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Quark star models with realistic equation of state in nonperturbative f (R) gravity are considered. The 
mass-radius relation for f (R) = R + αR2 model is obtained. Considering scalar curvature R as an 
independent function, one can find out, for each value of central density, the unique value of central 
curvature for which one has solutions with the required asymptotic R → 0 for r → ∞. In other words, 
one needs a fine-tuning for R to achieve quark stars in f (R) gravity. We consider also the analogue 
description in corresponding scalar-tensor gravity. The fine-tuning on R is equivalent to the fine-tuning 
on the scalar field φ in this description. For distant observers, the gravitational mass of the star 
increases with increasing α (α > 0) but the interpretation of this fact depends on frame where we work. 
Considering directly f (R) gravity, one can say that increasing of mass occurs by the “gravitational sphere” 
outside the star with some “effective mass”. On the other hand, in conformal scalar-tensor theory, we 
also have a dilaton sphere (or “disphere”) outside the star but its contribution to gravitational mass for 
distant observer is negligible. We show that it is possible to discriminate modified theories of gravity 
from General Relativity due to the gravitational redshift of the thermal spectrum emerging from the 
surface of the star.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The accelerated expansion of the Universe remains one of the 
puzzles of modern cosmology. Initially discovered by observations 
of distant standard candles [1–3], this acceleration is confirmed by 
several other observations such as microwave background radiation 
(CMBR) anisotropies [4], cosmic shear through gravitational weak 
lensing surveys [5] and data on Lyman alpha forest absorption 
lines [6]. Analysis of these observations shows that the required 
cosmological dynamics cannot be obtained by models where the 
universe contains only standard matter and radiation or, in some 
sense, canonical scalar fields.

One possible solution of this puzzle is that General Relativity 
should be modified. It is possible to obtain accelerated expansion 
in modified gravity without assuming dark energy as a new mate-
rial field [7–15].
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SCOAP3.
Another explanation considers the existence of a non-standard 
cosmic fluid with negative pressure consisting about 70% of the 
universe energy, which is not clustered in large scale structure. 
However, the nature of this dark energy fluid is unclear. According 
to the simplest hypothesis, the dark energy is nothing else but the 
Einstein Cosmological Constant. Despite some questions at funda-
mental level (for example the cosmological constant problem and 
problems with fine tuning [16]), the ΛCDM model [17], based on 
dark matter and cosmological Λ term, gives, in principle, a good
agreement with observational data at present epoch.

It has been shown that modified gravity also could give ad-
equate description of cosmological observations [17–20]. One can 
conclude therefore that cosmological observations only cannot wit-
ness in favor to modified gravity or ΛCDM model. We need new 
probes and testbeds at completely different scales.

Specifically, any theory of modified gravity should be tested at 
astrophysical level also. One can hope that strong field regimes of 
relativistic stars could discriminate between General Relativity and 
its possible extensions [21]. For example, some models of f (R)

gravity can be rejected since they do not allow the existence of 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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stable star configurations [22–27,42]. On the other hand, the pos-
sibility of the emergence of new theoretical stellar structures con-
stitutes a powerful signature for any Extended Gravity model [28,
29]. For example, one can note that stability of stars in modified 
gravity can be achieved due to the so-called Chameleon Mechanism
[30,31].

In f (R) gravity models, new scalar degrees of freedom appear. 
The scalar curvature in General Relativity is defined by pressure 
and density inside the star but, in f (R) gravity, scalar curvature 
must be considered into dynamics as an effective new scalar field.

The structure of compact stars in perturbative f (R) gravity 
has been recently investigated in some papers [32–36]. In this 
approach, the scalar curvature R is defined by the Einstein field 
equations at zeroth order as a small parameter, i.e. R ∼ T , where 
T is the trace of the energy–momentum tensor.

In this paper, we construct also self-consistent star models for 
f (R) = R + αR2 gravity. We consider the case of quark stars with 
very simple equation of state. These systems could be very use-
ful both to constrain modified gravity and to consider stiff matter 
conditions in early phase transitions.

