w metadata, citation and similar papers at core.ac.uk

Physics Letters B 621 (2005) 133-138

brought to you by

PHYSICS LETTERS B

www.elsevier.com/locate/physletb

$\mu-\tau$ symmetry and maximal CP violation

Teruyuki Kitabayashi, Masaki Yasuè

Department of Physics, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan Received 13 May 2005: received in revised form 12 June 2005; accepted 16 June 2005

Available online 24 June 2005

Editor: T. Yanagida

Abstract

We argue the possibility that a real part of a flavor neutrino mass matrix only respects a $\mu-\tau$ symmetry. This possibility is shown to be extended to more general case with a phase parameter θ , where the $\mu-\tau$ symmetric part has a phase of $\theta/2$. This texture shows maximal CP violation and no Majorana CP violation. © 2005 Elsevier B.V. Open access under CC BY license.

PACS: 13.15.+g; 14.60.Pq; 14.60.St

The present experimental data on neutrino oscillations [1,2] indicate the mixing angles [3] satisfying

$$0.70 < \sin^2 2\theta_{\odot} < 0.95, \qquad 0.92 < \sin^2 2\theta_{\text{atm}}, \qquad \sin^2 \theta_{\text{CHOOZ}} < 0.05,$$
 (1)

where θ_{\odot} is the solar neutrino mixing angle, θ_{atm} is the atmospheric neutrino mixing angle and θ_{CHOOZ} is for the mixing angle between v_e and v_{τ} . These mixing angles are identified with the mixings among three flavor neutrinos, v_e , v_{μ} and v_{τ} , yielding three massive neutrinos, $v_{1,2,3}$: $\theta_{12} = \theta_{\odot}$, $\theta_{23} = \theta_{\text{atm}}$ and $\theta_{13} = \theta_{\text{CHOOZ}}$. These data seem to be consistent with the presence of a $\mu - \tau$ symmetry [4–7] in the neutrino sector, which provides maximal atmospheric neutrino mixing with $\sin^2 2\theta_{23} = 1$ as well as $\sin \theta_{13} = 0$.

Although neutrinos gradually reveal their properties in various experiments since the historical Super-Kamiokande confirmation of neutrino oscillations [1], we expect to find yet unknown property related to CP violation [8]. The effect of the presence of a leptonic CP violation can be described by four phases in the PMNS neutrino mixing matrix, U_{PMNS} [9], to be denoted by one Dirac phase of δ and three Majorana phases of $\beta_{1,2,3}$ as $U_{PMNS} = U_{\nu} K$ [10] with

$$U_{\nu} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}c_{12}s_{13}e^{i\delta} & c_{23}c_{12} - s_{23}s_{12}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}c_{12}s_{13}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{12}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}, \qquad K = \operatorname{diag}(e^{i\beta_1}, e^{i\beta_2}, e^{i\beta_3}), \quad (2)$$

0370-2693 © 2005 Elsevier B.V. Open access under CC BY license. doi:10.1016/j.physletb.2005.06.052

E-mail addresses: teruyuki@keyaki.cc.u-tokai.ac.jp (T. Kitabayashi), yasue@keyaki.cc.u-tokai.ac.jp (M. Yasuè).

where $c_{ij} = \cos \theta_{ij}$ and $s_{ij} = \sin \theta_{ij}$ (*i*, *j*=1,2,3) and Majorana CP violation is specified by two combinations made of $\beta_{1,2,3}$ such as $\beta_i - \beta_3$ in place of β_i in *K*. To examine such effects of CP violation, there have been various discussions [11] including those on the possible textures of flavor neutrino masses [12–15].

In this Letter, we would like to focus on the role of the $\mu-\tau$ symmetry in models with CP violation [14,15], which can be implemented by introducing complex flavor neutrino masses. The $\mu-\tau$ symmetric texture gives $\sin \theta_{13} = 0$ as well as maximal atmospheric neutrino mixing characterized by $c_{23} = \sigma s_{23} = 1/\sqrt{2}$ ($\sigma = \pm 1$). Because of $\sin \theta_{13} = 0$, Dirac CP violation is absent in Eq. (2) and CP violation becomes of the Majorana type. Since the $\mu-\tau$ symmetry is expected to be approximately realized, its breakdown is signaled by $\sin \theta_{13} \neq 0$. To have $\sin \theta_{13} \neq 0$, we discuss another implementation of the $\mu-\tau$ symmetry such that the symmetry is only respected by the real part of M_{ν} . The discussion is based on more general case, where M_{ν} is controlled by one phase to be denoted by θ and the specific value of $\theta = 0$ yields the $\mu-\tau$ symmetric real part. It turns out that Majorana CP violation is absent because all three Majorana phases are calculated to be $-\theta/4$ while Dirac CP violation becomes maximal.

