
CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 
Journal of Algebra 315 (2007) 396–418

www.elsevier.com/locate/jalgebra

Yetter–Drinfeld modules and projections
of weak Hopf algebras

J.N. Alonso Álvarez a, J.M. Fernández Vilaboa b,
R. González Rodríguez c,∗

a Departamento de Matemáticas, Universidad de Vigo, Campus Universitario Lagoas-Marcosende,
E-36280 Vigo, Spain

b Departamento de Álxebra, Universidad de Santiago de Compostela, E-15771 Santiago de Compostela, Spain
c Departamento de Matemática Aplicada II, Universidad de Vigo, Campus Universitario Lagoas-Marcosende,

E-36310 Vigo, Spain

Received 12 September 2006

Available online 12 February 2007

Communicated by Susan Montgomery

Abstract

In this paper we prove that if g :B → H is a morphism of weak Hopf algebras which is split as an
algebra–coalgebra morphism, then the subalgebra of coinvariants BH of B is a Hopf algebra in the category
of Yetter–Drinfeld modules associated to H .
© 2007 Elsevier Inc. All rights reserved.
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Introduction

Weak Hopf algebras or quantum groupoids have been proposed by Böhm, Nill and Szlachán-
yi in [4,5], as a new generalization of Hopf algebras. Roughly speaking, a weak Hopf algebra
H , in a strict symmetric monoidal category with split idempotents C, is an object that has both
algebra and coalgebra structures with some relations between them and that possesses an an-
tipode λH which does not necessarily verify λH ∧ idH = idH ∧ λH = εH ⊗ ηH where εH , ηH
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are the counity and unity morphisms respectively and ∧ denotes the convolution product. The
main difference with other Hopf algebraic constructions such as Hopf algebras or quasi-Hopf al-
gebras is the following: weak Hopf algebras are coassociative but the coproduct is not required to
preserve the unity ηH or, equivalently, the counity is not an algebra morphism. Some motivations
to study weak Hopf algebras come from their connection with the theory of algebra extensions,
the important applications in the study of dynamical twists of Hopf algebras and their link with
quantum field theories and operator algebras.

Let H be a Hopf algebra over a field K and let A be a K-algebra. A well-known result of Rad-
ford [15] gives equivalent conditions for an object A ⊗ H equipped with smash product algebra
and coalgebra to be a Hopf algebra and characterizes such objects via bialgebra projections. Ma-
jid in [11] interpreted this result in the modern context of Yetter–Drinfeld modules and stated that
there is a correspondence between Hopf algebras in this category, denoted by H

HYD, and Hopf
algebras B with morphisms of Hopf algebras f :H → B , g :B → H such that g ◦ f = idH .
Later, Bespalov proved the same result for braided categories with split idempotents in [3]. The
key point in Radford–Majid–Bespalov’s theorem is to define an object BH , called the algebra of
coinvariants, as the equalizer of (B ⊗ g) ◦ δB and B ⊗ ηH . This object is a Hopf algebra in the
category H

HYD and there exists a Hopf algebra isomorphism between B and BH �� H (the smash
(co)product of BH and H ). It is important to point out that in the construction of BH �� H they
use that BH is the image of the idempotent morphism qB

H = μB ◦ (B ⊗ (f ◦ λH ◦ g)) ◦ δB .
In [8], Bulacu and Nauwelaerts generalize Radford’s theorem about Hopf algebras with pro-

jection to the quasi-Hopf algebra setting. Namely, if H and B are quasi-Hopf algebras with
bijective antipode and with morphisms of quasi-Hopf algebras f :H → B , g :B → H such that
g ◦ f = idH , then they define a subalgebra Bi (the generalization of BH to this setting) and
with some additional structures Bi becomes, a Hopf algebra in the category of left–left Yetter–
Drinfeld modules H

HYD defined by Majid in [12]. Moreover, as the main result in [8], Bulacu
and Nauwelaerts state that Bi × H is isomorphic to B as quasi-Hopf algebras where the algebra
structure of Bi × H is the smash product defined in [7] and the quasi-coalgebra structure is the
one introduced in [8].

The basic motivation of [1] is to explain in detail how the above ideas can be generalized
to weak Hopf algebras in a strict symmetric monoidal category with split idempotents. In [1],
the authors construct the algebra of coinvariants BH , associated to a weak Hopf algebra pro-
jection (i.e., a pair of morphisms of weak Hopf algebras f :H → B , g :B → H such that
g ◦ f = idH ) and, using the idempotent morphism qB

H = μB ◦ (B ⊗ (f ◦ λH ◦ g)) ◦ δB :B → B

(factorized as qB
H = iBH ◦ pB

H ), they prove that BH is also a coalgebra in C. In this setting it
is also possible to define morphisms ϕBH

= pB
H ◦ μB ◦ (f ⊗ iBH ) :H ⊗ BH → BH and �BH

=
(g ⊗pB

H ) ◦ δB ◦ iBH :BH → H ⊗BH such that (BH ,ϕBH
) is a left H -module, (BH ,�BH

) is a left
H -comodule and to prove that BH is an object in the category of weak Yetter–Drinfeld modules
defined in [1] and denoted by H

HWYD. The algebra–coalgebra BH satisfies similar conditions to
the ones included in the definition of weak Hopf algebra but changing the natural symmetry iso-
morphism of C by tBH ,BH

= (ϕBH
⊗BH )◦ (H ⊗cBH ,BH

)◦ (�BH
⊗BH ) :BH ⊗BH → BH ⊗BH .

Finally, in Theorem 4.1 of [2] we prove that B is isomorphic to the image, denoted by BH × H ,
of an idempotent morphism ∇BH ⊗H :BH ⊗ H → BH ⊗ H as weak Hopf algebras, being the
(co)algebra structure in BH × H the smash (co)product.

The aim of the present paper is to improve and to complete the results related in the previous
paragraph. Firstly, when the antipode of H is an isomorphism, we find a condition relating the
category H

HWYD to the category of Yetter–Drinfeld modules defined by Böhm in [6] and denoted
by HYD. This category is a subcategory of HWYD and it is braided monoidal but not strict be-
H H
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cause the tensor product M × N for two objects M and N in H
HYD is defined as the image of an

idempotent morphism ∇M⊗N :M ⊗N → M ⊗N . Secondly, we prove the main result of this pa-
per, this is, for a weak Hopf algebra projection the object BH is a Hopf algebra in H

HYD. Finally,
using the weak smash product and the weak smash coproduct defined in [2], we give a good weak
Hopf algebra interpretation of well-known theorems proved by Radford [15], Majid [11] and oth-
ers (see for example [3]), in the Hopf algebra setting, that provides a correspondence between
Hopf algebra projections and Hopf algebras in the category of Yetter–Drinfeld modules.

1. Weak Hopf algebras in monoidal categories

In this section, we review the basics of weak Hopf algebras. We denote a braided monoidal
category C as (C,⊗,K,a, l, r, c) where C is a category and ⊗ provides C with a monoidal struc-
ture with unit object K whose associator is denoted by a and whose left and right unit constraints
are given by l and r . The braiding is denoted by c. If the braiding is a symmetry, the category C
is a symmetric monoidal category and if the associator and the unit constraints are the identity
morphisms, the category C will be named strict. It is well know that, given a monoidal category,
we can construct a strict monoidal category Cst which is tensor equivalent to C (see [10] for the
details).

We denote the class of objects of a category C by |C| and for each object M ∈ |C|, the iden-
tity morphism by idM :M → M . For simplicity of notation, given objects M , N , P in C and a
morphism f :M → N , we write P ⊗ f for idP ⊗ f and f ⊗ P for f ⊗ idP .

Assumption 1.1. From now on C denotes a strict symmetric monoidal category that admits split
idempotents, i.e. for every morphism q :Y → Y such that q = q ◦ q there exist an object Z and
morphisms i :Z → Y and p :Y → Z such that q = i ◦ p and p ◦ i = idZ .

An algebra in C is a triple A = (A,ηA,μA) where A is an object in C and ηA :K → A (unit),
μA :A⊗A → A (product) are morphisms in C such that μA ◦ (A⊗ ηA) = idA = μA ◦ (ηA ⊗A),
μA ◦ (A ⊗ μA) = μA ◦ (μA ⊗ A). Given two algebras A = (A,ηA,μA) and B = (B,ηB,μB),
f :A → B is an algebra morphism if μB ◦ (f ⊗ f ) = f ◦ μA, f ◦ ηA = ηB . Also, if A, B

are algebras in C, the object A ⊗ B is an algebra in C where ηA⊗B = ηA ⊗ ηB and μA⊗B =
(μA ⊗ μB) ◦ (A ⊗ cB,A ⊗ B).

A coalgebra in C is a triple D = (D, εD, δD) where D is an object in C and εD :D → K

(counit), δD :D → D ⊗ D (coproduct) are morphisms in C such that (εD ⊗ D) ◦ δD = idD =
(D ⊗ εD) ◦ δD , (δD ⊗ D) ◦ δD = (D ⊗ δD) ◦ δD . If D = (D, εD, δD) and E = (E, εE, δE) are
coalgebras, f :D → E is a coalgebra morphism if (f ⊗ f ) ◦ δD = δE ◦ f , εE ◦ f = εD . When
D, E are coalgebras in C, D ⊗ E is a coalgebra in C where εD⊗E = εD ⊗ εE and δD⊗E =
(D ⊗ cD,E ⊗ E) ◦ (δD ⊗ δE).