The main result (in comparison to perturbative approach) con-
sists on the result that one can state that, although the gravi-
tational mass of the star decreases with increasing α (as in the 
perturbative approach), outside the star a “gravitational sphere” 
emerges. In other words, we have that the gravitational mass of 
such objects (from the viewpoint of distant observers) increases 
with increasing α. This fact could constitute a new paradigm to 
probe such modified gravity at astrophysical scales.

The paper is organized as follows. In Section 2, we present 
the field equations for f (R) gravity. For spherically symmetric 
solutions of these equations, we obtain the modified Tolman–
Oppenheimer–Volkov (TOV) equations. In Section 3, we give the 
description of the models in the corresponding scalar-tensor the-
ory. In Section 4, the quark star models are presented. Discussion 
and conclusions are reported in Section 5.

2. Modified TOV equations in f (R) gravity

The action for f (R) gravity (in units where G = c = 1) can be 
written in the form:

S = 1

16π

∫
d4x

√−g f (R) + Smatter, (1)

where g is determinant of the metric gμν and Smatter is the action 
of the standard perfect fluid matter. Therefore the Hilbert–Einstein 
action is replaced by a generic function f (R) of the Ricci scalar R .

For solutions describing stellar objects, one can assume that 
metric is spherically symmetric with two independent functions 
of radial coordinate, that is:

ds2 = −e2ψdt2 + e2λdr2 + r2dΩ2. (2)

Varying the action with respect to gμν gives the field equations 
for metric functions:

f ′(R)Gμν − 1

2

(
f (R) − f ′(R)R

)
gμν

− (∇μ∇ν − gμν�) f ′(R) = 8π Tμν. (3)

Here Gμν = Rμν − 1
2 Rgμν is the Einstein tensor, f ′(R) = df (R)/dR

is the derivative of f (R) with respect to the scalar curvature and 
Tμν is the energy–momentum tensor. For a perfect fluid, we have 
Tμν = diag(e2ψρ, e2λ p, r2 p, r2 sin2 θ p), where ρ is the matter den-
sity and p is the pressure.

The components of the field equations are nothing else but the 
Tolman–Oppenheimer–Volkov equations for f (R) gravity:
f ′(R)

r2

d

dr

[
r
(
1 − e−2λ

)]

= 8πρ + 1

2

(
f ′(R)R − f (R)

)

+ e−2λ

[(
2

r
− dλ

dr

)
df ′(R)

dr
+ d2 f ′(R)

dr2

]
(4)

f ′(R)

r

[
2e−2λ dψ

dr
− 1

r

(
1 − e−2λ

)]

= 8π p + 1

2

(
f ′(R)R − f (R)

) + e−2λ

(
2

r
+ dψ

dr

)
df ′(R)

dr
(5)

From the conservation equations for the energy–momentum ten-
sor, ∇μTμν = 0, the hydrostatic condition equilibrium follows:

dp

dr
= −(ρ + p)

dψ

dr
. (6)

For f (R) = R these equations reduce to the ordinary TOV equa-
tions of General Relativity. In f (R) gravity, the scalar curvature is 
dynamical variable and the equation for R can be obtained by tak-
ing into account the trace of field equations (3). We have

3� f ′(R) + f ′(R)R − 2 f (R) = −8π(ρ − 3p),

where e2λ� = −e2λ−2ψ ∂2

∂t2
+

(
2

r
+ dψ

dr
− dλ

dr

)
∂

∂r
+ ∂2

∂r2
.

(7)

It is a Klein–Gordon-like equation. For f (R) = R this equation is 
reduced to the equality

R = 8π(ρ − 3p). (8)

Inside the star Eqs. (4)–(7) can be solved numerically for a given 
Equation of State (EoS) p = f (ρ) and initial conditions λ(0) = 0, 
R(0) = Rc , R ′(0) = 0 and ρ(0) = ρc .

Outside the star, the solution is defined by Eqs. (4), (5), (7)
where one needs to put ρ = p = 0. We have to use the junction 
conditions on the surface of the star, that is (r = rs):

λin(rs) = λout(rs), Rin(rs) = Rout(rs), R ′
in(rs) = R ′

out(rs).

A mass parameter m(r) can be defined according to the relation:

e−2λ = 1 − 2m

r
. (9)

The asymptotic flatness requirement gives the constraints on the 
scalar curvature and the mass parameter:

lim
r→∞ R(r) = 0, lim

r→∞m(r) = const.

