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Abstract

In this paper we prove that if g: B — H is a morphism of weak Hopf algebras which is split as an
algebra—coalgebra morphism, then the subalgebra of coinvariants By of B is a Hopf algebra in the category
of Yetter—Drinfeld modules associated to H.
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Weak Hopf algebras or quantum groupoids have been proposed by Bohm, Nill and Szlachén-
yi in [4,5], as a new generalization of Hopf algebras. Roughly speaking, a weak Hopf algebra
H, in a strict symmetric monoidal category with split idempotents C, is an object that has both
algebra and coalgebra structures with some relations between them and that possesses an an-
tipode Ay which does not necessarily verify Ay A idy =idy A Ay = ey @ ng where ey, ny
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are the counity and unity morphisms respectively and A denotes the convolution product. The
main difference with other Hopf algebraic constructions such as Hopf algebras or quasi-Hopf al-
gebras is the following: weak Hopf algebras are coassociative but the coproduct is not required to
preserve the unity ng or, equivalently, the counity is not an algebra morphism. Some motivations
to study weak Hopf algebras come from their connection with the theory of algebra extensions,
the important applications in the study of dynamical twists of Hopf algebras and their link with
quantum field theories and operator algebras.

Let H be a Hopf algebra over a field K and let A be a K -algebra. A well-known result of Rad-
ford [15] gives equivalent conditions for an object A ® H equipped with smash product algebra
and coalgebra to be a Hopf algebra and characterizes such objects via bialgebra projections. Ma-
jidin [11] interpreted this result in the modern context of Yetter—Drinfeld modules and stated that
there is a correspondence between Hopf algebras in this category, denoted by ZyD, and Hopf
algebras B with morphisms of Hopf algebras f: H — B, g: B — H such that g o f =idy.
Later, Bespalov proved the same result for braided categories with split idempotents in [3]. The
key point in Radford—-Majid—Bespalov’s theorem is to define an object By, called the algebra of
coinvariants, as the equalizer of (B ® g) o dp and B ® ng. This object is a Hopf algebra in the
category ZyD and there exists a Hopf algebra isomorphism between B and By > H (the smash
(co)product of By and H). It is important to point out that in the construction of By >< H they
use that By is the image of the idempotent morphism qfl =upo(B®(foiygog))odp.

In [8], Bulacu and Nauwelaerts generalize Radford’s theorem about Hopf algebras with pro-
jection to the quasi-Hopf algebra setting. Namely, if H and B are quasi-Hopf algebras with
bijective antipode and with morphisms of quasi-Hopf algebras f: H — B, g: B — H such that
g o f =idpy, then they define a subalgebra B’ (the generalization of By to this setting) and
with some additional structures B’ becomes, a Hopf algebra in the category of left—left Yetter—
Drinfeld modules Z YD defined by Majid in [12]. Moreover, as the main result in [8], Bulacu
and Nauwelaerts state that B’ x H is isomorphic to B as quasi-Hopf algebras where the algebra
structure of B! x H is the smash product defined in [7] and the quasi-coalgebra structure is the
one introduced in [8].

The basic motivation of [1] is to explain in detail how the above ideas can be generalized
to weak Hopf algebras in a strict symmetric monoidal category with split idempotents. In [1],
the authors construct the algebra of coinvariants By, associated to a weak Hopf algebra pro-
jection (i.e., a pair of morphisms of weak Hopf algebras f:H — B, g:B — H such that
g o f =idy) and, using the idempotent morphism ‘111—31 =upo(BR(foAigog))odp:B— B
(factorized as qg =1 g o pg), they prove that By is also a coalgebra in C. In this setting it
is also possible to define morphisms ¢g,, = pg oupo(f® ig) :H ® By — By and 0p, =
g® pfl) odp oifl :By — H ® By such that (By, ¢py,) is a left H-module, (By, 0p,,) is a left
H-comodule and to prove that By is an object in the category of weak Yetter—Drinfeld modules
defined in [1] and denoted by ZWJJD. The algebra—coalgebra By satisfies similar conditions to
the ones included in the definition of weak Hopf algebra but changing the natural symmetry iso-
morphism of C by tg, B, = (¢, ® Bu) o (HQcpy . By) 00y ®Br): By @ By — By ® By.
Finally, in Theorem 4.1 of [2] we prove that B is isomorphic to the image, denoted by By x H,
of an idempotent morphism Vp,gn : By ® H — By ® H as weak Hopf algebras, being the
(co)algebra structure in By x H the smash (co)product.

The aim of the present paper is to improve and to complete the results related in the previous
paragraph. Firstly, when the antipode of H is an isomorphism, we find a condition relating the
category ZW))D to the category of Yetter—Drinfeld modules defined by Bohm in [6] and denoted
by ZJ}D. This category is a subcategory of ZWJJD and it is braided monoidal but not strict be-
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cause the tensor product M x N for two objects M and N in ZyD is defined as the image of an
idempotent morphism Vygn : M @ N — M ® N. Secondly, we prove the main result of this pa-
per, this is, for a weak Hopf algebra projection the object By is a Hopf algebra in Z))D. Finally,
using the weak smash product and the weak smash coproduct defined in [2], we give a good weak
Hopf algebra interpretation of well-known theorems proved by Radford [15], Majid [11] and oth-
ers (see for example [3]), in the Hopf algebra setting, that provides a correspondence between
Hopf algebra projections and Hopf algebras in the category of Yetter—Drinfeld modules.

1. Weak Hopf algebras in monoidal categories

In this section, we review the basics of weak Hopf algebras. We denote a braided monoidal
category C as (C, ®, K, a,l,r, c) where C is a category and ® provides C with a monoidal struc-
ture with unit object K whose associator is denoted by @ and whose left and right unit constraints
are given by / and r. The braiding is denoted by c. If the braiding is a symmetry, the category C
is a symmetric monoidal category and if the associator and the unit constraints are the identity
morphisms, the category C will be named strict. It is well know that, given a monoidal category,
we can construct a strict monoidal category C® which is tensor equivalent to C (see [10] for the
details).

