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Motivated by the interest raised by the problem of Lorenz-symmetry violating gauge theories in connec-
tion with gravity models, this contribution sets out to provide a general method to systematically study
the excitation spectrum of gravity actions which include a Lorentz-symmetry breaking Chern–Simons-
type action term for the spin connection. A complete set of spin-type operators is found which accounts
for the (Lorentz) violation parameter to all orders and graviton propagators are worked out in a number
of different situations.

© 2010 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Theories with Lorentz symmetry breaking turned into a highly
interesting research activity over the latest years. This may be mo-
tivated by the observation that superstring theories suggest that,
at a certain energy scale, Lorentz symmetry should be violated [1];
properties of these models such as CPT-symmetry violation and
vacuum birefringence [2] could be related to some cosmological
effects like cosmic magnetism [3,4] and anisotropy of the CMB [5].

On the other hand, gravity theories with Lorentz symmetry
breaking had been mainly exploited in [6–9]; in contrast with the
electromagnetic case, there is no vacuum birefringence and the dif-
feomorphism invariance is broken, so that the vacuum structure
for graviton excitations is non-trivial and a production of massive
gravity modes from the violation of Lorentz symmetry may be-
come an issue of relevance.

At this point, it is valid to ask which kind of spectrum this
new vacuum structure offers us. With this motivation, we pro-
vide a general method to compute the propagator for gravity the-
ories with Lorentz symmetry breaking based on the irreducible
group decomposition and the spin operator formalism developed
by Barnes–Rivers [10] and Sezgin and van Nieuwenhuizen [11].
Thus, in agreement with this method, we list a complete set of
spin projection-type operators which form a closed algebra; the
wave operator is expanded in terms of this basis and the calcula-
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tional procedure to read off the propagators becomes very system-
atic. Special cases of interest are finally contemplated. We do not
consider possible effects of torsion: we assume that all gravity de-
grees of freedom are accommodated into the metric fluctuations.

This work is organized as follows: In Section 2, we introduce
our notations, conventions and start with a general action includ-
ing the Einstein-Hilbert term, a second-order curvature term and
the cosmological constant; then, we implement the weak field ap-
proximation to carry out the analysis of the gravity excitations.
In Section 3, we proceed to calculate the propagators. Finally, in
Section 4, we close with some Concluding Comments about the
particle spectrum in some special cases.

2. Preliminaries

We propose to carry out our analysis by starting off from the
following action for topologically massive gravity in four dimen-
sions:

S =
∫

d4x

[√−g

κ2

(
−R + Λ̃ + σ

2
R2 + ξ

2
Rμν Rμν

)
+ Lcs

]
, (1)

where

Lcs = −1

2
εμνκλvμΓλσ

ρ

(
∂νΓρκ

σ + 2

3
Γνα

σ Γκρ
α

)
(2)

is the topological Chern–Simons term, and Λ̃ = κ2Λ, Λ being the
cosmological constant and σ and κ coupling constants of m−2 di-
mension. The idea of writing down the cosmological constant as
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above is simply for the sake of factoring out a κ−2-factor, which
simplifies the task of writing down the expressions for the propa-
gators, to be calculated in the next section.

We adopt here the Minkowski metric ημν = (+;−,−,−) and
the Ricci tensor, Rμν = Rλμν

λ . In the Riemannian space–time, the
coefficients of the affine connection are expressed in terms of the
Christoffel symbols (

{ λ

μν

}
), which are completely determined by

the metric:

Γ λ
μν =

{
λ

μν

}
= 1

2
gκλ(∂μgκν + ∂ν gμκ − ∂κ gμν). (3)

In order to derive the propagators and, consequently, the particle
spectrum of the theory, we linearize the metric-dependent part of
the Lagrangian by adopting the usual splitting in the weak gravita-
tional field approximation:

gμν(x) = ημν + κhμν(x), (4)

where κhμν represents, as usually, the small perturbation around
flat Minkowski space–time.