For the following considerations, it is convenient to use dimen-
sional variables m → mM	 and r → rgr where rg = GM	/c2. This 
assumption allows to refer to typical stellar structures.

3. The scalar-tensor gravity picture

Let us consider the analogue modified gravity description in 
terms of scalar-tensor gravity (see [37,38]). For f (R) gravity one 
can construct the equivalent Brans–Dicke-like theory where the ac-
tion for the gravitational sector is:

S g = 1

16π

∫
d4x

√−g
(
ΦR − U (Φ)

)
. (10)

Here Φ = df (R)/dR is gravitational scalar and U (Φ) = R f ′(R) −
f (R) is potential. It is worth noticing that standard Brans–Dicke 
shows a kinetic term instead of a potential like in this case.
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Using the conformal transformation g̃μν = Φgμν , one can write 
the action in the Einstein frame as

S g = 1

16πG

∫
d4x

√
−g̃

(
R̃ − 2g̃μν∂μφ∂νφ − 2V (φ)

)
, (11)

where φ = √
3 ln Φ/2. In such a frame, the potential becomes 

V (φ) = Φ−2(φ)U (Φ(φ))/2. It is convenient to choose the space-
time metric in a form that formally coincided with (2). We can 
redefine the functions ψ and λ as

ds̃2 = Φds2 = −e2ψ̃dt2 + e2λ̃d̃r
2 + r̃2dΩ2. (12)

In Eq. (12) r̃2 = Φr2, e2ψ̃ = Φe2ψ and from equality

Φe2λdr2 = e2λ̃dr̃2

it follows that

e−2λ = e−2λ̃
(
1 − r̃φ′(r̃)/

√
3
)2

.

Therefore the mass parameter m(r̃) can be obtained from m̃(r̃) as

m(r̃) = r̃

2

(
1 −

(
1 − 2m̃

r̃

)(
1 − r̃φ′(r̃)/

√
3
)2

)
e−φ/

√
3. (13)

The resulting equations for metric functions λ̃ and ψ̃ (tildes in the 
following will be omitted for simplicity):

1

r2

d

dr

[
r
(
1 − e−2λ

)]

= 8πe−4φ/
√

3ρ + e−2λ

(
dφ

dr

)2

+ V (φ), (14)

1

r

[
2e−2λ dψ

dr
− 1

r

(
1 − e−2λ

)]

= 8πe−4φ/
√

3 p + e−2λ

(
dφ

dr

)2

− V (φ). (15)

The hydrostatic equilibrium condition can be rewritten as

dp

dr
= −(ρ + p)

(
dψ

dr
− 1√

3

dφ

dr

)
. (16)

Finally the last field equation for the scalar field is equivalent to 
Eq. (7) in f (R) theory:

�φ − 1

2

dV (φ)

dφ
= − 4π√

3
e−4φ/

√
3(ρ − 3p). (17)

The first two equations in fact coincide with the ordinary TOV 
equations with redefined matter density and pressure where also 
the energy density and the pressure of the scalar field φ are in-
cluded. It is worth noticing that the potential V (φ) can be written 
in explicit form only for simple f (R) models. For example for 
f (R) = R + αR2, one obtains that

V (φ) = 1

8α

(
1 − e−2φ/

√
3 )2

. (18)

Considering simple power models like f (R) = R + αRm , we have

V (Φ) = DΦ−2(Φ − 1)
m

m−1 ,

with D = m − 1

2m
m

m−1
α

1
1−m , Φ = e2φ/

√
3. (19)

These considerations can be applied to quark star models by as-
suming suitable EoS.
4. Quark star models in f (R) = R + αR2 gravity

A quark star is a self-gravitating system consisting of decon-
fined u, d and s quarks and electrons [39]. Deconfined quarks form 
color superconductor system, leading to a softer equation of state 
in comparison with the standard hadron matter.

