$\mu-\tau$ symmetry and maximal CP violation

Teruyuki Kitabayashi, Masaki Yasuè

Department of Physics, Tokai University, 1117 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
Received 13 May 2005; received in revised form 12 June 2005; accepted 16 June 2005
Available online 24 June 2005
Editor: T. Yanagida

Abstract

We argue the possibility that a real part of a flavor neutrino mass matrix only respects a $\mu-\tau$ symmetry. This possibility is shown to be extended to more general case with a phase parameter θ, where the $\mu-\tau$ symmetric part has a phase of $\theta / 2$. This texture shows maximal CP violation and no Majorana CP violation. © 2005 Elsevier B.V. Open access under CC BY license.

PACS: 13.15.+g; 14.60.Pq; 14.60.St

The present experimental data on neutrino oscillations [1,2] indicate the mixing angles [3] satisfying

$$
\begin{equation*}
0.70<\sin ^{2} 2 \theta_{\odot}<0.95, \quad 0.92<\sin ^{2} 2 \theta_{\mathrm{atm}}, \quad \sin ^{2} \theta_{\mathrm{CHOOZ}}<0.05 \tag{1}
\end{equation*}
$$

where θ_{\odot} is the solar neutrino mixing angle, θ_{atm} is the atmospheric neutrino mixing angle and θ_{CHOOZ} is for the mixing angle between ν_{e} and ν_{τ}. These mixing angles are identified with the mixings among three flavor neutrinos, v_{e}, v_{μ} and v_{τ}, yielding three massive neutrinos, $v_{1,2,3}: \theta_{12}=\theta_{\odot}, \theta_{23}=\theta_{\mathrm{atm}}$ and $\theta_{13}=\theta_{\mathrm{CHOOZ}}$. These data seem to be consistent with the presence of a $\mu-\tau$ symmetry [4-7] in the neutrino sector, which provides maximal atmospheric neutrino mixing with $\sin ^{2} 2 \theta_{23}=1$ as well as $\sin \theta_{13}=0$.

Although neutrinos gradually reveal their properties in various experiments since the historical SuperKamiokande confirmation of neutrino oscillations [1], we expect to find yet unknown property related to CP violation [8]. The effect of the presence of a leptonic CP violation can be described by four phases in the PMNS neutrino mixing matrix, $U_{\text {PMNS }}$ [9], to be denoted by one Dirac phase of δ and three Majorana phases of $\beta_{1,2,3}$ as $U_{\mathrm{PMNS}}=U_{\nu} K$ [10] with

$$
U_{\nu}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \tag{2}\\
-c_{23} s_{12}-s_{23} c_{12} s_{13} e^{i \delta} & c_{23} c_{12}-s_{23} s_{12} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{23} s_{12}-c_{23} c_{12} s_{13} e^{i \delta} & -s_{23} c_{12}-c_{23} s_{12} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right), \quad K=\operatorname{diag}\left(e^{i \beta_{1}}, e^{i \beta_{2}}, e^{i \beta_{3}}\right)
$$

[^0]where $c_{i j}=\cos \theta_{i j}$ and $s_{i j}=\sin \theta_{i j}(i, j=1,2,3)$ and Majorana CP violation is specified by two combinations made of $\beta_{1,2,3}$ such as $\beta_{i}-\beta_{3}$ in place of β_{i} in K. To examine such effects of CP violation, there have been various discussions [11] including those on the possible textures of flavor neutrino masses [12-15].