We denote the class of objects of a category C by |C| and for each object M € |C|, the iden-
tity morphism by idy; : M — M. For simplicity of notation, given objects M, N, P in C and a
morphism f: M — N, we write PQ® f foridp ® f and f ® P for f Q idp.

Assumption 1.1. From now on C denotes a strict symmetric monoidal category that admits split
idempotents, i.e. for every morphism ¢ : Y — Y such that g = g o g there exist an object Z and
morphismsi:Z — Y and p:Y — Z suchthatg =iopand poi =idz.

An algebra in C is a triple A = (A, n4, na) where A is an object in C and n4 : K — A (unit),
ua:A® A — A (product) are morphisms in C such that s o (AQ®n4) =ida =pao(na® A),
nao(A®ua)=pao (s ® A). Given two algebras A = (A, na, ua) and B = (B, np, B),
f:A — B is an algebra morphism if ug o (f ® f) = f o ua, f ona =np. Also, if A, B
are algebras in C, the object A ® B is an algebra in C where nagp =14 ® np and puagp =
(La @ up)o(A®cp A ® B).

A coalgebra in C is a triple D = (D, ep,§p) where D is an object in C and ¢p:D — K
(counit), §p: D — D & D (coproduct) are morphisms in C such that (¢p ® D) o §p =idp =
(D®ep)odp, bp®D)odp=(DR®Sp)odp.If D=(D,ep,dp) and E = (E,eg,5g) are
coalgebras, f: D — E is a coalgebra morphism if (f ® f)odp =38go f,eg o f =¢ep. When
D, E are coalgebras in C, D ® E is a coalgebra in C where epgr = ¢p ® ¢ and Spgr =
(D®cp,E®E)o(8p ®SE).

If A is an algebra, B is a coalgebraand o: B — A, B: B — A are morphisms, we define the
convolution productby a A S =0 (¢ ® ) odp.

By weak Hopf algebras we understand the objects introduced in [4], as a generalization of
ordinary Hopf algebras. Here we recall the definition of these objects.

Definition 1.2. A weak Hopf algebra H is an object in C with an algebra structure (H, ng, (Ly)
and a coalgebra structure (H, g, §g) such that the following axioms hold:

(al) Sgouyg =(ug ®up)odueH.
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@2) egougo(up @ H)=(ep Qen)o(un @uu)o(H Qg ® H)
=(ep®em)o(ug @ pu)o(H® (canodu)® H).
(@3) Oy ®H)odgonu=(HOuu @ H)o by ®dn)o(mu nu)
=(H®Wupocyn)@H)o By ®dy)o Ny @np)-
(a4) There exists a morphism Ay : H — H in C (called the antipode of H) verifying:
(a4-1) idu Arg=((epopun)® H)o(H®ch,u)o (g ony)® H),

(a4-2) Ay Nidy =(H Q@ (sgoup))o(chy @ H)o (HQ (B onn)),
(a4-3) Ag ANidg ANAg = Ag.

Note that, in this definition, the conditions (a2), (a3) weaken the conditions of multiplicativity
of the counit, and comultiplicativity of the unit that we can find in the Hopf algebra definition.
On the other hand, axioms (a4-1), (a4-2) and (a4-3) weaken the properties of the antipode in a
Hopf algebra. Therefore, a weak Hopf algebra is a Hopf algebra if an only if the morphism §g
(comultiplication) is unit-preserving and if and only if the counit is a homomorphism of algebras.

1.3. If H is a weak Hopf algebra in C, the antipode Ay is unique, antimultiplicative, antico-
multiplicative and leaves the unit 7y and the counit €y invariant:

Agopug=pnpo(Ag ®Ag)ocy H; dgoig=cpgo(ly ®Ay)ody; (D

AH ONH =NH; EHOMH =¢€H. 2

If we define the morphisms 175, ITR, IT% and IT% by

nf; = ((eHonn) @ H)o(HQchp)o(6nony) ® H);
IR =(H® (e opm) o (e ®H) o (H® G onm)):
M = (H® (e o um) o (g 0 i) ® H):
Iy =(egoun)®H)o(H® @Enonm))

it is straightforward to show (see [4]) that they are idempotent and I7T L 11_; satisfy the equalities
oL =idy g, OF =ip nidy. 3)
Moreover, we have that
Mfjolly=0f;  Oholly=If  Hfolly=If  Hfolly=IIf; (4)
nhonk=mk;, nhonf=nf, Ofonh=nh  0Ofonf=m0% )
Also it is easy to show the formulas

Hflzﬁf[o)»H:)»Hoﬁ%,; ngﬁ%,o)»H:)»HoﬁR; (6)

Ohoap=MNf oMl =agolll;  MORory=0Folh =hyollf. (7)
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If Ay is an isomorphism (for example, when H is finite), we have the equalities:
ﬁIL_IZ,uHO(H(@)L;Il)OCH,HO5H; I_YZZMHO(XEI(@H)OCH,HOSH. 8)

A morphism between weak Hopf algebras H and B is a morphism f:H — B which is
both algebra and coalgebra morphism. If f:H — B is a weak Hopf algebra morphism, then
Apo f = foAipy (see 1.4 of [1]).

1.4. Let H be a weak Hopf algebra. We say that (M, ¢jy) is a left H-module if M is an
object in C and ¢y : H ® M — M is a morphism in C satisfying ¢y o (ng @ M) = idyr, oy o
(H®om) =¢mo (ug ® M). Given two left H-modules (M, ¢py) and (N, ¢n), f: M — N is
a morphism of left H-modules if oy o (H ® f) = f o ¢p. We denote the category of right H-
modules by yC. In an analogous way we define the category of right H-modules and we denote
itby Cy.

If (M, o)) and (N, ¢y ) are left H-modules we denote by ¢y gy the morphism ¢y ey : H ®
M®N — M ® N defined by

omeN = (M @ on) o (HQcum @ N)o (g @ M Q N).