In the frame of the so-called MIT bag model one can obtain a 
simple equation of state for quark matter:

p = c(ρ − 4B), (20)

where B is the bag constant. The value of parameter c depends on 
the chosen mass of strange quark ms and QCD coupling constant. 
For ms = 0, the parameter is c = 1/3 as for radiation. For more 
realistic model with ms = 250 MeV, we have c = 0.28. The value of 
B lies in the interval 0.98 < B < 1.52 in units of B0 = 60 MeV/fm3

[40].
The solution of Eqs. (4)–(7) can be achieved by using a per-

turbative approach (see [32,33] for details). In this perturbative 
approach, the curvature scalar cannot considered as an additional 
degree of freedom since its value is fixed by the relation (8). 
Perturbative calculations show that gravitational mass of star de-
creases with increasing α for the f (R) = R + αR2 model.

Let us consider now the system (4)–(7) for f (R) = R + αR2

model assuming that R is an independent function. One has to 
note that authors of [41] estimated the upper limit for α as 
∼ 5 × 1015 cm2 = 2.3 × 105r2

g from binary pulsar data.
We find that for each value of central density, we have the so-

lution with required asymptotic R → 0 at r → ∞ only for a unique 
value of R(0). In the scalar-tensor description, this uniqueness of 
R(0) is equivalent to a fine-tuning conditions for the scalar field φ
at the center of star for a given density.

It is interesting to note that the gravitational mass of star 
M (by calculating as asymptotic mass value the parameter m(r)) 
increases with increasing α. At first glance this contradiction 
(in comparison with results coming from perturbative approach) 
shows that perturbative approach is inadequate to deal with such 
problems in f (R) gravity. However a detailed investigation leads 
to the conclusion that perturbative approach is neither inadequate 
nor incomplete. One can say that the increasing of mass occurs 
on the “gravitational sphere” outside the star as some “effective 
mass”. Without this “sphere” the gravitational mass of star de-
creases (of course we cannot actually distinguish the star from this 
sphere but this interpretation has a right to exist). In the frame-
work of the perturbative approach, one cannot account for the 
existence of such a sphere because the Schwarzschild solution out-
side the star is assumed.

In the conformal frame of the corresponding scalar-tensor the-
ory, we have also the so-called dilaton sphere (“disphere”) outside 
the star but its contribution to gravitational mass for distant ob-
server is negligible.

The mass-radius and the mass-central density diagram for 
quark stars with realistic EoS (c = 0.28, B = 60 MeV/fm3) are rep-
resented in Fig. 1. The radius of star increases in comparison with 
General Relativity. The star configurations with maximal mass cor-
respond to larger central densities (see Table 1). We consider also 
an EoS with c = 0.28 and B = 60 MeV/fm3 (Table 2). In Fig. 2 we 
plot the dependence of mass parameter m(rs) (the value of mass 
parameter on the surface of star) against the radius and the cen-
tral density. In Fig. 3 the dependence �M = M −m(rs) from central 
density is presented.

The mass parameter profile m(r) for star configurations with 
maximal mass is represented in Fig. 4. One can see that the radius 
of gravitational sphere increases with growing α. The mass param-
eter m̃ reaches the value close to the maximal on the surface of 
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Fig. 1. The mass-radius (left panel) and mass-central density (right panel) diagram in model f (R) = R + αR2 and in GR for quark stars with B = 60 MeV/fm3 and c = 0.28.
Table 1
Quark star properties using the simple model (20) with c = 0.28 and B =
60 MeV/fm3 for f (R) = R + αR2 gravity.

α, 
r2

g

Mmax, 
M	

m(rs), 
M	

rs , 
km

ρc , 
1015 g/cm3

Rc , 
10−3r−2

g

0 1.764 1.764 10.26 2.17 28.62
1 1.778 1.649 10.38 2.26 19.34

10 1.832 1.552 10.68 2.54 5.78

Table 2
Quark star properties using the simple model (20) with c = 0.31 and B =
60 MeV/fm3 for f (R) = R + αR2 gravity.

α, 
r2

g

Mmax, 
M	

m(rs), 
M	

rs , 
km

ρc , 
1015 g/cm3

Rc , 
10−3r−2

g

0 1.883 1.883 10.54 2.09 22.01
1 1.901 1.772 10.61 2.26 19.34

10 1.966 1.681 10.92 2.54 5.38

the star. In Fig. 5 the scalar curvature and the scalar field (in terms 
of scalar-tensor description) as functions of radial coordinate are 
given.