Our complex flavor neutrino mass matrix of M_{ν} is parameterized by

$$M_{\nu} = \begin{pmatrix} M_{ee} & M_{e\mu} & M_{e\tau} \\ M_{e\mu} & M_{\mu\mu} & M_{\mu\tau} \\ M_{e\tau} & M_{\mu\tau} & M_{\tau\tau} \end{pmatrix},$$
(3)

where $U_{\text{PMNS}}^T M_{\nu} U_{\text{PMNS}} = \text{diag}(m_1, m_2, m_3)$.¹ The mixing angles have been calculated in the Appendix of Ref. [16] and satisfy

$$\sin 2\theta_{12}(\lambda_1 - \lambda_2) + 2\cos 2\theta_{12}X = 0, \tag{4}$$

$$\sin 2\theta_{13} \left(M_{ee} e^{-i\delta} - \lambda_3 e^{i\delta} \right) + 2\cos 2\theta_{13} Y = 0, \tag{5}$$

$$(M_{\tau\tau} - M_{\mu\mu})\sin 2\theta_{23} - 2M_{\mu\tau}\cos 2\theta_{23} = 2s_{13}e^{-i\delta}X,$$
(6)

and neutrino masses are given by

$$m_1 e^{-2i\beta_1} = \frac{\lambda_1 + \lambda_2}{2} - \frac{X}{\sin 2\theta_{12}}, \qquad m_2 e^{-2i\beta_2} = \frac{\lambda_1 + \lambda_2}{2} + \frac{X}{\sin 2\theta_{12}}, m_3 e^{-2i\beta_3} = \frac{c_{13}^2 \lambda_3 - s_{13}^2 e^{-2i\delta} M_{ee}}{\cos 2\theta_{13}},$$
(7)

where

$$\lambda_1 = c_{13}^2 M_{ee} - 2c_{13} s_{13} e^{i\delta} Y + s_{13}^2 e^{2i\delta} \lambda_3, \qquad \lambda_2 = c_{23}^2 M_{\mu\mu} + s_{23}^2 M_{\tau\tau} - 2s_{23} c_{23} M_{\mu\tau}, \lambda_3 = s_{23}^2 M_{\mu\mu} + c_{23}^2 M_{\tau\tau} + 2s_{23} c_{23} M_{\mu\tau},$$
(8)

$$X = \frac{c_{23}M_{e\mu} - s_{23}M_{e\tau}}{c_{13}}, \qquad Y = s_{23}M_{e\mu} + c_{23}M_{e\tau}.$$
(9)

To clarify the importance of the μ - τ symmetry, which accommodates maximal atmospheric neutrino mixing and $\sin \theta_{13} = 0$, we first review what conditions are imposed by the requirement of $\sin \theta_{13} = 0$. From Eq. (5), we require that

$$Y = s_{23}M_{e\mu} + c_{23}M_{e\tau} = 0, (10)$$

giving rise to $\tan \theta_{23} = -\operatorname{Re}(M_{e\tau})/\operatorname{Re}(M_{e\mu}) = -\operatorname{Im}(M_{e\tau})/\operatorname{Im}(M_{e\mu})$. Since $\sin \theta_{13} = 0$, Eq. (6) reads

$$(M_{\tau\tau} - M_{\mu\mu})\sin 2\theta_{23} = 2M_{\mu\tau}\cos 2\theta_{23}.$$
(11)

¹ It is understood that the charged leptons and neutrinos are rotated, if necessary, to give diagonal charged-current interactions and to define the flavor neutrinos of v_e , v_{μ} and v_{τ} .