We say that (M, op) is a left H-comodule if M is an objectin C and gy : M — H Q@ M is
a morphism in C satisfying (eg @ M) o oy = idy, (H Q@ op) ooy = (8 ® M) o gpr. Given
two left H-comodules (M, opr) and (N, on), f: M — N is a morphism of left H-comodules if
onvo f=(H® f)oou. We denote the category of left H-comodules by 7 C. Analogously, C*
denotes the category of right H-comodules.

For two left H-comodules (M, oy) and (N, oy), we denote by oygny the morphism
omeN M @ N — HQ® M ® N defined by

omMeN =(UH QM N)o (HQ®cy,g ®N)o(om ®on).

1.5. Letg:B— H and f:H — B be morphisms of weak Hopf algebras such that g o f =
id . The morphism

g8 =idp A (forgog):B— B

is an idempotent in C. As a consequence, we obtain that there exist an epimorphism pf[,
a monomorphism if, and an object By such that pg o if] = idp, and ig o pg = qg. Note
that, if H = B and f = g = idy we have qg = Hﬁ, and in this case we denote Hy by Hy, pg
by pr and ig by i. Also,

i8 (B®g)odp
By —— B B®H, &)
(B&(ITf;08))08p
i8 (B®g)odp
By —— B B® H (10)

(B(IT§ 08))08p

are equalizer diagrams and
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npo(B®f) e
B®H ——= B —— By, (11D

wpo(B(follk))

npo(BOS) B
BRH_ _——=PB —— By (12)

wpo(BR(follk))

are coequalizer diagrams (see Propositions 2.1 and 2.2 and Remark 2.3 of [1] for more details).
As a consequence, we have:

pZoMBo(B(@qg):ng,uB; (B®qg)0830i3=830i2. (13)

It was shown in [1] that (By, ns, = p5 ong, s, = ph oup o (il ®ib)) is an algebra
in C and (By, e, =€B o if[, 8py = (pg ® pf,) odpo iZ) is a coalgebra in C. Also, the pair
(BH, 9By = pf] oupo(f® ig)) is aleft H-module in C and (By, 05, = (8 ® pfl) odpo ig)
is a left H-comodule in C. Moreover, the morphisms ¢p,, and op, satisfy, respectively, the
following equalities (see Proposition 2.4 and Section 3 of [2]):

9By o (H®npy) = ¢p, o (ITf; @ npy):; (14)

1By o (9B, ® By) o (H ® ng, ® Bu) =¢p, o (1§ © Bx); (15)
@By o (H ® py) = UBy © PBL@By: (16)

1By © Cy.By © (084 © (H ® np,)) ® By) = @p, o (I ® By): (17)
(H®SBH)OQBH=(171L1 ® €By) © 0By (18)

(H®ep, ® By) o (08, ® Bi) 0dp, = (IT}; ® By) 0 0y (19)
(H ®08py)00By =0ByoBy © 0By (20)

(((H ®ep,) 00py) ® Br)ocp, s, 08, = (15 ® By) oop,. 2D

1.6. Let H be a weak Hopf algebra. Let (M, @), (N, ¢n) be left H-modules. Then the
morphism

VueN =¢oueN o M QM ON)  MQIN - MQON

is idempotent. In this setting we denote by M x N the image of Vygn and by pyn:M ®
N—-MXxN,iyn:MxN— MEN the morphisms such that iys y o py.y = Vueny and
pm.N © iy, Ny = idyxn. Using the definition of x we obtain that the object M x N is a left
H-module with action oy xn = puNo@meno(H®iy n) : HR® (M x N) — M x N (see [14]).

Lemma 1.7. Let H be a weak Hopf algebra. Let (M, o), (N, on), (P, @p) be left H-modules.
Then the following equalities hold.:

omenN © (H @ VygN) = oMen; (22)

VMEN © PMaN = OPMON; (23)
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(iM,N Q@ P)oViuxmero (PuNn ®P)=M Qiy p)oVugwxp)o (M py.p); (24)
M®in,p)oVugwxr) oM py.p) =(Vuen ® P)o(M ® Vygp)
= (M ® Vyegpr) o (Vuen ® P). (25)

Proof. The first formula is a consequence of the following computations:

omen o (H® Viugn)
=(@eu@eN)o(UHOMQOQuE@M)o(HRHQcyy ®HQN)
o(H®cHu®cum®N)o(8y Q@ (Snony) @M QN)
=(pu ®¢n) o (HRcum @ N)o (tngn @ M @ N) o (55 ® Swonu) @ M ® N)
=omeno(uro(H®nH)®M®N)

= @MQ®N -

Note that the first equality follows from the naturality of the braiding and by the structure of
left H-module for M and N. In the second one we use the naturality of the braiding and the third
one is a consequence of (al).

The proof of the second equality is analogous to the first one and we leave the details to the
reader. The proof of (24) is the following:

(iM,N ® P)oViuxner o (pu,Nn ® P)
=(Vuen ® P) o (pmen ®¢p)o(HOM Qcy N @ P)o(HQcuuy ® N ® P)
o ((Bronm) ® Vuen ® P)
= (pmeN ®pp)o(HOM Qcun ® P)o(HQ®cym®N ® P)
o(Bronm) ®M QN @ P)
= (oM @ pner) o (HRcuu ®N @ P)o(Buonn) @M N @ P)
= (M ® Vngp) o (pm ® pnep) o (H @ cum ® N ® P)o (Bx ony) ® M ® Vyegp)
=M Qinp)oVyugwxpr)o (M pn,p).
In the last computations, the first equality follows from the definition, the second one by (22)
and (23) and the third one by the coalgebra condition for H and the naturality of the braiding.

Finally, in the fourth one we use (22) and (23) and the fifth one follows by definition.
We conclude the proof proving (25). In the proof of (24) we obtain the formula:

(im,N ® P)oViuxner o (pu,N ® P)
= (oM @ pnopr) o (H @ cym ® N® P)o (B ong) ® M ® N ® P).