The action is invariant under general coordinate transforma-
tions,

δhμν(x) = ∂μξν(x) + ∂νξμ(x), (5)

where ξμ is the gauge parameter. Therefore, it is necessary to fix
this gauge invariance in order to make the wave operator of the
Lagrangian non-singular. This is done by adding the usual De Don-
der gauge-fixing term,

L g f = 1

2α
FμF μ, (6)

with

Fμ = ∂ν

(
hν

μ − 1

2
δν

μh

)
, (7)

and h ≡ hμ
μ . In this case, the action is the sum of Einstein, Chern–

Simons and gauge-fixing terms. So, by making use of the weak
field approximation for the metric, the bilinear terms can be col-
lected as below:

L = −1

2

(
1

2
hμν�hμν − 1

2
h�h + h∂μ∂νhμν − hμν∂μ∂λhλ

ν

)

+ σ

2

(
h�2h − 2h�∂μ∂νhμν + hμν∂μ∂v∂κ∂λhκλ

)
+ ξ

8

(
hμν�2hμν + h�2h − 2h�∂μ∂νhμν

+ 2hμν∂μ∂v∂κ∂λhκλ
) + Λκ2

4

(
−hμνhμν + 1

2
h2

)

+ 1

2α

[
−hμν∂μ∂λhλ

ν + hμν∂μ∂νh − 1

4
h�h

]

− κ2

4

[
εμνκλvμ

(
hλ

ρ�∂νhρκ − hλ
ρ∂ν∂ρ∂σ hσ

κ

)]
. (8)

Once the hμν -propagator is calculated, the parameters σ , ξ and
the background vector, vμ , shall be suitably chosen in order to
avoid ghosts or tachyons in the spectrum. The structure of the
propagator poles and their corresponding residues will indicate
if there are non-physical modes induced by the higher derivative
terms and the Lorentz-violating term.
3. Spin operators and graviton propagator

We now rewrite the linearized Lagrangian (8) in a more conve-
nient form, namely

L = 1

2
hμν Oμνκλhκλ, (9)

where Oαβ is the wave operator. The propagator is given by

〈0|T [
hμν(x)hκλ(y)

]|0〉 = i
(

O−1)
μνκλ

δ4(x − y). (10)

In order to invert the wave operator, we shall use an extension
of the spin-projection operator formalism, where one needs to add
now other new operators coming from the Chern–Simons term.
The operators for rank-2 symmetric tensors are given by:

P (2)
μν,κλ = 1

2
(θμκθνλ + θμλθνκ ) − 1

3
θμνθκλ,

P (1)
μν,κλ = 1

2
(θμκωνλ + θμλωνκ + θνκωμλ + θνλωμκ),

P (0−s)
μν,κλ = 1

3
θμνθκλ, P (0−w)

μν,κλ = ωμνωκλ,

P (0−sw)
μν,κλ = 1√

3
θμνωκλ, P (0−ws)

μν,κλ = 1√
3
ωμνθκλ, (11)

with θμν and ωμν the transverse and longitudinal projection op-
erators for vectors, respectively. Thus, the wave operator can be
expanded in terms of the spin projection operators, as it follows
below:

Oμν,κλ =
(

ξ�2

4
− �

2
− Λ̃

2

)
P (2)

μν,κλ −
( �

2α
+ Λ̃

2

)
P (1)

μν,κλ

+
[
(3σ + ξ)�2 + (4α − 3)�

4α
+ Λ̃

4

]
P (0−s)

μν,κλ

+
√

3

4

(�
α

+ Λ̃

)(
P (0−sω)

μν,κλ + P (0−ωs)
μν,κλ

)
− 1

4

(�
α

+ Λ̃

)
P (0−ω)

μν,κλ + κ2�
4

Sμν,κλ. (12)

Our analysis of the spin operators induced by the Lorentz-
symmetry violating term yields the whole set of structures to be
listed below:

Σμν = vμ∂ν, (13)

Λμν = vμvν, (14)

Sμν = εμνκλvκ∂λ, (15)