If A is an algebra, B is a coalgebra and α :B → A, β :B → A are morphisms, we define the
convolution product by α ∧ β = μA ◦ (α ⊗ β) ◦ δB .

By weak Hopf algebras we understand the objects introduced in [4], as a generalization of
ordinary Hopf algebras. Here we recall the definition of these objects.

Definition 1.2. A weak Hopf algebra H is an object in C with an algebra structure (H,ηH ,μH )

and a coalgebra structure (H, εH , δH ) such that the following axioms hold:

(a1) δH ◦ μH = (μH ⊗ μH ) ◦ δH⊗H .
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(a2) εH ◦ μH ◦ (μH ⊗ H) = (εH ⊗ εH ) ◦ (μH ⊗ μH ) ◦ (H ⊗ δH ⊗ H)

= (εH ⊗ εH ) ◦ (μH ⊗ μH ) ◦ (H ⊗ (cH,H ◦ δH ) ⊗ H).

(a3) (δH ⊗ H) ◦ δH ◦ ηH = (H ⊗ μH ⊗ H) ◦ (δH ⊗ δH ) ◦ (ηH ⊗ ηH )

= (H ⊗ (μH ◦ cH,H ) ⊗ H) ◦ (δH ⊗ δH ) ◦ (ηH ⊗ ηH ).

(a4) There exists a morphism λH :H → H in C (called the antipode of H ) verifying:
(a4-1) idH ∧ λH = ((εH ◦ μH ) ⊗ H) ◦ (H ⊗ cH,H ) ◦ ((δH ◦ ηH ) ⊗ H),
(a4-2) λH ∧ idH = (H ⊗ (εH ◦ μH )) ◦ (cH,H ⊗ H) ◦ (H ⊗ (δH ◦ ηH )),
(a4-3) λH ∧ idH ∧ λH = λH .

Note that, in this definition, the conditions (a2), (a3) weaken the conditions of multiplicativity
of the counit, and comultiplicativity of the unit that we can find in the Hopf algebra definition.
On the other hand, axioms (a4-1), (a4-2) and (a4-3) weaken the properties of the antipode in a
Hopf algebra. Therefore, a weak Hopf algebra is a Hopf algebra if an only if the morphism δH

(comultiplication) is unit-preserving and if and only if the counit is a homomorphism of algebras.

1.3. If H is a weak Hopf algebra in C, the antipode λH is unique, antimultiplicative, antico-
multiplicative and leaves the unit ηH and the counit εH invariant:

λH ◦ μH = μH ◦ (λH ⊗ λH ) ◦ cH,H ; δH ◦ λH = cH,H ◦ (λH ⊗ λH ) ◦ δH ; (1)

λH ◦ ηH = ηH ; εH ◦ λH = εH . (2)

If we define the morphisms ΠL
H , ΠR

H , ΠL
H and ΠR

H by

ΠL
H = (

(εH ◦ μH ) ⊗ H
) ◦ (H ⊗ cH,H ) ◦ (

(δH ◦ ηH ) ⊗ H
);

ΠR
H = (

H ⊗ (εH ◦ μH )
) ◦ (cH,H ⊗ H) ◦ (

H ⊗ (δH ◦ ηH )
);

ΠL
H = (

H ⊗ (εH ◦ μH )
) ◦ (

(δH ◦ ηH ) ⊗ H
);

ΠR
H = (

(εH ◦ μH ) ⊗ H
) ◦ (

H ⊗ (δH ◦ ηH )
)

it is straightforward to show (see [4]) that they are idempotent and ΠL
H , ΠR

H satisfy the equalities

ΠL
H = idH ∧ λH ; ΠR

H = λH ∧ idH . (3)

Moreover, we have that

ΠL
H ◦ ΠL

H = ΠL
H ; ΠL

H ◦ ΠR
H = ΠR

H ; ΠR
H ◦ ΠL

H = ΠL
H ; ΠR

H ◦ ΠR
H = ΠR

H ; (4)

ΠL
H ◦ ΠL

H = ΠL
H ; ΠL

H ◦ ΠR
H = ΠR

H ; ΠR
H ◦ ΠL

H = ΠL
H ; ΠR

H ◦ ΠR
H = ΠR

H . (5)

Also it is easy to show the formulas

ΠL
H = ΠR

H ◦ λH = λH ◦ ΠL
H ; ΠR

H = ΠL
H ◦ λH = λH ◦ ΠR

H ; (6)

ΠL
H ◦ λH = ΠL

H ◦ ΠR
H = λH ◦ ΠR

H ; ΠR
H ◦ λH = ΠR

H ◦ ΠL
H = λH ◦ ΠL

H . (7)
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If λH is an isomorphism (for example, when H is finite), we have the equalities:

ΠL
H = μH ◦ (

H ⊗ λ−1
H

) ◦ cH,H ◦ δH ; ΠR
H = μH ◦ (

λ−1
H ⊗ H

) ◦ cH,H ◦ δH . (8)

A morphism between weak Hopf algebras H and B is a morphism f :H → B which is
both algebra and coalgebra morphism. If f :H → B is a weak Hopf algebra morphism, then
λB ◦ f = f ◦ λH (see 1.4 of [1]).

1.4. Let H be a weak Hopf algebra. We say that (M,ϕM) is a left H -module if M is an
object in C and ϕM :H ⊗ M → M is a morphism in C satisfying ϕM ◦ (ηH ⊗ M) = idM , ϕM ◦
(H ⊗ ϕM) = ϕM ◦ (μH ⊗ M). Given two left H -modules (M,ϕM) and (N,ϕN), f :M → N is
a morphism of left H -modules if ϕN ◦ (H ⊗ f ) = f ◦ ϕM . We denote the category of right H -
modules by HC. In an analogous way we define the category of right H -modules and we denote
it by CH .

If (M,ϕM) and (N,ϕN) are left H -modules we denote by ϕM⊗N the morphism ϕM⊗N :H ⊗
M ⊗ N → M ⊗ N defined by

ϕM⊗N = (ϕM ⊗ ϕN) ◦ (H ⊗ cH,M ⊗ N) ◦ (δH ⊗ M ⊗ N).

We say that (M,�M) is a left H -comodule if M is an object in C and �M :M → H ⊗ M is
a morphism in C satisfying (εH ⊗ M) ◦ �M = idM , (H ⊗ �M) ◦ �M = (δH ⊗ M) ◦ �M . Given
two left H -comodules (M,�M) and (N,�N), f :M → N is a morphism of left H -comodules if
�N ◦ f = (H ⊗ f ) ◦ �M . We denote the category of left H -comodules by HC. Analogously, CH

denotes the category of right H -comodules.
For two left H -comodules (M,�M) and (N,�N), we denote by �M⊗N the morphism

�M⊗N :M ⊗ N → H ⊗ M ⊗ N defined by

�M⊗N = (μH ⊗ M ⊗ N) ◦ (H ⊗ cM,H ⊗ N) ◦ (�M ⊗ �N).

1.5. Let g :B → H and f :H → B be morphisms of weak Hopf algebras such that g ◦ f =
idH . The morphism

qB
H = idB ∧ (f ◦ λH ◦ g) :B → B

is an idempotent in C. As a consequence, we obtain that there exist an epimorphism pB
H ,

a monomorphism iBH and an object BH such that pB
H ◦ iBH = idBH

and iBH ◦ pB
H = qB

H . Note
that, if H = B and f = g = idH we have qH

H = ΠL
H and in this case we denote HH by HL, pH

H

by pL and iHH by iL. Also,

BH

iBH
B

(B⊗g)◦δB

(B⊗(ΠL
H ◦g))◦δB

B ⊗ H, (9)

BH

iBH
B

(B⊗g)◦δB

(B⊗(ΠR
H ◦g))◦δB

B ⊗ H (10)

are equalizer diagrams and
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B ⊗ H
μB◦(B⊗f )

μB◦(B⊗(f ◦ΠL
H ))

B
pB

H
BH , (11)

B ⊗ H
μB◦(B⊗f )

μB◦(B⊗(f ◦ΠL
H ))

B
pB

H
BH (12)

are coequalizer diagrams (see Propositions 2.1 and 2.2 and Remark 2.3 of [1] for more details).
As a consequence, we have:

pB
H ◦ μB ◦ (

B ⊗ qB
H

) = pB
H ◦ μB; (

B ⊗ qB
H

) ◦ δB ◦ iBH = δB ◦ iBH . (13)

It was shown in [1] that (BH ,ηBH
= pB

H ◦ ηB,μBH
= pB

H ◦ μB ◦ (iBH ⊗ iBH )) is an algebra
in C and (BH , εBH

= εB ◦ iBH , δBH
= (pB

H ⊗ pB
H ) ◦ δB ◦ iBH ) is a coalgebra in C. Also, the pair

(BH ,ϕBH
= pB

H ◦ μB ◦ (f ⊗ iBH )) is a left H -module in C and (BH ,�BH
= (g ⊗ pB

H ) ◦ δB ◦ iBH )

is a left H -comodule in C. Moreover, the morphisms ϕBH
and �BH

satisfy, respectively, the
following equalities (see Proposition 2.4 and Section 3 of [2]):