According with this equality and using the naturality of the braiding, (a3) and the condition
of left H-module for N, we have:
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(im,n ® P)oViyxnepr o (pu,n ® P)
= (pm @ N ® pp) o (H @ cum @cun ® P)o(HQun ® cum @ NQ P)
o(Bronn)®Bronn) @M N Q P)
= (Vugn ® P)o (M ® VNgP).

Finally, by similar computations we establish the equality
M®inp)oVuewxpyo(M® py p) =M Vygp)o (Vyuen ® P). a

Lemma 1.8. Let g: B — H and f:H — B be morphisms of weak Hopf algebras such that
go f=idy. Let up, and §p,, be the product and the coproduct defined in 1.5. Then,

MBy OVB[-[@BH = UBy: (26)

VB,®By ©0By =08 - 27
Proof. By (16) we have that g, o 9B, 0B, = ¢By © (H ® wp,). Then,

MBy ©VByoBy = 9By ©(MH @ UBy) = By

The equality (27) is obtained in the following way:

VBy®By © OBy
= ((Pf; oupol(f ®61£1)) ® (Pf; oupgol(f ®CIE1))) o(H®cyp®B)
o(Guonn) ®(8goify))
=(ph ®ph)o(up®up) odpgpo(np®if)
=(pZ®PZ)O‘SBOHBO(UB®i2)
=0y,

In this calculus the first equality follows by definition. In the second one we use (13) and the
properties of f. Finally, the third equality is a consequence of (al). O

2. Yetter-Drinfeld modules and weak Hopf algebras with projection

Yetter—Drinfeld modules over finite dimensional weak Hopf algebras over fields have been in-
troduced by Boéhm in [6]. It is shown in [6] that the category of finite dimensional Yetter—Drinfeld
modules is monoidal and in [13] it is proved that this category is isomorphic to the category of
finite dimensional modules over the Drinfeld double. In [9], the results of [13] are generalized,
using duality results between entwining structures and smash product structures, and more prop-
erties are given. Finally in [1] we can find an alternative definition of Yetter—Drinfeld modules
(weak Yetter—Drinfeld modules) where the essential difference with the definition introduced by
Bohm is to involve the morphism /7 1’; in the axioms of Yetter—Drinfeld module.
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Definition 2.1. Let H be a weak Hopf algebra. We shall denote by ZyD the category of left-left
Yetter—Drinfeld modules over H. That is, M = (M, ¢, 0p) 1S an object in ZJ}D if (M, @pr) is
aleft H-module, (M, o) is a left H-comodule and

(b1) (ug ® M) o (H®cp,m)o ((omoom) ® H) o (H® crm)o 8y @ M)
= Qpm)o (HQcumr®M)o (6 ®om);
(b2) (u @ pm) o (HQ cur ® M) o (B onm) ® om) = om.

By ZWJ)D we denote the category of left-left weak Yetter—Drinfeld modules over H. That
is, M = (M, ¢p1, 0p) is an object in ZWJJD if (M, gp) is a left H-module, (M, o) is a left
H -comodule and we have (b2) and

(b3) (ur ® M) o (H Q@ cpr.i) o ((0nm 0 pm) ® H) o (H® crym) o (8 ® M)
=(nH®M)o(H®cmu)o (M @peu @ H)o(HR®chn @M ® H)
o (8 ®om ®IIf) o (H®cum)o By ®M).

Let M, N in #YD orin #WYD. The morphism f: M — N is a morphism of left—left-(weak)
Yetter—Drinfeld modules if f ooy =gy o(H® f)and (H® flooy =ono f.

Note that if H is a Hopf algebra ZWJJD =1 YD. In the weak Hopf algebra case we have the
following:

Proposition 2.2. Let H be a weak Hopf algebra.

i) YD c Hwyp.
(ii) Suppose that the antipode of H is an isomorphism and let M = (M, oy, 0M) € |ZW)7D|.
Then, M = (M, oy, om) € |3YVD) if and only if

oy o (M oIIf) @ M) ooy =idy. (28)

Proof. We first prove (i). Let M = (M, op, 0m) € |ZJJD|. Then,

(uH@M)o(H®cmp)o(un @pu ® H)o(HQcHn ®M ® H)
o(8n ®om ®IIf) o (H®cyum)o By ® M)
=(ur @M)o (up ®cyp)o(H®cyn ® H)o ((omoem) ® HRQ H)
o(H®cum®If) o ®cum) oy ® M)
=(un ®M)o(H®cu,n) o ((omopm)® (idu ANIR)) o (H®crm)o By @ M)
=(ur ®@M)o(HQcu.u)o ((emoem)® H)o(H®cym) oy M)

and, as a consequence, M € |ZWJJD|.
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In the last computations, the first one follows by (bl), the second one by the naturality of the
braiding and in the third one we use the equality

idy AR =idy. (29)

Now we prove (ii). Note that if M is a left H-module and a left H-comodule, the following
identity is always true:
(M ®M)o(H®cy,p)o(up @ o ® H)o(H®cyy @M@ H) o (85 ® om @ IT})
o(H®cum)o(Bn M)
= ®¢em)o(H®cuu® (omo((IThoIIF) @ M)ooum))ou ®om). (30)

Thus, by (30) and (b3), if M satisfies (28), we obtain that M is a left-left Yetter—Drinfeld
module.
Conversely, if M is a left-left weak Yetter—Drinfeld module such that M is a left-left Yetter—
Drinfeld module, composing with ey ® M on (b2) we find that:
idy = ((en o) ® M) o (H®cym) o (un ® oy ® H) o (H @ cyy @ M ® H)

o8y ®om @) o (H®cym)o ((6nonu) ®M), (31)
and then, by (30), we have the following identity
idy = ((cgopun) ®em)o(H®cru® (om0 ((1_7%1 Oﬁg) ®M)oon))
o ((Br onu) ® om)- (32)
Therefore, this establishes the formula (28) because
((conm)@oum)o(H®cun® (pmo (T ollly) @ M)oon))o (G onm) ®om)
=ou o (M A (T 0 TT3;))) ® M) 0 om
=m0 (TG o M) M) ® M) o ou
=puo((ITholl})® (ppo (M ® H)oom))oom
=guo((ITh o) ®M)oou.

