Write

$$
\begin{align*}
& S=\bigoplus_{m=0}^{\infty} S_{m}, \tag{2.3}\\
& I=\bigoplus_{m=0}^{\infty} I_{m}, \tag{2.4}
\end{align*}
$$

where $I_{m}:=I \cap V_{m}$ and $S_{m}:=S \cap V_{m}$ for any $m \geq 0$.
Claim. For any $m \geq 1$ and $u(z) \in V_{m}, u(z) \in S_{m}$ if and only if $\left\{u, I_{m}\right\}=0$, or in other words, $S_{m}=I_{m}^{\perp}$ with respect to the \mathbb{C}-bilinear form $B_{m}(\cdot, \cdot)$ of V_{m}.

Proof of the Claim. First, by the definitions of I and S, we have $\left\{I_{m}, S_{m}\right\}=0$ for any $m \geq 1$; hence $S_{m} \subseteq I_{m}^{\perp}$. Therefore, we need only show that, for any $u(z) \in I_{m}^{\perp} \subset V_{m}, g_{i}(D) u(z)=0$ for any $1 \leq i \leq n$.

We first fix any $1 \leq i \leq n$. If $m<d_{i}$, there is nothing to prove. If $m=d_{i}$, then $g_{i}(z) \in I_{m}$; hence $\left\{g_{i}, u\right\}=g_{i}(D) u=0$. Now suppose $m>d_{i}$. Note that, for any $v(z) \in V_{m-d_{i}}, v(z) g_{i}(z) \in I_{m}$. Hence we have

$$
\begin{aligned}
0 & =\left\{v(z) g_{i}(z), u(z)\right\} \\
& =v(D) g_{i}(D) u(z) \\
& =v(D)\left(g_{i}(D) u\right)(z) \\
& =\left\{v(z),\left(g_{i}(D) u\right)(z)\right\} .
\end{aligned}
$$

Therefore, we have

$$
B_{m-d_{i}}\left(\left(g_{i}(D) u\right)(z), V_{m-d_{i}}\right)=0 .
$$

Since $B_{m-d_{i}}(\cdot, \cdot)$ is a non-singular \mathbb{C}-bilinear form of $V_{m-d_{i}}$, we have $g_{i}(D) u=0$. Hence, the Claim holds.
By a well-known fact in algebraic geometry (see Exercise 2.2 in [7], for example), we know that the homogeneous polynomials $g_{i}(z)(1 \leq i \leq k)$ have no non-zero common zeros if and only if $I_{m}=V_{m}$ when $m \gg 0$, while, by the Claim above, we know that $I_{m}=V_{m}$ when $m \gg 0$ if and only if $S_{m}=0$ when $m \gg 0$, and if and only if the solution space S of the system (2.2) is finite dimensional. Hence, the lemma follows.

Now we are ready to prove our first main result, Theorem 1.2.
Proof of Theorem 1.2. Let $P(z)$ be a homogeneous $H N$ polynomial of degree $d \geq 4$ and S the vector space of polynomial solutions of the following system of PDEs:

$$
\left\{\begin{array}{l}
\frac{\partial P}{\partial z_{1}}(D) u(z)=0, \tag{2.5}\\
\frac{\partial P}{\partial z_{2}}(D) u(z)=0, \\
\cdots \\
\frac{\partial P}{\partial z_{n}}(D) u(z)=0, \\
\Delta u(z)=0
\end{array}\right.
$$

First, note that the projective subvariety \mathcal{Z}_{P} intersects with $\mathcal{Z}_{\sigma_{2}}$ only at regular points of \mathcal{Z}_{P} if and only if $\frac{\partial P}{\partial z_{i}}(z)(1 \leq i \leq n)$ and $\sigma_{2}=\sum_{i=1}^{n} z_{i}^{2}$ have no non-zero common zeros (again use Euler's formula). Then, by Lemma 2.1, we have $\operatorname{dim} S<+\infty$.

On the other hand, by Theorem 6.3 in [13], we know that $\Delta^{m} P^{m+1} \in S$ for any $m \geq 0$. Note that deg $\Delta^{m} P^{m+1}=(d-2) m+d$ for any $m \geq 0$. So $\operatorname{deg} \Delta^{m} P^{m+1}>\operatorname{deg} \Delta^{k} P^{k+1}$ for any $m>k$. Since $\operatorname{dim} S<+\infty$ (from above), we have $\Delta^{m} P^{m+1}=0$ when $m \gg 0$, i.e. the vanishing conjecture holds for $P(z)$.

Next, we give a proof for our second main result, Theorem 1.5.
Proof of Theorem 1.5. The (\Leftarrow) part follows directly on choosing $f(z)$ to be $P(z)$ itself.
To show the (\Rightarrow) part, let $d=\operatorname{deg} f(z)$. If $d=0, f$ is a constant. Then, $\Delta^{m}\left(f(z) P(z)^{m}\right)=f(z) \Delta^{m} P^{m}=0$ for any $m \geq 1$.
So we assume $d \geq 1$. By Theorem 6.2 in [13], we know that, if the vanishing conjecture holds for $P(z)$, then, for any fixed $a \geq 1, \Delta^{m} P^{m+a}=0$ when $m \gg 0$. Therefore there exists $N>0$ such that, for any $0 \leq b \leq d$ and any $m>N$, we have $\Delta^{m} P^{m+b}=0$.