ϕBH
◦ (H ⊗ ηBH

) = ϕBH
◦ (

ΠL
H ⊗ ηBH

); (14)

μBH
◦ (ϕBH

⊗ BH ) ◦ (H ⊗ ηBH
⊗ BH ) = ϕBH

◦ (
ΠL

H ⊗ BH

); (15)

ϕBH
◦ (H ⊗ μBH

) = μBH
◦ ϕBH ⊗BH

; (16)

μBH
◦ cBH ,BH

◦ ((
ϕBH

◦ (H ⊗ ηBH
)
) ⊗ BH

) = ϕBH
◦ (

ΠL
H ⊗ BH

); (17)

(H ⊗ εBH
) ◦ �BH

= (
ΠL

H ⊗ εBH

) ◦ �BH
; (18)

(H ⊗ εBH
⊗ BH ) ◦ (�BH

⊗ BH ) ◦ δBH
= (

ΠL
H ⊗ BH

) ◦ �BH
; (19)

(H ⊗ δBH
) ◦ �BH

= �BH ⊗BH
◦ δBH

; (20)
((

(H ⊗ εBH
) ◦ �BH

) ⊗ BH

) ◦ cBH ,BH
◦ δBH

= (
ΠL

H ⊗ BH

) ◦ �BH
. (21)

1.6. Let H be a weak Hopf algebra. Let (M,ϕM), (N,ϕN) be left H -modules. Then the
morphism

∇M⊗N = ϕM⊗N ◦ (ηH ⊗ M ⊗ N) :M ⊗ N → M ⊗ N

is idempotent. In this setting we denote by M × N the image of ∇M⊗N and by pM,N :M ⊗
N → M × N , iM,N :M × N → M ⊗ N the morphisms such that iM,N ◦ pM,N = ∇M⊗N and
pM,N ◦ iM,N = idM×N . Using the definition of × we obtain that the object M × N is a left
H -module with action ϕM×N = pM,N ◦ϕM⊗N ◦(H ⊗ iM,N) :H ⊗(M ×N) → M ×N (see [14]).

Lemma 1.7. Let H be a weak Hopf algebra. Let (M,ϕM), (N,ϕN), (P,ϕP ) be left H -modules.
Then the following equalities hold:

ϕM⊗N ◦ (H ⊗ ∇M⊗N) = ϕM⊗N ; (22)

∇M⊗N ◦ ϕM⊗N = ϕM⊗N ; (23)
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(iM,N ⊗ P) ◦ ∇(M×N)⊗P ◦ (pM,N ⊗ P) = (M ⊗ iN,P ) ◦ ∇M⊗(N×P) ◦ (M ⊗ pN,P ); (24)

(M ⊗ iN,P ) ◦ ∇M⊗(N×P) ◦ (M ⊗ pN,P ) = (∇M⊗N ⊗ P) ◦ (M ⊗ ∇N⊗P )

= (M ⊗ ∇N⊗P ) ◦ (∇M⊗N ⊗ P). (25)

Proof. The first formula is a consequence of the following computations:

ϕM⊗N ◦ (H ⊗ ∇M⊗N)

= (ϕM ⊗ ϕN) ◦ (μH ⊗ M ⊗ μH ⊗ M) ◦ (H ⊗ H ⊗ cH,M ⊗ H ⊗ N)

◦ (H ⊗ cH,H ⊗ cH,M ⊗ N) ◦ (
δH ⊗ (δH ◦ ηH ) ⊗ M ⊗ N

)

= (ϕM ⊗ ϕN) ◦ (H ⊗ cH,M ⊗ N) ◦ (μH⊗H ⊗ M ⊗ N) ◦ (
δH ⊗ (δH ◦ ηH ) ⊗ M ⊗ N

)

= ϕM⊗N ◦ ((
μH ◦ (H ⊗ ηH )

) ⊗ M ⊗ N
)

= ϕM⊗N.

Note that the first equality follows from the naturality of the braiding and by the structure of
left H -module for M and N . In the second one we use the naturality of the braiding and the third
one is a consequence of (a1).

The proof of the second equality is analogous to the first one and we leave the details to the
reader. The proof of (24) is the following:

(iM,N ⊗ P) ◦ ∇(M×N)⊗P ◦ (pM,N ⊗ P)

= (∇M⊗N ⊗ P) ◦ (ϕM⊗N ⊗ ϕP ) ◦ (H ⊗ M ⊗ cH,N ⊗ P) ◦ (H ⊗ cH,M ⊗ N ⊗ P)

◦ (
(δH ◦ ηH ) ⊗ ∇M⊗N ⊗ P

)

= (ϕM⊗N ⊗ ϕP ) ◦ (H ⊗ M ⊗ cH,N ⊗ P) ◦ (H ⊗ cH,M ⊗ N ⊗ P)

◦ (
(δH ◦ ηH ) ⊗ M ⊗ N ⊗ P

)

= (ϕM ⊗ ϕN⊗P ) ◦ (H ⊗ cH,M ⊗ N ⊗ P) ◦ (
(δH ◦ ηH ) ⊗ M ⊗ N ⊗ P

)

= (M ⊗ ∇N⊗P ) ◦ (ϕM ⊗ ϕN⊗P ) ◦ (H ⊗ cH,M ⊗ N ⊗ P) ◦ (
(δH ◦ ηH ) ⊗ M ⊗ ∇N⊗P

)

= (M ⊗ iN,P ) ◦ ∇M⊗(N×P) ◦ (M ⊗ pN,P ).

In the last computations, the first equality follows from the definition, the second one by (22)
and (23) and the third one by the coalgebra condition for H and the naturality of the braiding.
Finally, in the fourth one we use (22) and (23) and the fifth one follows by definition.

We conclude the proof proving (25). In the proof of (24) we obtain the formula:

(iM,N ⊗ P) ◦ ∇(M×N)⊗P ◦ (pM,N ⊗ P)

= (ϕM ⊗ ϕN⊗P ) ◦ (H ⊗ cH,M ⊗ N ⊗ P) ◦ (
(δH ◦ ηH ) ⊗ M ⊗ N ⊗ P

)
.

According with this equality and using the naturality of the braiding, (a3) and the condition
of left H -module for N , we have:
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(iM,N ⊗ P) ◦ ∇(M×N)⊗P ◦ (pM,N ⊗ P)

= (ϕM ⊗ ϕN ⊗ ϕP ) ◦ (H ⊗ cH,M ⊗ cH,N ⊗ P) ◦ (H ⊗ μH ⊗ cH,M ⊗ N ⊗ P)

◦ (
(δH ◦ ηH ) ⊗ (δH ◦ ηH ) ⊗ M ⊗ N ⊗ P

)

= (∇M⊗N ⊗ P) ◦ (M ⊗ ∇N⊗P ).

Finally, by similar computations we establish the equality

(M ⊗ iN,P ) ◦ ∇M⊗(N×P) ◦ (M ⊗ pN,P ) = (M ⊗ ∇N⊗P ) ◦ (∇M⊗N ⊗ P). �
Lemma 1.8. Let g :B → H and f :H → B be morphisms of weak Hopf algebras such that
g ◦ f = idH . Let μBH

and δBH
be the product and the coproduct defined in 1.5. Then,

μBH
◦ ∇BH ⊗BH

= μBH
; (26)

∇BH ⊗BH
◦ δBH

= δBH
. (27)

Proof. By (16) we have that μBH
◦ ϕBH ⊗BH

= ϕBH
◦ (H ⊗ μBH

). Then,

μBH
◦ ∇BH ⊗BH

= ϕBH
◦ (ηH ⊗ μBH

) = μBH
.

The equality (27) is obtained in the following way:

∇BH ⊗BH
◦ δBH

= ((
pB

H ◦ μB ◦ (
f ⊗ qB

H

)) ⊗ (
pB

H ◦ μB ◦ (
f ⊗ qB

H

))) ◦ (H ⊗ cH,B ⊗ B)

◦ (
(δH ◦ ηH ) ⊗ (

δB ◦ iBH
))

= (
pB

H ⊗ pB
H

) ◦ (μB ⊗ μB) ◦ δB⊗B ◦ (
ηB ⊗ iBH

)

= (
pB

H ⊗ pB
H

) ◦ δB ◦ μB ◦ (
ηB ⊗ iBH

)

= δBH
.