Sμν,κλ = 1

2
(θμκ Sνλ + θμλ Sνκ + θνκ Sμλ + θνλ Sμκ), (16)

Π
(1−a)
μν,κλ = 1

2
(θμκΣνλ + θμλΣνκ + θνκΣμλ + θνλΣμκ), (17)

Π
(1−b)
μν,κλ = 1

2
(θμκΣλν + θμλΣκν + θνκΣλμ + θνλΣκμ), (18)

Π
(2)
μν,κλ = 1

2
(θμκΛνλ + θμλΛνκ + θνκΛμλ + θνλΛμκ), (19)

Π
(S L)
μν,κλ = 1

2
(SμκΛνλ + SμλΛνκ + SνκΛμλ + SνλΛμκ), (20)

Π
(SΣ−a)
μν,κλ = 1

2
(SμκΣνλ + SμλΣνκ + SνκΣμλ + SνλΣμκ), (21)

Π
(SΣ−b)
μν,κλ = 1

(SμκΣλν + SμλΣκν + SνκΣλμ + SνλΣκμ), (22)

2
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Π
(Sω)
μν,κλ = 1

2
(Sμκωνλ + Sμλωνκ + Sνκωμλ + Sνλωμκ), (23)

Π
(θΣ−a)
μν,κλ = 1√

3
θμνΣκλ, Π

(θΣ−b)
μν,κλ = 1√

3
θμνΣλκ, (24)

Π
(Σθ)
μν,κλ = 1√

3
(Σμνθκλ + Σνμθκλ), (25)

Π
(θ L)
μν,κλ = 1√

3
θμνΛκλ, Π

(Lθ)
μν,κλ = 1√

3
Λμνθκλ, (26)

Π
(L)
μν,κλ = ΛμνΛκλ, (27)

Π
(ωL−a)
μν,κλ = ωμλΛνκ + ωνλΛμκ,

Π
(ωL−b)
μν,κλ = ωμκΛνλ + ωνκΛμλ, (28)

Π
(ωL)
μν,κλ = ωμνΛκλ, Π

(Lω)
μν,κλ = Λμνωκλ, (29)

Π
(ωΣ−a)
μν,κλ = ωμνΣκλ, Π

(ωΣ−b)
μν,κλ = ωμνΣλκ, (30)

Π
(Σω)
μν,κλ = Σμνωκλ + Σνμωκλ, (31)

Π
(LΣ−a)
μν,κλ = ΛμνΣκλ, Π

(LΣ−b)
μν,κλ = ΛμνΣλκ, (32)

Π
(Σ L)
μν,κλ = ΣμνΛκλ + ΣνμΛκλ. (33)

The products between the usual spin operators for the subspace of
symmetric rank-2 tensors are summarised as follows:

P i−a P j−b = δi jδab P j−b,

P i−ab P j−cd = δi jδbc P j−a,

P i−a P j−bc = δi jδab P j−ac,

P i−ab P j−c = δi jδbc P j−ac, (34)

and they satisfy the following tensorial completeness relation:(
P (2) + P (1) + P (0−s) + P (0−w)

)
μν,κλ

= 1

2
(ημκηνλ + ημληνκ). (35)

After lengthy algebraic operations with the whole set of the
operators presented above, we are ready to give the explicit form
of hμν -propagator in momentum space, which reads as below:

〈hh〉 = i

D

{
4D1 P (2) + 2

N1

D1(p2 − Λ̃α)
P (1) − N2

D1 D2
P (0−s)

+ N3 D

D2(p2 − Λ̃α)
P (0−ω) + √

3
N4

D1 D2

(
P (0−sω) + P (0−ωs))

+ 4κ2 p2 S +12i
κ4λp4

D1

(
Π(1−a) +Π(1−b)

)+12
κ4 p6

D1
Π(2)

− 8
√

3i
κ4λp4

D1

(
Π(θΣ−a) + Π(θΣ−b) + Π(Σθ)