By Lemma 6.5 in [13], for any $m \geq 1$, we have

$$
\begin{equation*}
\Delta^{m}\left(f(z) P(z)^{m}\right)=\sum_{\substack{k_{1}+k_{2}+k_{3}=m \\ k_{1}, k_{2}, k_{3} \geq 0}} 2^{k_{2}}\binom{m}{k_{1}, k_{2}, k_{3}} \sum_{\substack{s \in \mathbb{N}^{n} \\|s|=k_{2}}}\binom{k_{2}}{\mathbf{s}} \frac{\partial^{k_{2}} \Delta^{k_{1}} f(z)}{\partial z^{s}} \frac{\partial^{k_{2}} \Delta^{k_{3}} P^{m}(z)}{\partial z^{s}} \tag{2.6}
\end{equation*}
$$

where $\binom{m}{k_{1}, k_{2}, k_{3}}$ and $\binom{k_{2}}{s}$ denote the usual binomials.
Note first that the general term in the sum above is non-zero only if $2 k_{1}+k_{2} \leq d$. But on the other hand, since

$$
\begin{equation*}
0 \leq k_{1}+k_{2} \leq 2 k_{1}+k_{2} \leq d, \tag{2.7}
\end{equation*}
$$

by the choice of $N \geq 1$, we have that $\Delta^{k_{3}} P^{m}(z)=\Delta^{k_{3}} P^{k_{3}+\left(k_{1}+k_{2}\right)}(z)$ is non-zero only if

$$
\begin{equation*}
k_{3} \leq N \tag{2.8}
\end{equation*}
$$

From the observations above and Eqs. (2.6)-(2.8) it is easy to see that $\Delta^{m}\left(f(z) P(z)^{m}\right) \neq 0$ only if $m=k_{1}+k_{2}+k_{3} \leq d+N$. In other words, $\Delta^{m}\left(f(z) P(z)^{m}\right)=0$ for any $m>d+N$. Hence Theorem 1.5 holds.

Note that all results used in the proof above for the (\Leftarrow) part of the theorem also hold for all HN formal power series. Therefore we have the following corollary.

Corollary 2.2. Let $P(z)$ be a HN formal power series such that the vanishing conjecture holds for $P(z)$. Then, for any polynomial $f(z)$, we have $\Delta^{m}\left(f(z) P(z)^{m}\right)=0$ when $m \gg 0$.

Acknowledgment

The second author was partially supported by NSA Grant R1-07-0053.

References

[1] H. Bass, E. Connell, D. Wright, The Jacobian conjecture, reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. 7 (1982) 287-330. [MR83k:14028], [Zbl.539.13012].
[2] M. de Bondt, A. van den Essen, A reduction of the Jacobian conjecture to the symmetric case, Proc. Amer. Math. Soc. 133 (8) (2005) $2201-2205$. [MR2138860].
[3] M. de Bondt, A. van den Essen, Nilpotent symmetric Jacobian matrices and the Jacobian conjecture, J. Pure Appl. Algebra 193 (1-3) (2004) 61-70. [MR2076378].
[4] M. de Bondt, A. van den Essen, Nilpotent symmetric Jacobian matrices and the Jacobian conjecture II, J. Pure Appl. Algebra 196 (2-3) (2005) 135-148. [MR2110519].
[5] M. de Bondt, A. van den Essen, Singular Hessians, J. Algebra 282 (1) (2004) 195-204. [MR2095579].
[6] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, in: Progress in Mathematics, vol. 190, Birkhäuser Verlag, Basel, 2000, [MR1790619].
[7] R. Hartshorne, Algebraic Geometry, Springer-Verlag, New York, Heidelberg, Berlin, 1977.
[8] O.H. Keller, Ganze Gremona-transformation, Monats. Math. Physik 47 (1939) 299-306.
[9] G. Meng, Legendre transform, Hessian conjecture and tree formula, Appl. Math. Lett. 19 (6)(2006) 503-510. [MR2170971]. See also math-ph/0308035.
[10] S. Smale, Mathematical problems for the next century, Math. Intelligencer 20 (2) (1998) 7-15. [MR1631413 (99h:01033)].
[11] S. Wang, A Jacobian criterion for separability, J. Algebra 65 (1980) 453-494. [MR 83e:14010].
[12] A.V. Jagžev, On a problem of O.-H. Keller, Sibirsk. Mat. Zh. 21 (5) (1980) 141-150. 191 [MR0592226] (in Russian).
[13] W. Zhao, Hessian nilpotent polynomials and the Jacobian conjecture, Trans. Amer. Math. Soc. 359 (2007) 249-274. [MR2247890]. See also math.CV/0409534.

[^0]: * Corresponding author.

 E-mail addresses: essen@math.ru.nl (A. van den Essen), wzhao@ilstu.edu (W. Zhao).