In this calculus the first equality follows by definition. In the second one we use (13) and the
properties of f . Finally, the third equality is a consequence of (a1). �
2. Yetter–Drinfeld modules and weak Hopf algebras with projection

Yetter–Drinfeld modules over finite dimensional weak Hopf algebras over fields have been in-
troduced by Böhm in [6]. It is shown in [6] that the category of finite dimensional Yetter–Drinfeld
modules is monoidal and in [13] it is proved that this category is isomorphic to the category of
finite dimensional modules over the Drinfeld double. In [9], the results of [13] are generalized,
using duality results between entwining structures and smash product structures, and more prop-
erties are given. Finally in [1] we can find an alternative definition of Yetter–Drinfeld modules
(weak Yetter–Drinfeld modules) where the essential difference with the definition introduced by
Böhm is to involve the morphism ΠR in the axioms of Yetter–Drinfeld module.
H
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Definition 2.1. Let H be a weak Hopf algebra. We shall denote by H
HYD the category of left–left

Yetter–Drinfeld modules over H . That is, M = (M,ϕM,�M) is an object in H
HYD if (M,ϕM) is

a left H -module, (M,�M) is a left H -comodule and

(b1) (μH ⊗ M) ◦ (H ⊗ cM,H ) ◦ (
(�M ◦ ϕM) ⊗ H

) ◦ (H ⊗ cH,M) ◦ (δH ⊗ M)

= (μH ⊗ ϕM) ◦ (H ⊗ cH,H ⊗ M) ◦ (δH ⊗ �M);
(b2) (μH ⊗ ϕM) ◦ (H ⊗ cH,H ⊗ M) ◦ (

(δH ◦ ηH ) ⊗ �M

) = �M .

By H
HWYD we denote the category of left–left weak Yetter–Drinfeld modules over H . That

is, M = (M,ϕM,�M) is an object in H
HWYD if (M,ϕM) is a left H -module, (M,�M) is a left

H -comodule and we have (b2) and

(b3) (μH ⊗ M) ◦ (H ⊗ cM,H ) ◦ (
(�M ◦ ϕM) ⊗ H

) ◦ (H ⊗ cH,M) ◦ (δH ⊗ M)

= (μH ⊗ M) ◦ (H ⊗ cM,H ) ◦ (μH ⊗ ϕM ⊗ H) ◦ (H ⊗ cH,H ⊗ M ⊗ H)

◦ (
δH ⊗ �M ⊗ ΠR

H

) ◦ (H ⊗ cH,M) ◦ (δH ⊗ M).

Let M , N in H
HYD or in H

HWYD. The morphism f :M → N is a morphism of left–left-(weak)
Yetter–Drinfeld modules if f ◦ ϕM = ϕN ◦ (H ⊗ f ) and (H ⊗ f ) ◦ �M = �N ◦ f .

Note that if H is a Hopf algebra H
HWYD =H

H YD. In the weak Hopf algebra case we have the
following:

Proposition 2.2. Let H be a weak Hopf algebra.

(i) H
HYD ⊂ H

HWYD.
(ii) Suppose that the antipode of H is an isomorphism and let M = (M,ϕM,�M) ∈ |HHWYD|.

Then, M = (M,ϕM,�M) ∈ |HHYD| if and only if

ϕM ◦ ((
ΠL

H ◦ ΠR
H

) ⊗ M
) ◦ �M = idM. (28)

Proof. We first prove (i). Let M = (M,ϕM,�M) ∈ |HHYD|. Then,

(μH ⊗ M) ◦ (H ⊗ cM,H ) ◦ (μH ⊗ ϕM ⊗ H) ◦ (H ⊗ cH,H ⊗ M ⊗ H)

◦ (
δH ⊗ �M ⊗ ΠR

H

) ◦ (H ⊗ cH,M) ◦ (δH ⊗ M)

= (μH ⊗ M) ◦ (μH ⊗ cM,H ) ◦ (H ⊗ cM,H ⊗ H) ◦ (
(�M ◦ ϕM) ⊗ H ⊗ H

)

◦ (
H ⊗ cH,M ⊗ ΠR

H

) ◦ (δH ⊗ cH,M) ◦ (δH ⊗ M)

= (μH ⊗ M) ◦ (H ⊗ cM,H ) ◦ (
(�M ◦ ϕM) ⊗ (

idH ∧ ΠR
H

)) ◦ (H ⊗ cH,M) ◦ (δH ⊗ M)

= (μH ⊗ M) ◦ (H ⊗ cM,H ) ◦ (
(�M ◦ ϕM) ⊗ H

) ◦ (H ⊗ cH,M) ◦ (δH ⊗ M)

and, as a consequence, M ∈ |HWYD|.
H
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In the last computations, the first one follows by (b1), the second one by the naturality of the
braiding and in the third one we use the equality

idH ∧ ΠR
H = idH . (29)

Now we prove (ii). Note that if M is a left H -module and a left H -comodule, the following
identity is always true:

(μH ⊗ M) ◦ (H ⊗ cM,H ) ◦ (μH ⊗ ϕM ⊗ H) ◦ (H ⊗ cH,H ⊗ M ⊗ H) ◦ (
δH ⊗ �M ⊗ ΠR

H

)

◦ (H ⊗ cH,M) ◦ (δH ⊗ M)

= (μH ⊗ ϕM) ◦ (
H ⊗ cH,H ⊗ (

ϕM ◦ ((
ΠL

H ◦ ΠR
H

) ⊗ M
) ◦ �M

)) ◦ (δH ⊗ �M). (30)

Thus, by (30) and (b3), if M satisfies (28), we obtain that M is a left–left Yetter–Drinfeld
module.

Conversely, if M is a left–left weak Yetter–Drinfeld module such that M is a left–left Yetter–
Drinfeld module, composing with εH ⊗ M on (b2) we find that:

idM = (
(εH ◦ μH ) ⊗ M

) ◦ (H ⊗ cM,H ) ◦ (μH ⊗ ϕM ⊗ H) ◦ (H ⊗ cH,H ⊗ M ⊗ H)

◦ (
δH ⊗ �M ⊗ ΠR

H

) ◦ (H ⊗ cH,M) ◦ (
(δH ◦ ηH ) ⊗ M

)
, (31)

and then, by (30), we have the following identity

idM = (
(εH ◦ μH ) ⊗ ϕM

) ◦ (
H ⊗ cH,H ⊗ (

ϕM ◦ ((
ΠL

H ◦ ΠR
H

) ⊗ M
) ◦ �M

))

◦ (
(δH ◦ ηH ) ⊗ �M

)
. (32)

Therefore, this establishes the formula (28) because

(
(εH ◦ μH ) ⊗ ϕM

) ◦ (
H ⊗ cH,H ⊗ (

ϕM ◦ ((
ΠL

H ◦ ΠR
H

) ⊗ M
) ◦ �M

)) ◦ (
(δH ◦ ηH ) ⊗ �M

)

= ϕM ◦ (((
ΠL

H ∧ (
ΠL

H ◦ ΠR
H

))) ⊗ M
) ◦ �M

= ϕM ◦ (((
ΠL

H ◦ ΠR
H

) ∧ ΠL
H

) ⊗ M
) ◦ �M

= ϕM ◦ ((
ΠL

H ◦ ΠR
H

) ⊗ (
ϕM ◦ (

ΠL
H ⊗ H

) ◦ �M

)) ◦ �M

= ϕM ◦ ((
ΠL

H ◦ ΠR
H

) ⊗ M
) ◦ �M.

In these calculus, the first equality follows by definition of ΠL
H and in the second one we use

that, if the antipode is an isomorphism,

ΠL
H ∧ (

ΠL
H ◦ ΠR

H

) = (
ΠL

H ◦ ΠR
H

) ∧ ΠL
H . (33)

The third equality follows from the structure of left H -module of M and, finally, in the fourth
one we apply

ΠL
H ∧ idH = idH . � (34)
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Proposition 2.3. Let g :B → H and f :H → B be morphisms of weak Hopf algebras such that
g ◦ f = idH . Then, if the antipode of H is an isomorphism, (BH ,ϕBH

,�BH
) belongs to H

HYD.

Proof. In Proposition 2.8 of [1] we prove that (BH ,ϕBH
,�BH

) is an object in the cate-
gory H

HWYD. Then, by Proposition 2.2, we only need to show that BH satisfies (28) or equiva-
lently

iBH ◦ ϕBH
◦ ((

ΠL
H ◦ ΠR

H

) ⊗ BH

) ◦ �BH
= iBH .