These are the well-known relations that determine θ_{23} if $\sin \theta_{13} = 0$. Maximal atmospheric neutrino mixing arises if

$$M_{\tau\tau} = M_{\mu\mu},\tag{12}$$

which in turn gives

$$M_{e\tau} = -\sigma M_{e\mu}.\tag{13}$$

The flavor neutrino masses satisfying Eqs. (12) and (13) suggest the presence of $\mu - \tau$ symmetry in neutrino physics. The remaining mixing angle of θ_{12} satisfies

$$M_{\mu\mu} - \sigma M_{\mu\tau} = M_{ee} + \frac{2\sqrt{2}}{\tan 2\theta_{12}} M_{e\mu},$$
(14)

which determines the definite correlation of the phases of the flavor neutrino masses.

In place of Eqs. (10) and (11), using a Hermitian matrix of $\mathbf{M} = M_{\nu}^{\dagger}M_{\nu}$, we can find that $\tan \theta_{23} = -\operatorname{Re}(\mathbf{M}_{e\tau})/\operatorname{Re}(\mathbf{M}_{e\mu}) = -\operatorname{Im}(\mathbf{M}_{e\tau})/\operatorname{Im}(\mathbf{M}_{e\mu})$, where $\mathbf{M}_{e\mu} = M_{ee}^*M_{e\mu} + M_{e\mu}^*M_{\mu\mu} + M_{e\tau}^*M_{\mu\tau}$ and $\mathbf{M}_{e\tau} = M_{ee}^*M_{e\tau} + M_{e\mu}^*M_{\mu\tau} + M_{e\tau}^*M_{\tau\tau}$. In addition, we have argued that $\tan \theta_{23}$ is directly determined by $\tan \theta_{23} = \operatorname{Im}(\mathbf{M}_{e\mu})/\operatorname{Im}(\mathbf{M}_{e\tau})$ satisfied in any models with complex neutrino masses irrespective of the values of $\sin \theta_{13}$ [17]. Both expressions of $\tan \theta_{23}$ are compatible if $(\operatorname{Im}(\mathbf{M}_{e\mu}))^2 + (\operatorname{Im}(\mathbf{M}_{e\tau}))^2 = 0$, yielding $\operatorname{Im}(\mathbf{M}_{e\mu}) = \operatorname{Im}(\mathbf{M}_{e\tau}) = 0$. Since the Dirac CP violation phase is absent for $\sin \theta_{13} = 0$, \mathbf{M} with the Majorana phases cancelled is necessarily real. In fact, we obtain that $\mathbf{M}_{e\mu} = c_{12}s_{12}c_{23}(m_2^2 - m_1^2)$ and $\mathbf{M}_{e\tau} = -\tan \theta_{23}\mathbf{M}_{e\mu}$ which automatically satisfy $\operatorname{Im}(\mathbf{M}_{e\mu}) = \operatorname{Im}(\mathbf{M}_{e\tau}) = 0$.

We next argue the implementation of the $\mu-\tau$ symmetry based on the observation that it is sufficient for the symmetry to be respected by the real part of M_v . From the discussions developed in Ref. [16], it can be extended to more general case, where the real and imaginary parts are, respectively, replaced by $(z + e^{i\theta}z^*)/2(\equiv z_+)$ and $(z - e^{i\theta}z^*)/2(\equiv z_-)$ for a complex number of z and the phase parameter of θ . It is useful to notice that $z_+ = e^{i\theta/2} \operatorname{Re}(e^{-i\theta/2}z)$ and $z_- = ie^{i\theta/2} \operatorname{Im}(e^{-i\theta/2}z)$. The relevant mass matrix is provided by one of the textures found in Ref. [16]:

$$M_{\nu} = \begin{pmatrix} M_{ee} & M_{e\mu} & -\sigma e^{i\theta} M_{e\mu}^{*} \\ M_{e\mu} & M_{\mu\mu} & M_{\mu\tau} \\ -\sigma e^{i\theta} M_{e\mu}^{*} & M_{\mu\tau} & e^{i\theta} M_{\mu\mu}^{*} \end{pmatrix},$$
(15)

where $M_{ee,\mu\tau} = e^{i\theta} M_{ee,\mu\tau}^*$, equivalently $(M_{ee,\mu\tau})_- = 0$, is imposed. This texture gives

$$\tan 2\theta_{12} = 2\sqrt{2} \frac{\cos 2\theta_{13}(M_{e\mu})_+}{c_{13}[(1 - 3s_{13}^2)(M_{\mu\mu})_+ - c_{13}^2(\sigma(M_{\mu\tau})_+ + (M_{ee})_+)]},$$
(16)

$$\tan 2\theta_{13}e^{i\delta} = 2\sqrt{2} \frac{\sigma(M_{e\mu})_{-}}{(M_{\mu\mu})_{+} + \sigma(M_{\mu\tau})_{+} + (M_{ee})_{+}}.$$
(17)