In these calculus, the first equality follows by definition of IT Ig and in the second one we use
that, if the antipode is an isomorphism,

O~ oIl = (T o IY) AT (33)

The third equality follows from the structure of left H-module of M and, finally, in the fourth
one we apply

o5 nidy=idy. O (34)
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Proposition 2.3. Let g: B — H and f: H — B be morphisms of weak Hopf algebras such that
go f =idy. Then, if the antipode of H is an isomorphism, (By, 9B, 0By ) belongs to ZyD.

Proof. In Proposition 2.8 of [1] we prove that (Bp,¢p,,0By) 1S an object in the cate-
gory gW)}D. Then, by Proposition 2.2, we only need to show that By satisfies (28) or equiva-
lently

iEO(pBH o((ﬁéoﬁﬁ)@BH)OQBH =if,.

Indeed:

i% 0 08, o (Tl o TT§) ® Bir) o 0,
=qpopngo((follfollfog)®qf)odpoif
=ppo(B®(upocppo(hg®B)))o((6golliollfofog)®B)odpoip
=MB0(B®(MBOCB,BO(?»B®B)))O(B®(MBOCB,B0(B®IT[],§))®B)

o(@Bpong)®(Miofog)®B)odgoip
=ppo(B®(upocppo(up®B)))o(BR®rg®(hgollolliofog)® B)

o (6 ons) ® (38 Oif[))
=upo(B® (upocppo(up®B)))o(BAs® (Mo fog)®B)

o ((Bponp) ® (3p Oig))
=MBO(B®(MBOCB,BO(MB®B)))0(B®AB®I_7§®B)0((530773)(8(53 Oif]))
=upo(up® (upo(lp®B)))o(BRcpp® B)

o(Bpong)®(cppo(ITx®B)odgoif))
=ppo(B@up)o(B® (hpollf)®B)o(p®B)ocgpo(lTx®B)odgoif
=pgocppo(BOup)o(lMIy@B® (hgolls))o@ds®B)odgoil
=pgocppo(BRup)o(lMX@B® (hgofollhog))ods®B)osgoil
=ppocppo(lTI§®qf)odpoip
=pgocgpo(lI®@B)odgoip
=i5.

In the last computations, the first equality follows by definition and in the second one we
use (13) and

folll ol og=M5olRo fog; (35)

qhoppo(f®if)=upo(B® (upocgpos®B)))o@Br®@B)o(f®if). (36)
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The third equality is a consequence of
$golly=(B® (upocpp))o(6pons) @) (37)

and in the fourth one we apply (1). Using (6) and (4) we can obtain the fifth equality and the
sixth one is by

Mo fog=1~. (38)
The seventh equality is due to the naturality of the braiding and the eight one follows from
(B®IIf) o8 =(up®B)o(B®cp.p)o((6p0ns) ® B). (39)
In the ninth equality we use the naturality of the braiding and the tenth follows from
follkog=115. (40)

Finally, the eleventh one follows by the coalgebra condition for B and by (9), the twelfth one
by (13) and in the last one we use

ppocppo(lTy®@B)osp=idg. O (41)

2.4. Ttis a well-know fact that, if the antipode of a weak Hopf algebra H is an isomorphism,
ZyD is a braided monoidal category (see Proposition 2.7 of [13] for modules over a field K or
Theorem 2.6 of [9] for modules over a commutative ring). In the following lines we give a brief
resume of the braided monoidal structure that we can construct in the category gyD.

For two left-left Yetter—Drinfeld modules M = (M, ¢y, 0m), M = (N, ¢n, on) the tensor
product is defined as object as in 1.6. As a consequence M x N is a left-left Yetter—Drinfeld
module with the following action and coaction:

OMxN = PM.N°PueN © (H iy N); (42)
omMxN = (H ® py,N) cOM@N ©iM,N- (43)
The base object is Hy, = Im(I1 1%1) or, equivalently, the equalizer of § and ¢ 11{ =(HKII Ig) o

8g (see (9)) or the equalizer of 6 and §1%1 =H®I Z) oy (see (10)). The structure of left—left
Yetter—Drinfeld module for Hy is the one derived of the following morphisms:

o, =propgo(H®IiL), o, =(H®pp)odpoir. (44)
The unit constrains are:

lM=(pMO(l.L®M)Ol'HL’MiHLXM—)M; 45)
rm=¢mocuuo(M®(Moir))oim m, : M x H, — M. (46)

These morphisms are isomorphisms with inverses:
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I = prmo(pr ® o) o ((Sxonu) @ M): M — Hp x M; (47)

rﬁ_/[1 =pm. ;. © (@M @ pr)o(H ®cu m) o ((8H o’?H)@M):M—) M x Hp. (48)

If M, N, P are objects in the category ZyD, the associativity constrains are defined by

am,N,p = PuxN,P o (PuN® P)o(M Qin p)oiynxp:M X (N x P)— (M x N) x P;
(49)

where the inverse is the morphism:

ay' v p=DPu.Nxpo(M®py.p)oliun®P)oiyxn.p:(MxN)x P—>Mx (N xP).

(50)
If y:M — M’ and ¢: N — N’ are morphisms in the category, then
yXx¢o=puwnoly®poiyn:MxN—->M xN' (51)
is a morphism in Z)}D and
V' x¢Noly xd)=( oy) x (¢ o¢), (52)
where y': M’ — M" and ¢’ : N’ — N are morphisms in ZYD.
Finally, the braiding is
TMN=PNMOIMNOIMN:MXN—>NxM (53)

where tyy vy = (N @ M) o (H @ cyn) o (oM @ N): M ® N — N @ M. The morphism 7 py is
a natural isomorphism with inverse:

TN =PunNoty yoinmiNxM—>MxN (54)

where t), v = cn m o (pny ® M) o (en. 1 @M)o(N®ry' ®M)o(N®oum).