In this Letter, we would like to focus on the role of the $\mu-\tau$ symmetry in models with CP violation [14,15], which can be implemented by introducing complex flavor neutrino masses. The $\mu-\tau$ symmetric texture gives $\sin \theta_{13}=0$ as well as maximal atmospheric neutrino mixing characterized by $c_{23}=\sigma s_{23}=1 / \sqrt{2}(\sigma= \pm 1)$. Because of $\sin \theta_{13}=0$, Dirac CP violation is absent in Eq. (2) and CP violation becomes of the Majorana type. Since the $\mu-\tau$ symmetry is expected to be approximately realized, its breakdown is signaled by $\sin \theta_{13} \neq 0$. To have $\sin \theta_{13} \neq 0$, we discuss another implementation of the $\mu-\tau$ symmetry such that the symmetry is only respected by the real part of M_{ν}. The discussion is based on more general case, where M_{v} is controlled by one phase to be denoted by θ and the specific value of $\theta=0$ yields the $\mu-\tau$ symmetric real part. It turns out that Majorana CP violation is absent because all three Majorana phases are calculated to be $-\theta / 4$ while Dirac CP violation becomes maximal.

Our complex flavor neutrino mass matrix of M_{v} is parameterized by

$$
M_{\nu}=\left(\begin{array}{lll}
M_{e e} & M_{e \mu} & M_{e \tau} \tag{3}\\
M_{e \mu} & M_{\mu \mu} & M_{\mu \tau} \\
M_{e \tau} & M_{\mu \tau} & M_{\tau \tau}
\end{array}\right)
$$

where $U_{\mathrm{PMNS}}^{T} M_{\nu} U_{\mathrm{PMNS}}=\operatorname{diag}\left(m_{1}, m_{2}, m_{3}\right) .{ }^{1}$ The mixing angles have been calculated in the Appendix of Ref. [16] and satisfy

$$
\begin{align*}
& \sin 2 \theta_{12}\left(\lambda_{1}-\lambda_{2}\right)+2 \cos 2 \theta_{12} X=0 \tag{4}\\
& \sin 2 \theta_{13}\left(M_{e e} e^{-i \delta}-\lambda_{3} e^{i \delta}\right)+2 \cos 2 \theta_{13} Y=0 \tag{5}\\
& \left(M_{\tau \tau}-M_{\mu \mu}\right) \sin 2 \theta_{23}-2 M_{\mu \tau} \cos 2 \theta_{23}=2 s_{13} e^{-i \delta} X \tag{6}
\end{align*}
$$

and neutrino masses are given by

$$
\begin{align*}
m_{1} e^{-2 i \beta_{1}} & =\frac{\lambda_{1}+\lambda_{2}}{2}-\frac{X}{\sin 2 \theta_{12}}, \quad m_{2} e^{-2 i \beta_{2}}=\frac{\lambda_{1}+\lambda_{2}}{2}+\frac{X}{\sin 2 \theta_{12}} \\
m_{3} e^{-2 i \beta_{3}} & =\frac{c_{13}^{2} \lambda_{3}-s_{13}^{2} e^{-2 i \delta} M_{e e}}{\cos 2 \theta_{13}} \tag{7}
\end{align*}
$$

where

$$
\begin{align*}
& \lambda_{1}=c_{13}^{2} M_{e e}-2 c_{13} s_{13} e^{i \delta} Y+s_{13}^{2} e^{2 i \delta} \lambda_{3}, \quad \lambda_{2}=c_{23}^{2} M_{\mu \mu}+s_{23}^{2} M_{\tau \tau}-2 s_{23} c_{23} M_{\mu \tau}, \\
& \lambda_{3}=s_{23}^{2} M_{\mu \mu}+c_{23}^{2} M_{\tau \tau}+2 s_{23} c_{23} M_{\mu \tau}, \tag{8}\\
& X=\frac{c_{23} M_{e \mu}-s_{23} M_{e \tau}}{c_{13}}, \quad Y=s_{23} M_{e \mu}+c_{23} M_{e \tau} . \tag{9}
\end{align*}
$$