As discussed in Ref. [16], these expressions yield real values of $\tan 2\theta_{12,13}$ because of the property that $z'_+/z_+ = \text{Re}(e^{-i\theta/2}z')/\text{Re}(e^{-i\theta/2}z)$ and $z'_-/z_+ = i \text{Im}(e^{-i\theta/2}z')/\text{Re}(e^{-i\theta/2}z)$ for any complex values of z and z'. As a result, $\delta = \pm \pi/2$ is derived and M_{ν} gives maximal CP violation.

A texture with the Dirac CP violation phase related to the $\mu-\tau$ symmetric texture is obtained by decomposing z and $e^{i\theta}z^*$ into z_+ and z_- and turns out to be $M_{\nu} = M_{+\nu} + M_{-\nu}$ with

$$M_{+\nu} = \begin{pmatrix} (M_{ee})_{+} & (M_{e\mu})_{+} & -\sigma(M_{e\mu})_{+} \\ (M_{e\mu})_{+} & (M_{\mu\mu})_{+} & (M_{\mu\tau})_{+} \\ -\sigma(M_{e\mu})_{+} & (M_{\mu\tau})_{+} & (M_{\mu\mu})_{+} \end{pmatrix} = e^{i\theta/2} \operatorname{Re} \left(e^{-i\theta/2} M_{\nu} \right),$$

$$M_{-\nu} = \begin{pmatrix} 0 & (M_{e\mu})_{-} & \sigma(M_{e\mu})_{-} \\ (M_{e\mu})_{-} & (M_{\mu\mu})_{-} & 0 \\ \sigma(M_{e\mu})_{-} & 0 & -(M_{\mu\mu})_{-} \end{pmatrix} = i e^{i\theta/2} \operatorname{Im} \left(e^{-i\theta/2} M_{\nu} \right),$$
(18)

which shows that $M_{+\nu}$ has a phase $\theta/2$ modulo π while $M_{-\nu}$ has a phase $(\theta + \pi)/2$ modulo π . The $\mu - \tau$ symmetry exists in $M_{+\nu}$ because Eqs. (12) and (13) are satisfied but is explicitly broken by $M_{-\nu}$. Therefore, this texture shows "incomplete" $\mu - \tau$ symmetry [15]. Since $M_{+\nu}$ does not contribute to $\sin \theta_{13}$, $\sin \theta_{13}$ should be proportional to the flavor neutrino masses in $M_{-\nu}$. In fact, it is proportional to $(M_{e\mu})_{-}$ in Eq. (17). To speak of the Majorana phases, we have to determine neutrino masses, which can be computed from Eq. (7) and are given by

$$m_{1}e^{-2i\beta_{1}} = (M_{\mu\mu})_{+} - \sigma(M_{\mu\tau})_{+} - \frac{1 + \cos 2\theta_{12}}{\sin 2\theta_{12}} \frac{\sqrt{2}(M_{e\mu})_{+}}{c_{13}},$$

$$m_{2}e^{-2i\beta_{2}} = (M_{\mu\mu})_{+} - \sigma(M_{\mu\tau})_{+} + \frac{1 - \cos 2\theta_{12}}{\sin 2\theta_{12}} \frac{\sqrt{2}(M_{e\mu})_{+}}{c_{13}},$$

$$m_{3}e^{-2i\beta_{3}} = \frac{c_{13}^{2}((M_{\mu\mu})_{+} + \sigma(M_{\mu\tau})_{+}) + s_{13}^{2}(M_{ee})_{+}}{\cos 2\theta_{13}}.$$
(19)