)
− 8

√
3
κ4 p6

D1

(
Π(θ L) + Π(Lθ)

)}
, (36)

where λ = vμpμ . We have suppressed the Minkowski space in-
dices from the hμν -field and from the spin-type operators. More-
over, we have defined:

D1 = ξ p4 + 2p2 − 2Λ̃, (37)

D = ξ2 p8 + 4
(
ξ + κ4 v2)p6 + 4

(
1 − Λ̃ξ − κ4λ2)p4

− 8Λ̃p2 + 4Λ̃2, (38)

D2 = (ξ + 3σ)p4 − p2 + Λ̃, (39)
N1 = αξ3 p12 + 2αξ
(
2κ4 v2 + 3ξ

)
p10

+ 2α
(
4κ4 v2 − 2κ4ξλ2 − 3Λ̃ξ2 + 6ξ

)
p8

+ 2
[
4α

(
1 − κ4λ2 − Λκ6 v2 − 3Λ̃ξ

) + 3κ4λ2]p6

+ 2αΛ̃
(
6Λ̃ξ + κ4λ2 − 12

)
p4 + 24αΛ̃2 p2 − 8αΛ̃3, (40)

N2 = ξ3 p12 + 6
(
2κ4ξ v2 + ξ2 + 4κ4 v2σ

)
p10

+ 6
(
2ξ − 4κ4λ2σ − 2κ4ξλ2 − Λ̃ξ2)p8

+ 8[1 − 3Λ̃ξ ]p6 + 12Λ̃
(
Λκ2ξ − 2

)
p4

+ 24Λ̃2 p2 − 8Λ̃3, (41)

N3 = 4α(ξ + 3σ)p4 + (3 − 4α)p2 + αΛ̃, (42)

N4 = ξ3 p12 + 2
(
2κ4ξ v2 + 3ξ2)p10

+ 2
(
6ξ − 12κ4λ2σ − 6κ4ξλ2 − 3Λκ2ξ2 + 4κ4 v2)p8

+ 8
[
1 − κ4Λ̃v2 − 3κ2Λξ

]
p6 + 12Λ̃(Λ̃ξ − 2)p4

+ 24Λ̃2 p2 − 8Λ̃3. (43)

This is a very general expression with all parameters taken as non-
trivial. We have to select only those cases for which ghosts and
tachyons are absent. This imposes special constraints on the pa-
rameters as we are going to present in our final section.

4. Concluding comments

With the general result above, we can focus on two specific
cases.

By starting with a theory described by the Einstein–Hilbert plus
Chern–Simons terms, we get the following tree-level propagator:

〈hh〉 = i

p2�

{
2P (2) + 2

[
3

4
κ4λ2 + α�

]
P (1)

+ P (0−s) + (4α − 3)�P (0−ω)

− √
3
(

p2κ4 v2 + 1
)(

P (0−sω) + P (0−ωs))
+ κ2 S + 3i

2
κ4λ

(
Π(1−a) + Π(1−b)

) + 3κ4 p2

2
Π(2)

− √
3iκ4λ

(
Π(θΣ−a) + Π(θΣ−b) + Π(Σθ)

)
− √

3κ4 p2(Π(θ L) + Π(Lθ)
)}

, (44)

where �(p) = κ4 v2 p2 − κ4(p · v)2 + 1. From (44), we notice that
p2 = 0 is a pole and, so, a massless excitation is present despite
the Lorentz-symmetry violating term. It is now worthy to discuss
the pole structure our propagator (44) exhibits. There is a fac-
torisation of the zero mass pole (p2 = 0), while non-trivial poles
might appear as zeroes of the �(p)-factor. In view of this re-
sult, the works of Refs. [7,12] should be commented on, where
Jackiw and Pi consider the particular case of a time-like vector,
vμ = ( 1

μ, �0). They show that the violation of Lorentz symmetry,
in such a case, is not felt, since its neat effect simply amounts to
modifying the external sources in their spatial dependence. In our
case, the factor �(p), also for the choice vμ = ( 1