One has to note that the initial condition for R in the cen-
ter correlates with the value R(0) = 8π(ρ − 3p), i.e. the scalar 
curvature in General Relativity. For α → 0, the scalar curvature 
R(0) → R(0) as it is expected.

One can see that the deviation of the mass-radius relation from 
General Relativity, in principle, is not so large. Taking into account 
that there are no precise radius measurements for stars, one can-
not hope that the mass-radius relation gives argument in favor (or 
not) of modified gravity.
However, in principle, it is possible to discriminate modified 
theories of gravity from General Relativity due to the redshift of 
the surface atomic lines. The gravitational redshift z of thermal 
spectrum detected at infinity can be calculated as

z = e−ψ − 1. (21)

In General Relativity we have simply

z(rs) = 1√
1 − 2M/rs

− 1.

In the case of modified gravity, we have another dependence on 
the surface redshift from gravitational mass. Calculations give the 
following results. In General Relativity for maximal mass we have 
z(rs) = 0.424 (c = 0.28 and B = 60 MeV/fm3). In the case of 
quadratic gravity with the surface redshift for star with maximal 
mass, it is 0.431 (α = 1) and 0.458 (α = 10).

Of course the measurement of z(rs) can constrain the theories 
of gravity only in the case where the mass of the star is mea-
sured with high precision (for example by precise measurements 
by binary systems dynamics). Another requirement for discrimi-
nating between General Relativity and modified gravity is that one 
should know the realistic equation of state in extreme details. This 
information is not available with today facilities but could be ac-
quired by forthcoming experiments like the Large Observatory For 
X-ray Timing (LOFT) whose one of the main scientific goals is to se-
lect reliable equations of state for compact objects in strong gravity 
regimes [43].

Another difficulty is that present accuracy on redshift measure-
ments is not sufficient yet for constraining gravity in strong regime. 
In future, one can hope that the increasing number of good qual-
ity data on the thermal emission with mass measurements could 
Fig. 2. The m(rs)-radius diagram (left panel) and m(rs)-central density (right panel) diagram in model f (R) = R + αR2 for quark stars with B = 60 MeV/fm3 and c = 0.28.
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Fig. 3. The dependence �M = M − m(rs) from central density in model f (R) = R + αR2 for quark stars with B = 60 MeV/fm3 and c = 0.28.

Fig. 4. The mass parameter m(r) profile inside (bold curves) and outside the star (dotted curves) (left panel) in model f (R) = R + αR2 for stars configuration with maximal 
mass (B = 60 MeV/fm3 and c = 0.28). For comparison we give the dependence m̃(r) outside the star in corresponding scalar-tensor theory (right panel).
help to distinguish General Relativity from models of f (R) gravity. 
Again LOFT experiment could be useful for this task.

In this framework, the question about possible instabilities dur-
ing the star formation arises. First of all, we have to note that the 
scalar curvature inside the matter sphere is smaller in compari-
son with General Relativity for α > 0 for the considered models. 
It is also known that adding the higher derivative term (∼Rβ , 
1 < β � 2) to the standard Hilbert–Einstein action could cure the 
singularity (for details see [42]).

For the quadratic gravity, it is easy to see this fact by using 
the scalar-tensor description. Eq. (17) for the scalar field can be 
rewritten as:

�φ − dV eff

dφ
= 0, V eff = 1

2
V + πe−4φ/

√
3(ρ − 3p). (22)

The effective squared mass of the scalar field is defined as
m2
eff = d2 V eff

dφ2
= 1

2

d2 V

dφ2
+ 16π

3
e−4φ/

√
3(ρ − 3p). (23)

The first term for the model with R-squared term is positive. 
For quark stars, the second term is also positive (because p < ρ/3). 
Therefore effective mass has a real value. It is well-known that in 
this case the solution corresponds to the minimum of potential 
(this minimum corresponds to some value of curvature). For radial 
modes of the perturbations, we have decaying solutions (see [26]). 
Therefore the considered gravity model (with the quark equation 
of state) could become free of curvature singularity.