Indeed:

iBH ◦ ϕBH
◦ ((

ΠL
H ◦ ΠR

H

) ⊗ BH

) ◦ �BH

= qB
H ◦ μB ◦ ((

f ◦ ΠL
H ◦ ΠR

H ◦ g
) ⊗ qB

H

) ◦ δB ◦ iBH

= μB ◦ (
B ⊗ (

μB ◦ cB,B ◦ (λB ⊗ B)
)) ◦ ((

δB ◦ ΠL
B ◦ ΠR

B ◦ f ◦ g
) ⊗ B

) ◦ δB ◦ iBH

= μB ◦ (
B ⊗ (

μB ◦ cB,B ◦ (λB ⊗ B)
)) ◦ (

B ⊗ (
μB ◦ cB,B ◦ (

B ⊗ ΠL
B

)) ⊗ B
)

◦ (
(δB ◦ ηB) ⊗ (

ΠR
B ◦ f ◦ g

) ⊗ B
) ◦ δB ◦ iBH

= μB ◦ (
B ⊗ (

μB ◦ cB,B ◦ (μB ⊗ B)
)) ◦ (

B ⊗ λB ⊗ (
λB ◦ ΠL

B ◦ ΠR
B ◦ f ◦ g

) ⊗ B
)

◦ (
(δB ◦ ηB) ⊗ (

δB ◦ iBH
))

= μB ◦ (
B ⊗ (

μB ◦ cB,B ◦ (μB ⊗ B)
)) ◦ (

B ⊗ λB ⊗ (
ΠR

B ◦ f ◦ g
) ⊗ B

)

◦ (
(δB ◦ ηB) ⊗ (

δB ◦ iBH
))

= μB ◦ (
B ⊗ (

μB ◦ cB,B ◦ (μB ⊗ B)
)) ◦ (

B ⊗ λB ⊗ ΠR
B ⊗ B

) ◦ (
(δB ◦ ηB) ⊗ (

δB ◦ iBH
))

= μB ◦ (
μB ⊗ (

μB ◦ (λB ⊗ B)
)) ◦ (B ⊗ cB,B ⊗ B)

◦ (
(δB ◦ ηB) ⊗ (

cB,B ◦ (
ΠR

B ⊗ B
) ◦ δB ◦ iBH

))

= μB ◦ (B ⊗ μB) ◦ (
B ⊗ (

λB ◦ ΠL
B

) ⊗ B
) ◦ (δB ⊗ B) ◦ cB,B ◦ (

ΠR
B ⊗ B

) ◦ δB ◦ iBH

= μB ◦ cB,B ◦ (B ⊗ μB) ◦ (
ΠR

B ⊗ B ⊗ (
λB ◦ ΠL

B

)) ◦ (δB ⊗ B) ◦ δB ◦ iBH

= μB ◦ cB,B ◦ (B ⊗ μB) ◦ (
ΠR

B ⊗ B ⊗ (
λB ◦ f ◦ ΠL

H ◦ g
)) ◦ (δB ⊗ B) ◦ δB ◦ iBH

= μB ◦ cB,B ◦ (
ΠR

B ⊗ qB
H

) ◦ δB ◦ iBH

= μB ◦ cB,B ◦ (
ΠR

B ⊗ B
) ◦ δB ◦ iBH

= iBH .

In the last computations, the first equality follows by definition and in the second one we
use (13) and

f ◦ ΠL
H ◦ ΠR

H ◦ g = ΠL
B ◦ ΠR

B ◦ f ◦ g; (35)

qB
H ◦ μB ◦ (

f ⊗ iBH
) = μB ◦ (

B ⊗ (
μB ◦ cB,B ◦ (λB ⊗ B)

)) ◦ (δB ⊗ B) ◦ (
f ⊗ iBH

)
. (36)
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The third equality is a consequence of

δB ◦ ΠL
B = (

B ⊗ (μB ◦ cB,B)
) ◦ (

(δB ◦ ηB) ⊗ ΠL
B

)
(37)

and in the fourth one we apply (1). Using (6) and (4) we can obtain the fifth equality and the
sixth one is by

ΠR
B ◦ f ◦ g = ΠR

B. (38)

The seventh equality is due to the naturality of the braiding and the eight one follows from

(
B ⊗ ΠL

B

) ◦ δB = (μB ⊗ B) ◦ (B ⊗ cB,B) ◦ (
(δB ◦ ηB) ⊗ B

)
. (39)

In the ninth equality we use the naturality of the braiding and the tenth follows from

f ◦ ΠL
H ◦ g = ΠL

B . (40)

Finally, the eleventh one follows by the coalgebra condition for B and by (9), the twelfth one
by (13) and in the last one we use

μB ◦ cB,B ◦ (
ΠR

B ⊗ B
) ◦ δB = idB. � (41)

2.4. It is a well-know fact that, if the antipode of a weak Hopf algebra H is an isomorphism,
H
HYD is a braided monoidal category (see Proposition 2.7 of [13] for modules over a field K or
Theorem 2.6 of [9] for modules over a commutative ring). In the following lines we give a brief
resume of the braided monoidal structure that we can construct in the category H

HYD.
For two left–left Yetter–Drinfeld modules M = (M,ϕM,�M), M = (N,ϕN,�N) the tensor

product is defined as object as in 1.6. As a consequence M × N is a left–left Yetter–Drinfeld
module with the following action and coaction:

ϕM×N = pM,N ◦ ϕM⊗N ◦ (H ⊗ iM,N); (42)

�M×N = (H ⊗ pM,N) ◦ �M⊗N ◦ iM,N . (43)

The base object is HL = Im(ΠL
H ) or, equivalently, the equalizer of δH and ζ 1

H = (H ⊗ ΠL
H ) ◦

δH (see (9)) or the equalizer of δH and ζ 2
H = (H ⊗ΠR

H )◦ δH (see (10)). The structure of left–left
Yetter–Drinfeld module for HL is the one derived of the following morphisms:

ϕHL
= pL ◦ μH ◦ (H ⊗ iL), �HL

= (H ⊗ pL) ◦ δH ◦ iL. (44)

The unit constrains are:

lM = ϕM ◦ (iL ⊗ M) ◦ iHL,M :HL × M → M; (45)

rM = ϕM ◦ cM,H ◦ (
M ⊗ (

ΠL
H ◦ iL

)) ◦ iM,HL
:M × HL → M. (46)

These morphisms are isomorphisms with inverses:
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l−1
M = pHL,M ◦ (pL ⊗ ϕM) ◦ (

(δH ◦ ηH ) ⊗ M
)

:M → HL × M; (47)

r−1
M = pM,HL

◦ (ϕM ⊗ pL) ◦ (H ⊗ cH,M) ◦ (
(δH ◦ ηH ) ⊗ M

)
:M → M × HL. (48)

If M , N , P are objects in the category H
HYD, the associativity constrains are defined by

aM,N,P = pM×N,P ◦ (pM,N ⊗ P) ◦ (M ⊗ iN,P ) ◦ iM,N×P :M × (N × P) → (M × N) × P ;
(49)

where the inverse is the morphism:

a−1
M,N,P = pM,N×P ◦ (M ⊗ pN,P ) ◦ (iM,N ⊗ P) ◦ iM×N,P : (M × N) × P → M × (N × P).

(50)

If γ :M → M ′ and φ :N → N ′ are morphisms in the category, then

γ × φ = pM ′,N ′ ◦ (γ ⊗ φ) ◦ iM,N :M × N → M ′ × N ′ (51)

is a morphism in H
HYD and

(γ ′ × φ′) ◦ (γ × φ) = (γ ′ ◦ γ ) × (φ′ ◦ φ), (52)

where γ ′ :M ′ → M ′′ and φ′ :N ′ → N ′′ are morphisms in H
HYD.

Finally, the braiding is

τM,N = pN,M ◦ tM,N ◦ iM,N :M × N → N × M (53)

where tM,N = (ϕN ⊗ M) ◦ (H ⊗ cM,N) ◦ (�M ⊗ N) :M ⊗ N → N ⊗ M . The morphism τM,N is
a natural isomorphism with inverse:

τ−1
M,N = pM,N ◦ t ′M,N ◦ iN,M :N × M → M × N (54)

where t ′M,N = cN,M ◦ (ϕN ⊗ M) ◦ (cN,H ⊗ M) ◦ (N ⊗ λ−1
H ⊗ M) ◦ (N ⊗ �M).

2.5. Let g :B → H and f :H → B be morphisms of weak Hopf algebras such that g ◦ f =
idH . Using the properties of f and (9) we have

(
B ⊗ (

ΠL
H ◦ g

)) ◦ δB ◦ f ◦ iL = (
f ⊗ ΠL

H

) ◦ δH ◦ iL

= (f ⊗ H) ◦ δH ◦ iL

= (B ⊗ g) ◦ δB ◦ f ◦ iL.
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Then, there exists an unique morphism uBH
:HL → BH commuting the following diagram

HL

iL

uBH

H
δH

(H⊗ΠL
H )◦δH

f

H ⊗ H

f ⊗H

BH
iBH

B
(B⊗g)◦δB

(B⊗(ΠL
H ◦g))◦δB

B ⊗ H

and therefore

uBH
= pB

H ◦ f ◦ iL. (55)

Analogously, we have that pL ◦ g ◦ μB ◦ (B ⊗ f ) = pL ◦ g ◦ μB ◦ (B ⊗ (f ◦ ΠL
H )). Thus,

by (11), there exists an unique morphism eBH
:BH → HL such that pL ◦ g = eBH

◦ pB
H and as a

consequence:

eBH
= pL ◦ g ◦ iBH . (56)

The morphisms uBH
and eBH

are morphisms in H
HYD because by the usual arguments we

have:

uBH
◦ ϕHL

�BH
◦ uBH

= pB
H ◦ f ◦ ΠL

H ◦ μH ◦ (H ⊗ iL) = (
g ⊗ pB

H

) ◦ δB ◦ qB
H ◦ f ◦ iL

= pB
H ◦ qB

H ◦ f ◦ μH ◦ (H ⊗ iL) = (
g ⊗ pB

H

) ◦ δB ◦ f ◦ iL

= pB
H ◦ f ◦ μH ◦ (H ⊗ iL) = (

H ⊗ (
pB

H ◦ f
)) ◦ δH ◦ iL

= pB
H ◦ μB ◦ (

f ⊗ (
qB
H ◦ f ◦ iL

)) = (
H ⊗ (

pB
H ◦ f ◦ ΠL

H

)) ◦ δH ◦ iL

= ϕBH
◦ (H ⊗ uBH

), = (H ⊗ uBH
) ◦ �HL

,

eBH
◦ ϕBH

�HL
◦ eBH

= pL ◦ g ◦ qB
H ◦ μB ◦ (

f ⊗ iBH

) = (H ⊗ pL) ◦ δH ◦ ΠL
H ◦ g ◦ iBH

= pL ◦ ΠL
H ◦ g ◦ μB ◦ (

f ⊗ iBH

) = (H ⊗ pL) ◦ δH ◦ g ◦ qB
H ◦ iBH

= pL ◦ g ◦ μB ◦ (
f ⊗ iBH

) = (H ⊗ pL) ◦ δH ◦ g ◦ iBH

= pL ◦ μH ◦ (
H ⊗ (

ΠL
H ◦ g ◦ iBH

)) = (
g ⊗ (

pL ◦ g ◦ ΠL
B

)) ◦ δB ◦ iBH

= ϕHL
◦ (H ⊗ eBH

), = (H ⊗ eBH
) ◦ �BH

.