Since $z_+ = e^{i\theta/2} \operatorname{Re}(e^{-i\theta/2}z)$, the texture gives three Majorana phases calculated to be: $\beta_{1,2,3} = -\theta/4$ modulo $\pi/2$. The common phase does not induce Majorana CP violation. This result reflects the fact that the source of the Majorana phases is the phase of M_{ν} in Eq. (18) equal to $\theta/2$, which can be rotated away by redefining appropriate fields. The remaining imaginary part $\operatorname{Im}(e^{-i\theta/2}M_{\nu})$ supplies the Dirac phase δ . Therefore, our proposed mass matrix becomes $\operatorname{Re}(e^{-i\theta/2}M_{\nu}) + i \operatorname{Im}(e^{-i\theta/2}M_{\nu})$, which is equivalent to M_{ν} with $\theta = 0$. No CP violating Majorana phases exist in our mass matrix.

The simplest choice of $\theta = 0$ provides the case where the real part of M_{ν} respects the $\mu - \tau$ symmetry. This texture has been discussed in Refs. [13,17], which takes the form of

$$M_{\nu}^{\mu-\tau} = \operatorname{Re} \begin{pmatrix} M_{ee} & M_{e\mu} & -\sigma M_{e\mu} \\ M_{e\mu} & M_{\mu\mu} & M_{\mu\tau} \\ -\sigma M_{e\mu} & M_{\mu\tau} & M_{\mu\mu} \end{pmatrix} + i \operatorname{Im} \begin{pmatrix} 0 & M_{e\mu} & \sigma M_{e\mu} \\ M_{e\mu} & M_{\mu\mu} & 0 \\ \sigma M_{e\mu} & 0 & -M_{\mu\mu} \end{pmatrix},$$
(20)

where the real part is the well-known $\mu-\tau$ symmetric texture as expected while the imaginary part breaks it.² The mixing angles of $\theta_{12,13}$ are given by

$$\tan 2\theta_{12} \approx 2\sqrt{2} \frac{\operatorname{Re}(M_{e\mu})}{\operatorname{Re}(M_{\mu\mu}) - \sigma \operatorname{Re}(M_{\mu\tau}) - \operatorname{Re}(M_{ee})},$$

$$\tan 2\theta_{13}e^{i\delta} = 2\sqrt{2}\sigma \frac{i \operatorname{Im}(M_{e\mu})}{\operatorname{Re}(M_{\mu\mu}) + \sigma \operatorname{Re}(M_{\mu\tau}) + \operatorname{Re}(M_{ee})},$$
(21)

from Eqs. (16) and (17). The expression of $\tan 2\theta_{12}$ is obtained by taking the approximation $\sin^2 \theta_{13} \approx 0$. The maximal CP violation by $e^{i\delta} = \pm i$ is explicitly obtained.

Summarizing our discussions, we have advocated to use the possibility that the real part of M_{ν} only respects the $\mu-\tau$ symmetry. This possibility is extended to the more general case of $M_{\nu} = M_{+\nu} + M_{-\nu}$ in Eq. (18), where $M_{+\nu}$ serves as a $\mu-\tau$ symmetric texture and the symmetry-breaking term of $M_{-\nu}$ acts as a source of $\sin\theta_{13} \neq 0$. The consistency of the texture is given by the property that particular combinations of z, z^* and $e^{i\theta}$ become real or pure imaginary. This property ensures the appearance of real values of $\theta_{12,13}$ while the real value of θ_{23} arises from $\tan\theta_{23} = \text{Im}(\mathbf{M}_{e\mu})/\text{Im}(\mathbf{M}_{e\tau})$. It should be noted that θ_{23} is not determined by $\tan\theta_{23} = -\text{Re}(\mathbf{M}_{e\tau})/\text{Re}(\mathbf{M}_{e\mu})$ as in the $\mu-\tau$ symmetric texture because the Dirac CP violation phase is now active. It turns out that $M_{\nu} = e^{i\theta/2}[\text{Re}(e^{-i\theta/2}M_{\nu}) + i \text{Im}(e^{-i\theta/2}M_{\nu})]$, which gives no intrinsic Majorana CP violation while the Dirac CP violation becomes maximal.

² In this context, another solution is to abandon to have $\sin \theta_{13} = 0$ in $\operatorname{Re}(M_{\nu}^{\mu-\tau})$, which is realized by $M_{e\tau} = \sigma M_{e\mu}$ instead of $M_{e\tau} = -\sigma M_{e\mu}$ in Eq. (20), and CP violation ceases to be maximal [16]. To discuss $\mu-\tau$ symmetry in this type of texture is out of the present scope.