5. Conclusion

We have considered realistic quark star models in nonperturba-
tive f (R) gravity and obtained the parameters of stars in f (R) =
R + αR2 model. The key issue of such a nonperturbative approach 
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Fig. 5. The scalar curvature R(r) (left panel) in model f (R) = R + αR2 for stars configuration with maximal mass (B = 60 MeV/fm3 and c = 0.28). On right panel we depict 
the corresponding profile of scalar field φ in corresponding scalar-tensor theory.
is that one needs to consider the scalar curvature as an indepen-
dent function. The shooting method of solution gives that there is a 
unique value of the curvature at the center of the star where solu-
tion has the required asymptotic behavior. This fine-tuning for R at 
the center of the star is equivalent to the fine-tuning of the scalar 
field φ in the corresponding scalar-tensor theory. For a distant ob-
server, the gravitational mass of the star increases with increasing 
α (α > 0). One can say that the increasing of the mass occurs 
on the “gravitational sphere” outside the star with some “effective 
mass”. In the corresponding conformally transformed scalar-tensor 
theory, we have also the dilaton sphere (or the disphere) outside 
the star but its contribution to the gravitational mass for distant 
observer is negligible.

The considered approach can be applied for the analysis of 
structure of neutron stars in modified gravity. The calculations 
show that for realistic hyperon EoS we have, in principle, the same 
effects as for quark stars.

Although the deviation of mass-radius relation from General 
Relativity is sufficiently small, it is possible to discriminate mod-
ified theory of gravity from General Relativity due to the redshift 
of the surface atomic lines. In f (R) = R + αR2 gravity the surface 
redshift grows with the increasing of the parameter α.

Acknowledgements

This work is supported in part by project 14-02-31100 (RFBR, 
Russia) (AVA). SC is supported by INFN (iniziative specifiche TEON-
GRAV and QGSKY).

References

[1] S. Perlmutter, et al., Supernova Cosmology Project Collaboration, Astrophys. J. 
517 (1999) 565, arXiv:astro-ph/9812133.

[2] A.G. Riess, et al., Supernova Search Team Collaboration, Astron. J. 116 (1998) 
1009, arXiv:astro-ph/9805201.

[3] A.G. Riess, et al., Supernova Search Team Collaboration, Astrophys. J. 607 (2004) 
665, arXiv:astro-ph/0402512.

[4] D.N. Spergel, et al., WMAP Collaboration, Astrophys. J. Suppl. 148 (2003) 175, 
arXiv:astro-ph/0302209.

[5] C. Schimdt, et al., Astron. Astrophys. 463 (2007) 405.
[6] P. McDonald, et al., Astrophys. J. Suppl. 163 (2006) 80.
[7] S. Capozziello, Int. J. Mod. Phys. D 11 (2002) 483.
[8] S. Capozziello, S. Carloni, A. Troisi, Recent Res. Dev. Astron. Astrophys. 1 (2003) 

625.
[9] S. Nojiri, S.D. Odintsov, Phys. Rev. D 68 (2003) 123512;

S. Nojiri, S.D. Odintsov, Phys. Lett. B 576 (2003) 5.
[10] S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Phys. Rev. D 70 (2004) 

043528.
[11] G.J. Olmo, Int. J. Mod. Phys. D 20 (2011) 413.
[12] S. Nojiri, S.D. Odintsov, Phys. Rep. 505 (2011) 59, arXiv:1011.0544 [gr-qc];
S. Nojiri, S.D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4 (2007) 115, eConf 
C0602061 (2006) 06, arXiv:hep-th/0601213;
S. Nojiri, S.D. Odintsov, arXiv:1306.4426 [gr-qc].

[13] S. Capozziello, V. Faraoni, Beyond Einstein Gravity, Springer, New York, 2010.
[14] S. Capozziello, M. De Laurentis, Phys. Rep. 509 (2011) 167, arXiv:1108.6266 

[gr-qc].
[15] A. de la Cruz-Dombriz, D. Saez-Gomez, Entropy 14 (2012) 1717, arXiv:

1207.2663 [gr-qc].
[16] S. Weinberg, Rev. Mod. Phys. 61 (1989) 1.
[17] N.A. Bahcall, et al., Science 284 (1999) 1481;

K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Astrophys. Space Sci. 342 
(2012) 155;
A. Joyce, B. Jain, J. Khoury, M. Trodden, arXiv:1407.0059 [astro-ph.CO].