Now take the morphism mBH ×BH
:BH × BH → BH defined by

mBH ×BH
= μBH

◦ iBH ,BH
(57)

where μBH
is the product defined in 1.5. Then, this morphism belongs to the category of left–left

Yetter–Drinfeld modules. Indeed, by (16) and (26) we have the following:



410 J.N. Alonso Álvarez et al. / Journal of Algebra 315 (2007) 396–418
mBH
◦ ϕBH ×BH

= μBH
◦ ∇BH ⊗BH

◦ ϕBH ⊗BH
◦ (H ⊗ iBH ,BH

)

= μBH
◦ ϕBH ⊗BH

◦ (H ⊗ iBH ,BH
)

= ϕBH
◦ (H ⊗ mBH

).

On the other hand,

�BH
◦ mBH

= (
g ⊗ pB

H

) ◦ δB ◦ μB ◦ (
iBH ⊗ iBH

) ◦ iBH ,BH

= (
g ⊗ pB

H

) ◦ (
μB ⊗ (

μB ◦ (
qB
H ⊗ qB

H

))) ◦ δB⊗B ◦ (
iBH ⊗ iBH

) ◦ iBH ,BH

= μH⊗BH
◦ (�BH

⊗ �BH
) ◦ iBH ,BH

= (
μH ⊗ (

μBH
◦ ∇BH ⊗BH

)) ◦ (H ⊗ cBH ,H ⊗ BH ) ◦ (�BH
⊗ �BH

) ◦ iBH ,BH

= (H ⊗ mBH
) ◦ �BH ×BH

.

In the last computations, the second equality follows from (13) and in the fourth one we
use (26).

Similarly to mBH
, define the morphism ΔBH

:BH → BH × BH by

ΔBH
= pBH ,BH

◦ δBH
, (58)

where δBH
is the morphism defined in 1.5. We claim that ΔBH

is in the category H
HYD. The proof

of this assertion is similar with the one developed for mBH
and we leave the details to the reader.

For the morphisms uBH
, eBH

, mBH
and ΔBH

we have the following result:

Proposition 2.6. Let g :B → H and f :H → B be morphisms of weak Hopf algebras such that
g ◦ f = idH . Then, if the antipode of H is an isomorphism, we have the following:

(i) (BH ,uBH
,mBH

) is an algebra in H
HYD.

(ii) (BH , eBH
,ΔBH

) is a coalgebra in H
HYD.

Proof. First, note that by 2.5, uBH
, mBH

, eBH
and ΔBH

are morphisms in the category H
HYD.

We prove (i). The proof for (ii) is similar and we leave it to the reader.
First we check the unit properties.

mBH
◦ (uBH

× BH ) ◦ l−1
BH

= μBH
◦ ∇BH ⊗BH

◦ (uBH
⊗ BH ) ◦ ∇HL⊗BH

◦ (pL ⊗ ϕBH
) ◦ (

(δH ◦ ηH ) ⊗ BH

)

= pB
H ◦ μB ◦ ((

qB
H ◦ ΠL

B

) ⊗ B
) ◦ μB⊗B ◦ (

(δB ◦ ηB) ⊗ B ⊗ μB

) ◦ (
(δB ◦ ηB) ⊗ iBH

)

= pB
H ◦ μB ◦ ((

μB ◦ ((
qB
H ◦ ΠL

B ◦ μB ◦ (
B ⊗ ΠL

B

)) ⊗ μB

) ◦ δB⊗B ◦ (ηB ⊗ ηB)
) ⊗ iBH

)

= pB
H ◦ μB ◦ ((

μB ◦ ((
qB
H ◦ ΠL

B

) ⊗ B
) ◦ δB ◦ ηB

) ⊗ iBH
)

= pB
H ◦ μB ◦ (((

ΠL
B ∧ idB

) ◦ ηB

) ⊗ iBH
)

= pB
H ◦ μB ◦ (

ηB ⊗ iBH
) = idBH

.
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In these computations, the first equality follows by definition, the second one by (26), (13) and
the properties of f and the third one by the naturality of the braiding and the associativity of μB .
In the fourth equality we use (13), for H = B and f = g = idH , (a1) and the unit condition
for μB . Finally, in the fifth one we apply

qB
H ◦ ΠL

B = ΠL
B (59)

and the sixth one is a consequence of (34).
On the other hand,

mBH
◦ (BH × uBH

) ◦ r−1
BH

= μBH
◦ ∇BH ⊗BH

◦ (
BH ⊗ (

pB
H ◦ f ◦ iL

)) ◦ ∇BH ⊗HL
◦ ((

pB
H ◦ μB ◦ (

f ⊗ iBH
)) ⊗ pL

)

◦ (H ⊗ cH,BH
) ◦ (

(δH ◦ ηH ) ⊗ BH

)

= pB
H ◦ μB ◦ ((

qB
H ◦ μB ◦ (μB ⊗ B)

) ⊗ μB

) ◦ (B ⊗ B ⊗ cB,B ⊗ B) ◦ (B ⊗ cB,B ⊗ cB,B)

◦ (
(δB ◦ ηB) ⊗ (δB ◦ ηB) ⊗ iBH

)

= pB
H ◦ μB ◦ (

qB
H ⊗ ΠL

B

) ◦ (μB ⊗ B) ◦ (B ⊗ cB,B) ◦ (
(δB ◦ ηB) ⊗ iBH

)

= pB
H ◦ μB ◦ (

qB
H ⊗ ΠL

B

) ◦ δB ◦ iBH

= pB
H ◦ μB ◦ (

B ⊗ (
f ◦ (λH ∧ idH ∧ λH ) ◦ g

)) ◦ δB ◦ iBH

= pB
H ◦ qB

H ◦ iBH

= idBH
.

The second equality follows by (13), (26), the properties of f and

(
H ⊗ ΠL

H

) ◦ δH ◦ ηH = δH ◦ ηH . (60)

In the third equality we use the naturality of the braiding, (a1) and the unity condition for μB .
The fourth one is a consequence of the following identity:

(μB ⊗ B) ◦ (B ⊗ cB,B) ◦ (
(δB ◦ ηB) ⊗ B

) = (
B ⊗ ΠL

B

) ◦ δB. (61)

Finally, the sixth equality follows from (a4-3) and (40).
Let us show that the product mBH

is associative:

mBH
◦ (mBH

× BH ) ◦ aBH ,BH ,BH

= μBH
◦ ∇BH ⊗BH

◦ (μBH
⊗ BH ) ◦ (iBH ,BH

⊗ BH ) ◦ ∇(BH ×BH )⊗BH
◦ (pBH ,BH

⊗ BH )

◦ (BH ⊗ iBH ,BH
) ◦ iBH ,BH ×BH

= μBH
◦ (μBH

⊗ BH ) ◦ (BH ⊗ iBH ,BH
) ◦ ∇BH ⊗(BH ×BH ) ◦ iBH ,BH ×BH

= μBH
◦ (μBH

⊗ BH ) ◦ (BH ⊗ iBH ,BH
) ◦ iBH ,BH ×BH

= μBH
◦ ∇BH ⊗BH

◦ (BH ⊗ mBH
) ◦ iBH ,BH ×BH

= mBH
◦ (BH × mBH

).
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In the last equalities, the second one follows by (26) and (24). In the fourth one we
use (26). �

2.7. Let g :B → H and f :H → B be morphisms of weak Hopf algebras such that g ◦ f =
idH . Let ΘB

H be the morphism ΘB
H = ((f ◦ g) ∧ λB) ◦ iBH :BH → B . Following Proposition 2.9

of [1] we have that

(B ⊗ g) ◦ δB ◦ ΘB
H = (

B ⊗ (
ΠL

H ◦ g
)) ◦ δB ◦ ΘB

H (62)

and, as a consequence, there exists an unique morphism λBH
:BH → BH such that iBH ◦ λBH

=
ΘB

H . Therefore,

λBH
= pB

H ◦ ΘB
H . (63)

The morphism λBH
belongs to the category of left–left Yetter–Drinfeld modules. Indeed,

λBH
is a morphism of left H -modules:

λBH
◦ ϕBH

= pB
H ◦ μB ◦ (

(f ◦ g) ⊗ λB

) ◦ (μB ⊗ B) ◦ (B ⊗ cB,B) ◦ (
B ⊗ qB

H ⊗ (f ◦ λH ◦ g)
)

◦ (δB ⊗ B) ◦ δB ◦ μB ◦ (
f ⊗ iBH

)

= pB
H ◦ μB ◦ (μB ⊗ B) ◦ (

(f ◦ g) ⊗ (f ◦ λB ◦ g) ⊗ (
λB ◦ qB

H

)) ◦ (B ⊗ cB,B)

◦ (δB ⊗ B) ◦ δB ◦ μB ◦ (
f ⊗ iBH

)

= pB
H ◦ μB ◦ (

(f ◦ g) ⊗ (
λB ◦ μB ◦ (

qB
H ⊗ (f ◦ g)

) ◦ δB

)) ◦ δB ◦ μB ◦ (
f ⊗ iBH

)

= pB
H ◦ μB ◦ (

(f ◦ g) ⊗ (
λB ◦ μB ◦ (

B ⊗ (
f ◦ ΠR

H ◦ g
)) ◦ δB

)) ◦ δB ◦ μB ◦ (
f ⊗ iBH

)

= pB
H ◦ (

(f ◦ g) ∧ λB

) ◦ μB ◦ (
f ⊗ iBH

)

= pB
H ◦ μB ◦ ((

μB ◦ (
f ⊗ (f ◦ g)

)) ⊗ (
μB ◦ cB,B ◦ (

(λB ◦ f ) ⊗ λB

))) ◦ δH⊗B ◦ (
H ⊗ iBH

)

= pB
H ◦ μB ◦ (

B ⊗ (
μB ◦ cB,B ◦ (λB ⊗ B)

)) ◦ (
(δB ◦ f ) ⊗ (

iBH ◦ λBH

))

= pB
H ◦ qB

H ◦ μB ◦ (
f ⊗ (

iBH ◦ λBH

))

= ϕBH
◦ (H ⊗ λBH

).

In the last computations, the first equality follows from

δB ◦ qB
H = (μB ⊗ B) ◦ (

B ⊗ (
cB,B ◦ (

qB
H ⊗ (f ◦ λH ◦ g)

))) ◦ (δB ⊗ B) ◦ δB (64)

and the second one by the properties of f and g. In the third and the fourth ones we use (1), the
associativity of the coproduct δB and the properties of f and g. The fifth one follows from

idB ∧ (
f ◦ ΠR

H ◦ g
) = idB, (65)
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the sixth one is a consequence of (a1) and (1) and the seventh one is by definition of λBH
. Finally,

in the eighth one we use

qB
H ◦ μB = μB ◦ (μB ⊗ B) ◦ (B ⊗ cB,B) ◦ (B ⊗ λB ⊗ B) ◦ (δB ⊗ B) (66)

and the ninth one follows from the idempotent character of qB
H .

On the other hand, λBH
is a morphism of left H -comodules:

�BH
◦ λBH

= (
g ⊗ pB

H

) ◦ δB ◦ μB ◦ (
(f ◦ g) ⊗ λB

) ◦ δB ◦ iBH

= ((
μH ◦ (H ⊗ g)

) ⊗ (
pB

H ◦ μB

)) ◦ (H ⊗ cB,B ⊗ B)

◦ (((
g ⊗ (f ◦ g)

) ◦ δB

) ⊗ (
(λB ⊗ λB) ◦ cB,B ◦ δB

)) ◦ δB ◦ iBH

= (μH ◦ BH ) ◦ (H ⊗ cBH ,H ) ◦ (
g ⊗ (

pB
H ◦ (

(f ◦ g) ∧ λB

) ⊗ (g ◦ λB)
)) ◦ (δB ⊗ B) ◦ δB ◦ iBH

= (
(g ◦ μB) ⊗ BH

) ◦ (B ⊗ cBH ,H ) ◦ (
B ⊗ (

pB
H ◦ (

(f ◦ g) ∧ λB

) ◦ qB
H

) ⊗ λB

)

◦ (δB ⊗ B) ◦ δB ◦ iBH

= (
(g ◦ μB) ⊗ (

pB
H ◦ (

(f ◦ g) ∧ λB

))) ◦ (B ⊗ cB,B) ◦ (
B ⊗ qB

H ⊗ λB

) ◦ (δB ⊗ B) ◦ δB ◦ iBH

= (
g ⊗ (

pB
H ◦ (

(f ◦ g) ∧ λB

))) ◦ δB ◦ qB
H ◦ iBH

= (
g ⊗ (

pB
H ◦ (

(f ◦ g) ∧ λB

))) ◦ δB ◦ iBH

= (
g ⊗ (

pB
H ◦ (

(f ◦ g) ∧ λB

) ◦ qB
H

)) ◦ δB ◦ iBH

= (H ⊗ λBH
) ◦ �BH

.

The first equality follows from definition of λBH
and the second one by (1), (a1) and the

properties of f and g. In the third one we use the coassociativity of δB and the fourth one is a
consequence of the definition of λBH

. The fifth one follows by the naturality of the braiding and
in the sixth one we use the following equality

(g ⊗ B) ◦ δB ◦ qB
H = (

(g ◦ μB) ⊗ B
) ◦ (

B ⊗ (
cB,B ◦ (

qB
H ⊗ λB

))) ◦ (δB ⊗ B) ◦ δB (67)

derived directly from (64). In the seventh one we apply the idempotent character of qB
H and the

eighth one is a consequence of (13). Finally, the ninth one follows from definition.
The remainder of this section will be devoted to the proof of the main theorem of this paper.

Theorem 2.8. Let g :B → H and f :H → B be morphisms of weak Hopf algebras sat-
isfying the equality g ◦ f = idH and suppose that the antipode of H is an isomorphism.
Let uBH

, mBH
, eBH

, ΔBH
, λBH

be the morphisms defined in 2.5 and 2.7 respectively. Then
(BH ,uBH

,mBH
, eBH

,ΔBH
,λBH

) is a Hopf algebra in the category of left–left Yetter–Drinfeld
modules.

Proof. By Proposition 2.6 we know that (BH ,uBH
,mBH

) is an algebra and (BH , eBH
,ΔBH

) is
a coalgebra in H

HYD.
First we prove that mBH

is a coalgebra morphism. That is:
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(c1) ΔBH
◦ mBH

= (mBH
× mBH

) ◦ aBH ,BH ,BH ×BH
◦ (

BH × a−1
BH ,BH ,BH

)

◦ (
BH × (τBH ,BH

× BH )
) ◦ (BH × aBH ,BH ,BH

) ◦ a−1
BH ,BH ,BH ×BH

◦ (ΔBH
× ΔBH

),

(c2) eBH
◦ mBH

= lHL
◦ (eBH

× eBH
).

Indeed:

(mBH
× mBH

) ◦ aBH ,BH ,BH ×BH
◦ (

BH × a−1
BH ,BH ,BH

) ◦ (
BH × (τBH ,BH

× BH )
)

◦ (BH × aBH ,BH ,BH
) ◦ a−1

BH ,BH ,BH ×BH
◦ (ΔBH

× ΔBH
)

= pBH ,BH
◦ (μBH

⊗ μBH
) ◦ (BH ⊗ iBH ,BH

⊗ BH ) ◦ (∇BH ⊗(BH ×BH ) ⊗ BH )

◦ (BH ⊗ ∇(BH ×BH )⊗BH
) ◦ (

BH ⊗ (pBH ,BH
◦ tBH ,BH

◦ iBH ,BH
) ⊗ BH

)

◦ (BH ⊗ ∇(BH ×BH )⊗BH
)

(∇BH ⊗(BH ×BH ) ⊗ BH ) ◦ (BH ⊗ pBH ,BH
⊗ BH ) ◦ (δBH

⊗ δBH
) ◦ iBH ,BH

= pBH ,BH
◦ (μBH

⊗ μBH
) ◦ (

BH ⊗ (∇BH ⊗BH
◦ tBH ,BH

◦ ∇BH ⊗BH
) ⊗ BH

) ◦ (δBH
⊗ δBH

)

◦ iBH ,BH

= pBH ,BH
◦ (μBH

⊗ μBH
) ◦ (BH ⊗ tBH ,BH

⊗ BH ) ◦ (δBH
⊗ δBH

) ◦ iBH ,BH

= pBH ,BH
◦ δBH

◦ μBH
◦ iBH ,BH

= ΔBH
◦ mBH

.

In the last computations, the first and the second equalities follow from (24)–(26), and (27).
In the third one we use the following result: if M is a left–left Yetter–Drinfeld module then

tM,M ◦ ∇M⊗M = tM,M, ∇M⊗M ◦ tM,M = tM,M. (68)

The fourth equality follows from Proposition 2.9 of [1] and, finally, the fifth one follows by
definition.