2.5. Letg:B— H and f:H — B be morphisms of weak Hopf algebras such that g o f =
id . Using the properties of f and (9) we have

(B®(17ﬁ1og))O(SBofoiLZ(f@H[g)oSHoiL
=(f®H)odyoig
=(B®g)odpo foir.
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Then, there exists an unique morphism u g, : H;, — By commuting the following diagram

i 3y
H; —— H®H
(H®17,L,)05H
UBy l f fOH
(B®g)odp
By p B B® H
ih (BR(ITh08))08p
and therefore
_ B :
ug, =pgofoir. (55)

Analogously, we have that py ogoupo(BQ f)=progoupo(B® (f o 17[3)). Thus,
by (11), there exists an unique morphism ep,, : By — Hj, such that p; o g =ep, o pfl and as a
consequence:

ep, =prLogoib. (56)

The morphisms up, and ep, are morphisms in ZyD because by the usual arguments we
have:

UBy © YH, OBy O UBy
=ppofollfouyo(H®iL) =(¢®pp)odpoqpofoir
= phoglo founo(H®ir) —(s®pl)odao foir
=phofouno(H®ir) =(H® (pjof))eduoir
=phougo(f®(qhofoir)) =(H® (phofollf))odyoir
=@y o (HQ®up,), =(H Qupy,)ooH,,

€By © By OH, ©€By
=progogloupo(f®il) =(HQ®pr)odyollhogoil
=prollogougo(f®ib) =(H®pr)odyogoqghoil
=progoupo(f®if) =(H®pr)odyogoip
:pLoMHo(H®(HIL10goi5)) :(g®(pLogoH§))0(SBoifl
=opu, o (H®epy), =(H ®epy)ooBy-

Now take the morphism mp,, x g, : By X By — By defined by

mBHXBH :M'BH OiBH,BH (57)

where g, is the product defined in 1.5. Then, this morphism belongs to the category of left—left
Yetter—Drinfeld modules. Indeed, by (16) and (26) we have the following:
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mpBy ©YByxBy = MBy © VBy®By ©¥ByeBy © (H &ipy By)
= UByg CYBy®By © (H ® iBHvBH)

=gy o (H®mpy,).

On the other hand,

OBy ©MpBy
=(s®pp)odponsol(ig®if)ois, sy
=(8®pi) o (s ® (15 o (a5 ® 94))) 0850 0 (ify ®ify) o iny.by
= H®By © (0By ® 0By) 0By By
=(un ® (1By © VByeBy)) o (H ® cpyn @ Br) o (0B, ® 0By) ©iBy. By

= (H ®mBH) O OBy xBpy-

In the last computations, the second equality follows from (13) and in the fourth one we
use (26).
Similarly to m g,,, define the morphism Ap,, : By — By x By by

ABH = PBy,By OSB].[’ (58)

where §p,, is the morphism defined in 1.5. We claim that Ag,, is in the category Z;WD. The proof
of this assertion is similar with the one developed for m g,, and we leave the details to the reader.
For the morphisms u g, , eg,,, mp, and Ap, we have the following result:

Proposition 2.6. Let g: B — H and f: H — B be morphisms of weak Hopf algebras such that
go f =idy. Then, if the antipode of H is an isomorphism, we have the following:

(1) (Bu,up,,mpy) is an algebra in ZyD.
(i1) (Bu.,eBy.,Ay) is a coalgebra in ZyD.

Proof. First, note that by 2.5, ug,,, mp,, e, and Ap, are morphisms in the category ’,ij.
We prove (i). The proof for (ii) is similar and we leave it to the reader.
First we check the unit properties.
mpy o (up, x By)oly)
= By © VByesy © By ® Br) o Vi, gy, o (pL ® ¢8y) o (61 o i) ® Bry)
=phouso((qfolf) ® B)ouses o ((60ns) ®B®up)o ((6sons) @if)
=piompo((npo((ar oM ouso(BRIME))®up)odses o (s ®np)) @if)
= pouso (o ((ah o 115) @ B) 05y 0ns) @)
— plyo s o (7§ Aids) ons) @iE)
(

=phougo nB®if[) =idpy,.
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In these computations, the first equality follows by definition, the second one by (26), (13) and
the properties of f and the third one by the naturality of the braiding and the associativity of ;.
In the fourth equality we use (13), for H = B and f = g = idy, (al) and the unit condition
for wp. Finally, in the fifth one we apply

qBomnk =1k (59)
and the sixth one is a consequence of (34).

On the other hand,

mp, o (Bg X upy) orl;:l

=By 0 Veyesy o (Ba ® (pho foiL)) o Veyen, o (P onso (f®if))® pL)
o(H®cH,By) o ((6r onm) ® By)

:pgougo((ngﬂBO(MB®B))®MB)O(B®B®CB,B®B)O(B®CB,B®CB,B)
o ((6gonp) ® (g onp) ®if)

=P§°MBO(611§®17§)0(MB®B)0(B®CB,B)O((5Bon3)®i2)

=phougo(qgh ®IME)odpoif

=phopugo(B®(fo(uAidy Arg)og))odpoif

=phoafoif

=idpg,.
The second equality follows by (13), (26), the properties of f and
(H®ITE) o8y ony =8 onn. (60)

In the third equality we use the naturality of the braiding, (al) and the unity condition for up.
The fourth one is a consequence of the following identity:

(mp®B)o(B®cp,p)o((6gonp) ® B)=(B®IIf)odp. (61)

Finally, the sixth equality follows from (a4-3) and (40).