References

[1]	Y. Fukuda, et al., Super-Kamiokande Collaboration, Phys. Rev. Lett. 81 (1998) 1158;
	Y. Fukuda, et al., Super-Kamiokande Collaboration, Phys. Rev. Lett. 81 (1998) 4297, Erratum;
	1. Fukuda, et al., Super-Kamiokande Collaboration, Phys. Rev. Lett. 82 (1999) 2450; See also T. Kajita, V. Totsuka, Pay. Mod. Phys. 73 (2001) 85.
[2]	See also 1. Rajita, 1. rotsuka, Rev. Mod. 1195. $15(2001)$ 05.
[~]	Q A Ahmed et al. SNO Collaboration Phys. Rev. Lett. 89 (2002) 011301
	SH Ahn et al. K2K Collaboration Phys. Lett. B 511 (201) 178;
	S.H. Ahn, et al., K2K Collaboration, Phys. Rev. Lett. 90 (2003) 041801:
	K. Eguchi, et al., KamLAND Collaboration, Phys. Rev. Lett. 90 (2003) 021802;
	M. Apollonio, et al., CHOOZ Collaboration, Eur. Phys. J. C 27 (2003) 331.
[3]	See for example R.N. Mohapatra, et al., hep-ph/0412099;
	See also, S. Goswami, Talk given at Neutrino 2004: The 21st International Conference on Neutrino Physics and Astrophysics, Paris,
	France, 14–19 June, 2004;
	G. Altarelli, Talk given at Neutrino 2004: The 21st International Conference on Neutrino Physics and Astrophysics, Paris, France, 14–19
	June, 2004;
	A. Bandyopadhyay, Phys. Lett. B 608 (2005) 115.
[4]	T. Fukuyama, H. Nishiura, in: Y. Koide (Ed.), Proceedings of International Workshop on Masses and Mixings of Quarks and Leptons,
	World Scientific, Singapore, 1997, p. 252;
	1. Fukuyama, H. Nishiura, nep-ph/9702255; Y. Kaida L. Nishiura, K. Matanda, T. Kiluyaki, T. Eulanama, Phys. Rev. D 66 (2002) 002006;
	1. Kolde, H. Nishiluta, K. Matsuda, I. Kikuchi, I. Fukuyania, Filys. Rev. D 66 (2002) 095006; V. Kolde, Bhys. Bey, D 60 (2004) 092001;
	K. Matsuda, H. Nichiura, Phys. Rev. D 69 (2004) 117302.
	K. Matsuda, H. Nishiuta, Phys. Rev. D 71 (2005) 073001.
[5]	C.S. Lam, Phys. Lett. B 507 (2001) 214;
	C.S. Lam, Phys. Rev. D 71 (2005) 093001;
	E. Ma, M. Raidal, Phys. Rev. Lett. 87 (2001) 011802;
	E. Ma, M. Raidal, Phys. Rev. Lett. 87 (2001) 159901, Erratum;
	T. Kitabayashi, M. Yasuè, Phys. Lett. B 524 (2002) 308;
	T. Kitabayashi, M. Yasuè, Int. J. Mod. Phys. A 17 (2002) 2519;
	T. Kitabayashi, M. Yasuè, Phys. Rev. D 67 (2003) 015006;
	P.F. Harrison, W.G. Scott, Phys. Lett. B 547 (2002) 219;
	E. Ma, Phys. Rev. D 66 (2002) 117301;
	I. Aizawa, M. Ishiguro, T. Kitabayashi, M. Yasuè, Phys. Rev. D 70 (2004) 015011;
۲ <i>4</i> 1	I. Alzawa, I. Kitabayash, M. Tasue, Phys. Rev. D 71 (2005) 075011.
[0]	W. Grimus, L. Lavoura, JHE 7077 (2007) 043,
	W. Grimus, L. Lavoura, Eur. 1 hys. J. C 26 (2003) 125, W. Grimus, L. Lavoura, Phys. Lett. B 572 (2003) 189:
	W Grinnes, L. Lavoura I. Phys. G 30 (2004) 1073:
	W. Grimus, L. Lavoura, hep-ph/0504153;
	W. Grimus, A.S. Joshipura, S. Kaneko, L. Lavoura, H. Sawanaka, M. Tanimoto, JHEP 0407 (2004) 078;
	W. Grimus, A.S. Joshipura, S. Kaneko, L. Lavoura, H. Sawanaka, M. Tanimoto, Nucl. Phys. B 713 (2005) 151;
	M. Tanimoto, hep-ph/0505031.
[7]	R.N. Mohapatra, JHEP 0410 (2004) 027;
	R.N. Mohapatra, S. Nasri, Phys. Rev. D 71 (2005) 033001;
	R.N. Mohapatra, S. Nasri, H. Yu, Phys. Lett. B 615 (2005) 231.
[8]	For a recent review O. Mena, Mod. Phys. Lett. A 20 (2005) 1;
	See also J. Burguet-Castell, M.B. Gavela, J.J. Gomez-Cadenas, P. Hernandez, O. Mena, Nucl. Phys. B 646 (2002) 301;
	w.J. Marciano, nep-pn/0108181; L. Burenut Costelli O. More Nucl. Instrum Methods A 502 (2002) 100;
	T Ota I Sato Phys Rev D 67 (2003) 053003:
	T Ota J Phys. G 29 (2003) 1869:
	M.V. Diwan. Int. J. Mod. Phys. A 18 (2003) 4039:
	H. Minakata, H. Sugiyama, Phys. Lett. B 580 (2004) 216;
	O. Mena, S. Parke, Phys. Rev. D 70 (2004) 093011;
	M. Ishitsuka, T. Kajita, H. Minakata, H. Nunoka, hep-ph/0504026.