On the other hand,

lHL
◦ (eBH

× eBH
)

= pL ◦ μH ◦ (iL ⊗ iL) ◦ ∇HL⊗HL
◦ (pL ⊗ pL) ◦ ((

g ◦ iBH
) ⊗ (

g ◦ iBH
)) ◦ iBH ,BH

= pL ◦ μH ◦ ((
ΠL

H ◦ g ◦ iBH
) ⊗ (

ΠL
H ◦ g ◦ iBH

)) ◦ iBH ,BH

= pL ◦ μH ◦ ((
g ◦ qB

H ◦ iBH
) ⊗ (

g ◦ qB
H ◦ iBH

)) ◦ iBH ,BH

= pL ◦ μH ◦ ((
g ◦ iBH

) ⊗ (
g ◦ iBH

)) ◦ iBH ,BH

= pL ◦ g ◦ iBH ◦ μBH
◦ iBH ,BH

= eBH
◦ mBH

.
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The first equality follows from definition, the second one from

pL ◦ μH ◦ (iL ⊗ iL) ◦ ∇HL⊗HL
◦ (pL ⊗ pL) = pL ◦ μH ◦ (

ΠL
H ⊗ ΠL

H

)
(69)

and the third one from

ΠL
H ◦ g = g ◦ qB

H . (70)

Finally, the fourth one follows from the idempotent character of qB
H , the fifth one from the prop-

erties of g and the definition of μBH
and the sixth one from definition.

To finish the proof we only need to show

mBH
◦ (λBH

× BH ) ◦ ΔBH
= lBH

◦ (eBH
× uBH

) ◦ r−1
BH

= mBH
◦ (BH × λBH

) ◦ ΔBH
.

We begin by proving

lBH
◦ (eBH

× uBH
) ◦ r−1

BH
= uBH

◦ eBH
, (71)

lBH
◦ (eBH

× uBH
) ◦ r−1

BH

= pB
H ◦ μB ◦ (f ⊗ B) ◦ (

iL ⊗ iBH
) ◦ ∇HL⊗BH

◦ (
pL ⊗ pB

H

) ◦ (g ⊗ f ) ◦ (
iBH ⊗ iL

) ◦ ∇BH ⊗HL

◦ (
pB

H ⊗ pL

) ◦ ((
μB ◦ (

f ⊗ iBH
)) ⊗ H

) ◦ (H ⊗ cH,BH
) ◦ (

(δH ◦ ηH ) ⊗ BH

)

= pB
H ◦ μB ◦ ((

ΠL
B ∧ ΠL

B

) ⊗ ΠL
B

) ◦ ((
f ◦ g ◦ qB

H

) ⊗ (
μB ◦ (

ΠL
B ⊗ (

f ◦ g ◦ ΠL
B

))))

◦ (δB ⊗ B) ◦ δB ◦ iBH

= pB
H ◦ μB ◦ ((

ΠL
B ◦ f ◦ g ◦ qB

H

) ⊗ (
f ◦ ΠL

H ◦ g ◦ ΠL
B

)) ◦ δB ◦ iBH

= pB
H ◦ f ◦ μH ◦ (

ΠL
H ⊗ ΠL

H

) ◦ δH ◦ g ◦ iBH

= pB
H ◦ f ◦ ΠL

H ◦ g ◦ iBH

= uBH
◦ eBH

.

The first equality follows from definition, the second one from

((
μB ◦ (

f ⊗ iBH
)) ⊗ H

) ◦ (H ⊗ cH,BH
) ◦ (

(δH ◦ ηH ) ⊗ BH

) = (
B ⊗ (

g ◦ ΠL
B

)) ◦ δB ◦ iBH ,

(72)
(
iBH ⊗ iL

) ◦ ∇BH ⊗HL
◦ (

pB
H ⊗ pL

) = (
qB
H ⊗ (

ΠL
H ◦ g ◦ μB

)) ◦ (
B ⊗ ΠL

B ⊗ f
) ◦ (δB ⊗ H),

(73)
(
iL ⊗ iBH

) ◦ ∇HL⊗BH
◦ (

pL ⊗ pB
H

)

= ((
ΠL

H ◦ g
) ⊗ (

qB
H ◦ μB

)) ◦ (
B ⊗ ΠL

B ⊗ B
) ◦ (

(δB ◦ f ) ⊗ B
)
, (74)

(13) and (40). In the third one we use (40) and

ΠL
B ∧ ΠL

B = ΠL
B . (75)
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The fourth one follows from (70) and from the idempotent character of ΠL
H . Finally, in the fifth

one we apply (75) for B = H .
On the other hand,

mBH
◦ (λBH

× BH ) ◦ ΔBH

= μBH
◦ ∇BH ⊗BH

◦ (λBH
⊗ BH ) ◦ ∇BH ⊗BH

◦ δBH

= μBH
◦ (λBH

⊗ BH ) ◦ δBH

= (
(εBH

◦ μBH
) ⊗ BH

) ◦ (BH ⊗ tBH ,BH
) ◦ (

(δBH
◦ ηBH

) ⊗ BH

)

= ((
εB ◦ qB

H ◦ μB

) ⊗ pB
H

) ◦ ((
μB ◦ (

qB
H ⊗ (f ◦ g)

) ◦ δB

) ⊗ cB,B

) ◦ ((
δB ◦ qB

H ◦ ηB

) ⊗ iBH
)

= pB
H ◦ ΠL

B ◦ iBH

= pB
H ◦ f ◦ ΠL

H ◦ g ◦ iBH

= uBH
◦ eBH

.

In these computations, the first equality follows from definition, the second one from (26)
and (27), the third one from (4-1) of Proposition 2.9 of [1] and the fourth one is a consequence
of (13) and the coassociativity of δB . The fifth equality follows from

μB ◦ (
qB
H ⊗ (f ◦ g)

) ◦ δB = idB, (76)

and

qB
H ◦ ηB = ηB, εB ◦ qB

H = εB. (77)

In the sixth one we use (40) and the last one follows from definition.
Finally, using similar arguments and (4-2) of Proposition 2.9 of [1] we obtain:

mBH
◦ (BH × λBH

) ◦ ΔBH

= μBH
◦ ∇BH ⊗BH

◦ (BH ⊗ λBH
) ◦ ∇BH ⊗BH

◦ δBH

= μBH
◦ (λBH

⊗ BH ) ◦ δBH

= (
BH ⊗ (εBH

◦ μBH
)
) ◦ (tBH ,BH

⊗ BH ) ◦ (
BH ⊗ (δBH

◦ ηBH
)
)

= pB
H ◦ μB ◦ (

(f ◦ g) ⊗ ΠR
B

) ◦ δB ◦ iBH

= pB
H ◦ μB ◦ (

(f ◦ g) ⊗ (
f ◦ ΠR

H ◦ g
)) ◦ δB ◦ iBH

= pB
H ◦ f ◦ (

idH ∧ ΠR
H

) ◦ g ◦ iBH

= pB
H ◦ f ◦ g ◦ iBH

= pB
H ◦ f ◦ ΠL

H ◦ g ◦ iBH

= uBH
◦ eBH

. �
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2.9. Let g :B → H and f :H → B be morphisms of weak Hopf algebras satisfying the
equality g ◦ f = idH . Let BH × H be the image of the idempotent morphism ∇BH ⊗H . Then, we
can define the following morphisms:

ηBH ×H = pBH ⊗H ◦ (ηBH
⊗ ηH ) :K → BH × H,

μBH ×H : (BH × H) ⊗ (BH × H) → BH × H,

μBH ×H := pBH ,H ◦ (μBH
⊗ μH )

◦ (
BH ⊗ (

(ϕBH
⊗ H) ◦ (H ⊗ cH,BH

) ◦ (δH ⊗ BH )
) ⊗ H

) ◦ (iBH ,H ⊗ iBH ,H ),

εBH ×H = (εBH
⊗ εH ) ◦ iBH ,H :BH × H → K,

δBH ×H :BH × H → (BH × H) ⊗ (BH × H),

δBH ×H := (pBH ,H ⊗ pBH ,H ) ◦ (
BH ⊗ (

(μH ⊗ BH ) ◦ (H ⊗ cH,BH
) ◦ (�BH

⊗ H)
) ⊗ H

)

◦ (δBH
⊗ δH ) ◦ iBH ,H ,

where μBH ×H is the weak version of the smash product and δBH ×H the weak version of smash
coproduct.

Finally, using the last theorem and Theorem 4.1 of [2] we obtain the complete version of Rad-
ford’s Theorem linking weak Hopf algebras with projection and Hopf algebras in the category of
Yetter–Drinfeld modules over H .

Theorem 2.10. Let H , B be weak Hopf algebras in C. Let g :B → H and f :H → B be mor-
phisms of weak Hopf algebras such that g ◦ f = idH and suppose that the antipode of H is an
isomorphism. Then there exists a Hopf algebra BH living in the braided monoidal category H

HYD
such that B is isomorphic to BH × H as weak Hopf algebras, being the (co)algebra structure
in BH × H the smash (co)product, that is the (co)product defined in 2.9. The expression for the
antipode of BH × H is

λBH ×H := pBH ,H ◦ (ϕBH
⊗ H)

◦ (H ⊗ cH,BH
) ◦ (

(δH ◦ λH ◦ μH ) ⊗ λBH

) ◦ (H ⊗ cBH ,H )

◦ (�BH
⊗ H) ◦ iBH ,H .
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