Let us show that the product m g,, is associative:

mpy o (mpy X By)oapy By By
=By © VBy@By © (WBy @ Br) o (ipy, By ® BH) o V(ByxBi)@By © (PBy.By @ BH)

o (B ®iBy,By) ©LiBy, By xBy

=By o (Upy ® By)o (By ®ipy By) © VBy@(ByxBy) © iBy,ByxBy
=upy o (UBy @ Br) o (Bu ®iBy,By) © By, ByxBy
= UBy ©VByeBy © (BH ®Mpy) 0iBy ByxBy

=mpy o (Bg X mpy).
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In the last equalities, the second one follows by (26) and (24). In the fourth one we
use (26). O

2.7. Letg:B — H and f:H — B be morphisms of weak Hopf algebras such that g o f =
idy. Let @fl be the morphism @2 = ((f o g) AAp) o if[ : By — B. Following Proposition 2.9
of [1] we have that

(B®g)odpoOh=(B®(M}og))odpodf (62)

and, as a consequence, there exists an unique morphism A g, : By — By such that i 11_31 oABy =
® f,. Therefore,

Ay =pboBb. (63)

The morphism Ap, belongs to the category of left-left Yetter-Drinfeld modules. Indeed,
Ay 1s a morphism of left H-modules:

ABy © @By

=ppougo((fog)®Ap)o(up®B)o(B®cpp)o(BRqh®(fornog))

0c(Bp®B)oSgoupo(f®ip)
=phonpo(up®B)o((fog)®(forpog)®(Apogf))o(B®cpp)

0c(Bp®B)oSgopupo(f®ip)
=phonso((fo2)®(rouso(qf®(fog)ods))ospouso(f®if)
=piionpo((fog)®(Apoupo(B@(follfog))ods))odpoupo(f®if)
=ppo((fog) Arg)oupo(f®if)
=phopugo((upo(f®(fog))®(usocppo((lpof)®Arp)))odugpo(Hip)
=phopugo(B®(ugocppoig®B)))o(@Bpof)®(iforpy,))
=piodnonso(f®(iforsy))

=By © (H &® )"BH)’

In the last computations, the first equality follows from

$poqf=(up®B)o(B®(cppo(qf ®(fornog))))o@ds®B)odp (64)

and the second one by the properties of f and g. In the third and the fourth ones we use (1), the
associativity of the coproduct §p and the properties of f and g. The fifth one follows from

idg A (f oI 0 g) =idp, (65)
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the sixth one is a consequence of (al) and (1) and the seventh one is by definition of A g,, . Finally,
in the eighth one we use

qfious=ppo(up®B)o(B®cpp)o(B®Aip®B)o(8p® B) (66)

and the ninth one follows from the idempotent character of ¢ f,.
On the other hand, A g, is a morphism of left H-comodules:

0By ©hBy
=(¢®pp)odpoupo((fog) ®Ap)odpoif
= ((MH o(H® g)) ® (pfl o [LB)) o(H®cpp®B)
o(((s®(fog)odp)®((Ag®Ap)ocppodp))odpo ip
= (un o Bi) o (H ®cpym) 0 (8@ (pryo (f 08) Adp) ® (g0 4p))) 0 35 ® B) o dp oify
=((goup) ® Bu)o(B®cp,.n)o(B® (pho((fog) Arp)oqh)® Ap)
o(8p® B)odpoib
=((goun) ® (pfo((fog) Arp)))o(B®crp)o(B®qf ®Ap)o@ds®B)odgoip
=(g®(pho((fog) Arg)))odpoghoil
=(g®(pho((fog) Arg)))odpoil
=(2®(plo((fog)Arg)ogl))ospoil
=(H ®Apy)o0By,-
The first equality follows from definition of Ap, and the second one by (1), (al) and the
properties of f and g. In the third one we use the coassociativity of 6p and the fourth one is a

consequence of the definition of A g, . The fifth one follows by the naturality of the braiding and
in the sixth one we use the following equality

(g®B)odgoqh=((gous)®B)o(B® (cpp0(qh ®Arp)))o@p®B)ods (67)

derived directly from (64). In the seventh one we apply the idempotent character of ¢ g and the
eighth one is a consequence of (13). Finally, the ninth one follows from definition.
The remainder of this section will be devoted to the proof of the main theorem of this paper.

Theorem 2.8. Let g:B — H and f:H — B be morphisms of weak Hopf algebras sat-
isfying the equality g o f = idy and suppose that the antipode of H is an isomorphism.
Let up,, mpy, ey, Apy, Ay be the morphisms defined in 2.5 and 2.7 respectively. Then
(BH,UBy,MBy, €y, Ay, ABy) is a Hopf algebra in the category of left-left Yetter—Drinfeld
modules.

Proof. By Proposition 2.6 we know that (By, up,,mp,) is an algebra and (By, e, , Apy) is
a coalgebra in £ YD.
First we prove that m g, is a coalgebra morphism. That is:
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-1
(cl) ABH ompy = (mBH X mBH)OaBH;BHsBHXBH o (BH X aBH,BH,BH)

-1
o (BH X (tBH,BH X BH)) ] (BH X aBHyBH,BH) OaBH,BH,BHxBH

o (Apy X Apy),
(02) €By OMBy =lHL o (eBH X eBH).

Indeed:

(mBy X MBy) ©aBy By ByxBy © (BH X ag,i,BH,BH) o (By x (ty.By % Br))

o (BH X By, By.By) © Ay gy by xy © (ABy X ABy)

=DPBy.By © (UBy @ Upy) o (By ®ipy By @ Bu) o (VByeByxBy) @ Bh)
o (Br ® V(B xBy@By) © (BH ® (PByy.By © 1By By ©iBy.By) @ Br)
o (B ® V(By xBy)®By)
(VByeByxBy) ® Bu) o (BH ® pBy By ® B) 0 (0B, ®8By) ©iBy By

= PBy.By © (WBy ® UBy) © (Bu ® (VBy@By © 1By By © VByeBy) ® Br) o (88, ®dpy,)
CiBy, By

= PBy.By © (LBy ® Upy) o (Bu ®1tpy By ® BH) o (8B, ®8py) 0iBy By

= PBy.By © By © LBy OBy By

= Ay, ompy.