[18] M. Demianski, et al., Astron. Astrophys. 454 (2006) 55.
[19] V. Perrotta, C. Baccagalupi, S. Matarrese, Phys. Rev. D 61 (2000) 023507.
[20] J.C. Hwang, H. Noh, Phys. Lett. B 506 (2001) 13.
[21] D. Psaltis, Living Rev. Relativ. 11 (2008) 9, arXiv:0806.1531 [astro-ph].
[22] F. Briscese, E. Elizalde, S. Nojiri, S.D. Odintsov, Phys. Lett. B 646 (2007) 105, 

arXiv:hep-th/0612220.
[23] M.C.B. Abdalla, S. Nojiri, S.D. Odintsov, Class. Quantum Gravity 22 (2005) L35, 

arXiv:hep-th/0409177.
[24] K. Bamba, S. Nojiri, S.D. Odintsov, J. Cosmol. Astropart. Phys. 0810 (2008) 045, 

arXiv:0807.2575 [hep-th].
[25] T. Kobayashi, K.i. Maeda, Phys. Rev. D 78 (2008) 064019, arXiv:0807.2503 

[astro-ph].
[26] E. Babichev, D. Langlois, Phys. Rev. D 81 (2010) 124051, arXiv:0911.1297 [gr-qc].
[27] S. Nojiri, S.D. Odintsov, Phys. Lett. B 676 (2009) 94, arXiv:0903.5231 [hep-th].
[28] S. Capozziello, M. De Laurentis, I. De Martino, M. Formisano, S.D. Odintsov, 

Phys. Rev. D 85 (2012) 044022, arXiv:1112.0761 [gr-qc].
[29] S. Capozziello, M. De Laurentis, S.D. Odintsov, A. Stabile, Phys. Rev. D 83 (2011) 

064004, arXiv:1101.0219 [gr-qc].
[30] J. Khoury, A. Weltman, Phys. Rev. D 69 (2004) 044026, arXiv:astro-ph/0309411;

J. Khoury, A. Weltman, Phys. Rev. Lett. 93 (2004) 171104, arXiv:astro-
ph/0309300.

[31] A. Upadhye, W. Hu, Phys. Rev. D 80 (2009) 064002, arXiv:0905.4055 [astro-
ph.CO].

[32] S. Arapoglu, C. Deliduman, K. Yavuz Eksi, J. Cosmol. Astropart. Phys. 1107 
(2011) 020, arXiv:1003.3179v3 [gr-qc].

[33] H. Alavirad, J.M. Weller, arXiv:1307.7977v1 [gr-qc].
[34] A. Astashenok, S. Capozziello, S. Odintsov, J. Cosmol. Astropart. Phys. 12 (2013) 

040, arXiv:1309.1978 [gr-qc];
A. Astashenok, S. Capozziello, S. Odintsov, Phys. Rev. D 89 (2014) 103509, 
arXiv:1401.4546 [gr-qc];
A. Astashenok, S. Capozziello, S. Odintsov, arXiv:1405.6663 [gr-qc], Astrophys. 
Space Sci. (2014), in press;
A. Astashenok, S. Capozziello, S. Odintsov, J. Cosmol. Astropart. Phys. 01 
(2015) 001, http://dx.doi.org/10.1088/1475-7516/2015/01/001, arXiv:1408.3856 
[gr-qc].

[35] A. Ganguly, R. Gannouji, R. Goswami, S. Ray, Phys. Rev. D 89 (2014) 064019;
R. Goswami, A.M. Nzioki, S.D. Maharaj, S.G. Ghosh, Phys. Rev. D 90 (2014) 
084011.