μ, �0), looses its

dependence on the p0-component of the momentum: we have in-
deed �(p) = 1 − κ4

μ2 �p2; therefore, no other particle pole is present

other than p2 = 0. This then confirms the results by Jackiw and
Pi. The �(p)-factor, from which the energy dependence drops out
in this case, may actually (as these authors propose) be absorbed
into the redefinition of the external currents and only the massless
p2 = 0-pole of the unmodified theory is actually present.
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For vμ space-like (let us take vμ = (0;0,0, v)), �(p) yields
non-tachyonic massive poles, in agreement with the results found
in [14–16] for the case of general Yang–Mills theories. Gravity may
be formulated as a non-Abelian gauge theory, therefore, it is not
surprising that, for vμ space-like, massive poles may appear and
they are of a non-tachyonic nature.

In theories with spontaneous gauge symmetry breaking in pres-
ence of a Lorentz symmetry breaking term, the competitive effect
between the Higgs mechanism and the mass generation induced
by the Lorentz-symmetry breaking term has been discussed [13].
In the particular case of gravitation, instead of an spontaneous
gauge symmetry breaking, another way to generate mass to com-
pete with the mass parameter of the Lorentz-symmetry breaking
term would be through the cosmological constant. This situation
motivates a discussion of the excitation spectrum of the graviton
propagator in presence of the cosmological constant and the back-
ground vector that violates the Lorentz symmetry.

By starting with a theory described by the Einstein–Hilbert, cos-
mological constant and Chern–Simons terms, in (12) we get:

D1 = 2p2 − 2Λκ2, (45)

D = 4p4� − 8Λκ2 p2 + 4Λ2κ4, (46)

D2 = −p2 + Λκ2, (47)

N1 = 8ακ4 v2 p8 + 2
[
4α

(
1 − κ4λ2 − Λκ6 v2) + 3κ4λ2]p6

+ 2ακ2Λ
(
κ4λ2 − 12

)
p4 + 24ακ4Λ2 p2 − 8ακ6Λ3, (48)

N2 = 8p6 − 24κ2Λp4 + 24κ4Λ2 p2 − 8κ6Λ3, (49)

N3 = (3 − 4α)p2 + ακ2Λ, (50)

N4 = 8κ4 v2 p8 + 8
[
1 − κ6Λv2]p6 − 24κ2Λp4

+ 24κ4Λ2 p2 − 8κ6Λ3. (51)

We conclude that there is no way that the cosmological con-
stant and the violation of Lorentz symmetry may compete to can-
cel the effect of a massive graviton. On the other hand, in this case,
the dispersion relation associated to the pole that corresponds to
D = 0 in Eq. (36) can be inspected to also yield an important in-
formation on the background vector, vμ . Actually, from

D ≡ 4�

[(
p2 − Λκ2

�

)2

− Λ2κ4

�2
(1 − �)

]
= 0, (52)

and, whenever � �= 0,(
p2 − Λκ2

�

)2

= Λ2κ4

�2
(1 − �). (53)
Then 1 − � � 0; this condition reduces to v2 p2 � (v.p)2, which is
always satisfied whenever vμ is space-like and p2 = μ2 > 0, which
corresponds to the appearance of a massive time-like excitation.
An issue which remains to be inspected is the inclusion of torsion
in our discussion of the spectrum of Lorentz-symmetry violating
gravity.

A next step would consist in treating the vielbein and the spin
connection (we are talking about the first-order formalism) as in-
dependent degrees of freedom to then reassess the whole set of
gravity excitations that may show up in the spectrum. By virtue
of the Lorentz-symmetry violation, we do not expect that the two
approaches be equivalent and that this task is simply a matter of
re-analysing the same results by means of another approach; this
claim is based on the results of the work of Ref. [17]. We expect
that there may indeed appear an extra sector of (dynamical) mas-
sive gravitons accommodated in the spin connection sector. This
problem is under consideration and we shall report on it in a near
future [18].
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