In the last computations, the first and the second equalities follow from (24)—(26), and (27).
In the third one we use the following result: if M is a left-left Yetter—Drinfeld module then

tv,m o Vvem =tu.um, Vvem otm,m =tm m. (68)

The fourth equality follows from Proposition 2.9 of [1] and, finally, the fifth one follows by
definition.
On the other hand,

Iy, o (epy X epy)
=prLopno(iL®ir)oVu,en o(pL®pr)o((goif)®(g0if))oisy, by
=propno((Mogoif)® (Mfogoif))oisy sy
=propno((goqpoif) ®(goqfoify))oiny sy
=prouno((goif) ®(goif))oisy.ny
=PLOgOif; 0 By ©iBy.By

=€By OMBy.
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The first equality follows from definition, the second one from
proun o (i ®iL)oVu,en, o (pL® pr)=pLopuo (M ® ITf) (69)
and the third one from
Mfiog=goqf. (70)

Finally, the fourth one follows from the idempotent character of g g, the fifth one from the prop-
erties of g and the definition of g, and the sixth one from definition.
To finish the proof we only need to show

mpy o (Ag, X By)o A, =lp, o (e, X upy) OVEFII =mpy o (By X Apy)o Ap,.
We begin by proving
Ipy o (epy X upy)ory, =up, oep,, (71)

Ipy o (epy X upy)ory,

=piionso(f®B)o(iL®if;) o Ve, o (pL®piy)o(g® f)o(if ®ir) o Ve,en,
o(ph®pr)o((upo(f®if))®H)o(H®cu py)o((6nonu) ® By)

= plouns o (Th ATTE) @ 11§) o ((fog0ah) ® (s o (ITh ® (f o g o 1T5))))
0o(8p®B)odpoil

=phougo((Miofogogh)®(follfogolls))ossoil

=ppofouno(M®IMf)osyogoif

=pBofollhogoil

—=up, oep,,.

The first equality follows from definition, the second one from

(nBo(f®ip))®H)o(H®cup,) o (Buony)®By)=(B® (g0I15))odgoif,

(72)
(ifi ®iL) o Veyem, o (Ph ® pr) = (¢5 @ (Mfjogoug)) o (B IM5 ® f)o (85 ® H),
(73)
(iL ®ill-31) o VH, @By © (PL ®Pg)
= (T} 08) ® (45 o 1p)) o (B M5 ® B) o (85 0 f) ® B), (74)

(13) and (40). In the third one we use (40) and

o5 Ak =15, (75)
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The fourth one follows from (70) and from the idempotent character of 1T II; Finally, in the fifth
one we apply (75) for B=H.
On the other hand,
mp, o (Ap,; X Bg)o Ap,
=By ©VeyoBy © (Apy ® Bp) o Vp,epy 008y
= uBy © (Apy ® By) odpy
= ((eBy omuBy) ® Br) o (Bu Qtpy. 8y) o (3, onpy) ® By)
=((eoapons) ®p) o ((upo(an ® (fog)ods) ®cpp) o ((8poaf ons) ®if)
= pg ) Hé o if]
=pBofollogoil

=UB, OCRy.

In these computations, the first equality follows from definition, the second one from (26)
and (27), the third one from (4-1) of Proposition 2.9 of [1] and the fourth one is a consequence
of (13) and the coassociativity of §5. The fifth equality follows from

npo(gh ®(fog))odp=idp, (76)

and

qBonp=np.  epoql =sp. (77)

In the sixth one we use (40) and the last one follows from definition.
Finally, using similar arguments and (4-2) of Proposition 2.9 of [1] we obtain:
mpy o (Bg X Apy) o Apy

= WUBy © VByeBy © (BH ® Apy) o VB,oB, 008y
=upy o (A, ® By) odp,
= (Bn ® (eBy o 4By)) © (1By. By ® Br) o (B ® (8, 0 nBy))
=pponso((fog)®Ig)odpoip
=phougo((fog)®(follfog))odgoil
=phofol(iduAlIf)ogoil
=phiofogoif
=pBofolliogoil

=Upy ©epy- O
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2.9. Let g:B— H and f:H — B be morphisms of weak Hopf algebras satisfying the
equality g o f =idp.Let By x H be the image of the idempotent morphism Vg, o . Then, we
can define the following morphisms:

NByxH = PByoH © (NBy; ®nH): K — By x H,
UByxH: (B X H)® (Bg x H) — By x H,
MByxH ‘= PBy,HO° (UBy ® 1H)
o (By ® (98, ® H)o (H® cp,y) o (n ® Br)) ® H) o (ipy.H ® iy, H)-
eByxH = (6B @ €H)oipy H: By x H— K,
8ByxH: B xH— (Bg x H)Y® (By x H),
8ByxH = (PBy.H ® PBy.H)© (Bu ® ((LH ® By) o (H ® c.py) o (0, ® H)) ® H)
o(6py ®SH)oipy H,
where up, xy is the weak version of the smash product and 8p,, x y the weak version of smash
coproduct.
Finally, using the last theorem and Theorem 4.1 of [2] we obtain the complete version of Rad-

ford’s Theorem linking weak Hopf algebras with projection and Hopf algebras in the category of
Yetter—Drinfeld modules over H.

Theorem 2.10. Let H, B be weak Hopf algebras in C. Let g: B — H and f:H — B be mor-
phisms of weak Hopf algebras such that g o f = idy and suppose that the antipode of H is an
isomorphism. Then there exists a Hopf algebra By living in the braided monoidal category ZyD
such that B is isomorphic to By x H as weak Hopf algebras, being the (co)algebra structure
in By x H the smash (co)product, that is the (co)product defined in 2.9. The expression for the
antipode of By x H is

AByxH :=PBy,H° (¢B; @ H)
o(H®cu,By)o (6 oryoun)®Arpy)o(H®cpy 1)
o(oBy ®H)oipy n.
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