[36] P. Fiziev, Phys. Rev. D 87 (2013) 044053;
P. Fiziev, arXiv:1402.2813v1 [gr-qc], 2014;
P. Fiziev, PoS (FFP14) (2014) 080, arXiv:1411.0242v1 [gr-qc], 2014;

http://refhub.elsevier.com/S0370-2693(15)00040-4/bib5065726C6D7574746572s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib5065726C6D7574746572s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib526965737331s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib526965737331s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib526965737332s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib526965737332s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib5370657267656Cs1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib5370657267656Cs1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib5363686D696474s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4D63446F6E616C64s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4361706F7A7A69656C6C6F31s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4361706F7A7A69656C6C6F32s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4361706F7A7A69656C6C6F32s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4F64696E74736F7631s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4F64696E74736F7631s2
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib5475726E6572s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib5475726E6572s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4F6C6D6Fs1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4F64696E74736F762D33s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4F64696E74736F762D33s2
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4F64696E74736F762D33s2
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4F64696E74736F762D33s3
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4361706F7A7A69656C6C6F5F626F6F6Bs1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4361706F7A7A69656C6C6F34s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4361706F7A7A69656C6C6F34s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4372757As1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4372757As1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib5765696E62657267s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib42616E63616C6Cs1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib42616E63616C6Cs2
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib42616E63616C6Cs2
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib42616E63616C6Cs3
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib44656D69616E736B69s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib506572726F747461s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4877616E67s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib44696D697472692D726576s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4272697363657365s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4272697363657365s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib416264616C6C61s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib416264616C6C61s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib42616D6261s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib42616D6261s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4B6F626179617368692D4D61656461s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4B6F626179617368692D4D61656461s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4C616E676C6F6973s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4E6F6A69726935s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4C617572656E746973s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4C617572656E746973s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4C617572656E74697332s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4C617572656E74697332s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib5473756A696B617761s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib5473756A696B617761s2
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib5473756A696B617761s2
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib557061646879652D4875s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib557061646879652D4875s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib417261706F676C75s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib417261706F676C75s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib416C617669726164s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib417374617368656E6F6Bs1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib417374617368656E6F6Bs1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib417374617368656E6F6Bs2
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib417374617368656E6F6Bs2
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib417374617368656E6F6Bs3
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib417374617368656E6F6Bs3
http://dx.doi.org/10.1088/1475-7516/2015/01/001
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib476F7377616D69s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib476F7377616D69s2
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib476F7377616D69s2
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib46697A696576s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib46697A696576s2
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib46697A696576s3


166 A.V. Astashenok et al. / Physics Letters B 742 (2015) 160–166
P. Fiziev, K. Marinov, arXiv:1412.3015v1 [gr-qc], 2014.
[37] K.V. Staykov, D.D. Doneva, S.S. Yazadjiev, K.D. Kokkotas, J. Cosmol. Astropart. 

Phys. 1406 (2014) 003.
[38] K.V. Staykov, D.D. Doneva, S.S. Yazadjiev, K.D. Kokkotas, arXiv:1407.2180 [gr-qc].
[39] E. Witten, Phys. Rev. D 30 (1984) 272.
[40] N. Stergioulas, Living Rev. Relativ. 6 (2003) 3, arXiv:gr-qc/0302034.
[41] J. Naf, P. Jetzer, Phys. Rev. D 81 (2010) 104003, arXiv:1004.2014 [gr-qc].
[42] K. Bamba, S. Nojiri, S.D. Odintsov, Phys. Lett. B 698 (2011) 451, arXiv:1101.2820 

[gr-qc].
[43] http://www.isdc.unige.ch/loft/index.php/science.

http://refhub.elsevier.com/S0370-2693(15)00040-4/bib46697A696576s4
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4B6F6B6B6F746173s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4B6F6B6B6F746173s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4B6F6B6B6F7461732D31s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib57697474656Es1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib5374657267s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib4E6166s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib42616D62s1
http://refhub.elsevier.com/S0370-2693(15)00040-4/bib42616D62s1
http://www.isdc.unige.ch/loft/index.php/science

	Nonperturbative models of quark stars in f(R) gravity
	1 Introduction
	2 Modiﬁed TOV equations in f(R) gravity
	3 The scalar-tensor gravity picture
	4 Quark star models in f(R)=R+αR2 gravity
	5 Conclusion
	Acknowledgements
	References