- [9] B. Pontecorvo, Sov. Phys. JETP 7 (1958) 172, Zh. Eksp. Teor. Fiz. 34 (1958) 247; Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28 (1962) 870. [10] S.M. Bilenky, J. Hosek, S.T. Petcov, Phys. Lett. B 94 (1980) 495; J. Schechter, J.W.F. Valle, Phys. Rev. D 22 (1980) 2227; M. Doi, T. Kotani, H. Nishiura, K. Okuda, E. Takasugi, Phys. Lett. B 102 (1981) 323. [11] See for example S.T. Petcov, Nucl. Phys. B (Proc. Suppl.) 143 (2005) 159. [12] See for example M. Frigerio, A.Yu. Smirnov, Nucl. Phys. B 640 (2002) 233; M. Frigerio, A.Yu. Smirnov, Phys. Rev. D 67 (2003) 013007; S.F. King, in: M. Baldo-Ceolin (Ed.), Proceedings of 10th International Workshop on Neutrino Telescopes, University of Padua Publication, Italy, 2003; S.F. King, hep-ph/0306095; Z.Z. Xing, Int. J. Mod. Phys. A 19 (2004) 1; O.L.G. Peres, A.Yu. Smirnov, Nucl. Phys. B 680 (2004) 479; C.H. Albright, Phys. Lett. B 599 (2004) 285; J. Ferrandis, S. Pakvasa, Phys. Lett. B 603 (2004) 184; S. Zhou, Z.Z. Xing, Eur. Phys. J. C 38 (2005) 495; S.T. Petcov, W. Rodejohann, Phys. Rev. D 71 (2005) 073002; G.C. Branco, M.N. Rebelo, New J. Phys. 7 (2005) 86; S.S. Masood, S. Nasri, J. Schechter, Phys. Rev. D 71 (2005) 093005. [13] E. Ma, Mod. Phys. Lett. A 17 (2002) 2361; K.S. Babu, E. Ma, J.W.F. Valle, Phys. Lett. B 552 (2003) 207; W. Grimus, L. Lavoura, Phys. Lett. B 579 (2004) 113; P.F. Harrison, W.G. Scott, Phys. Lett. B 594 (2004) 324. [14] R.N. Mohapatra, S. Nasri, H. Yu, in Ref. [7].
- [15] W. Grimus, L. Lavoura, hep-ph/0504153, in Ref. [6].
- [16] I. Aizawa, T. Kitabayashi, M. Yasuè, hep-ph/0504172.
- [17] I. Aizawa, M. Yasuè, Phys. Lett. B 607 (2005) 267.