To clarify the importance of the $\mu-\tau$ symmetry, which accommodates maximal atmospheric neutrino mixing and $\sin \theta_{13}=0$, we first review what conditions are imposed by the requirement of $\sin \theta_{13}=0$. From Eq. (5), we require that

$$
\begin{equation*}
Y=s_{23} M_{e \mu}+c_{23} M_{e \tau}=0 \tag{10}
\end{equation*}
$$

giving rise to $\tan \theta_{23}=-\operatorname{Re}\left(M_{e \tau}\right) / \operatorname{Re}\left(M_{e \mu}\right)=-\operatorname{Im}\left(M_{e \tau}\right) / \operatorname{Im}\left(M_{e \mu}\right)$. Since $\sin \theta_{13}=0$, Eq. (6) reads

$$
\begin{equation*}
\left(M_{\tau \tau}-M_{\mu \mu}\right) \sin 2 \theta_{23}=2 M_{\mu \tau} \cos 2 \theta_{23} \tag{11}
\end{equation*}
$$

[^1]These are the well-known relations that determine θ_{23} if $\sin \theta_{13}=0$. Maximal atmospheric neutrino mixing arises if

$$
\begin{equation*}
M_{\tau \tau}=M_{\mu \mu}, \tag{12}
\end{equation*}
$$

which in turn gives

$$
\begin{equation*}
M_{e \tau}=-\sigma M_{e \mu} . \tag{13}
\end{equation*}
$$

The flavor neutrino masses satisfying Eqs. (12) and (13) suggest the presence of $\mu-\tau$ symmetry in neutrino physics. The remaining mixing angle of θ_{12} satisfies

$$
\begin{equation*}
M_{\mu \mu}-\sigma M_{\mu \tau}=M_{e e}+\frac{2 \sqrt{2}}{\tan 2 \theta_{12}} M_{e \mu} \tag{14}
\end{equation*}
$$

which determines the definite correlation of the phases of the flavor neutrino masses.
In place of Eqs. (10) and (11), using a Hermitian matrix of $\mathbf{M}=M_{\nu}^{\dagger} M_{\nu}$, we can find that $\tan \theta_{23}=$ $-\operatorname{Re}\left(\mathbf{M}_{e \tau}\right) / \operatorname{Re}\left(\mathbf{M}_{e \mu}\right)=-\operatorname{Im}\left(\mathbf{M}_{e \tau}\right) / \operatorname{Im}\left(\mathbf{M}_{e \mu}\right)$, where $\mathbf{M}_{e \mu}=M_{e e}^{*} M_{e \mu}+M_{e \mu}^{*} M_{\mu \mu}+M_{e \tau}^{*} M_{\mu \tau}$ and $\mathbf{M}_{e \tau}=$ $M_{e e}^{*} M_{e \tau}+M_{e \mu}^{*} M_{\mu \tau}+M_{e \tau}^{*} M_{\tau \tau}$. In addition, we have argued that $\tan \theta_{23}$ is directly determined by $\tan \theta_{23}=$ $\operatorname{Im}\left(\mathbf{M}_{e \mu}\right) / \operatorname{Im}\left(\mathbf{M}_{e \tau}\right)$ satisfied in any models with complex neutrino masses irrespective of the values of $\sin \theta_{13}$ [17]. Both expressions of $\tan \theta_{23}$ are compatible if $\left(\operatorname{Im}\left(\mathbf{M}_{e \mu}\right)\right)^{2}+\left(\operatorname{Im}\left(\mathbf{M}_{e \tau}\right)\right)^{2}=0$, yielding $\operatorname{Im}\left(\mathbf{M}_{e \mu}\right)=\operatorname{Im}\left(\mathbf{M}_{e \tau}\right)=0$. Since the Dirac CP violation phase is absent for $\sin \theta_{13}=0, \mathbf{M}$ with the Majorana phases cancelled is necessarily real. In fact, we obtain that $\mathbf{M}_{e \mu}=c_{12} s_{12} c_{23}\left(m_{2}^{2}-m_{1}^{2}\right)$ and $\mathbf{M}_{e \tau}=-\tan \theta_{23} \mathbf{M}_{e \mu}$ which automatically satisfy $\operatorname{Im}\left(\mathbf{M}_{e \mu}\right)=\operatorname{Im}\left(\mathbf{M}_{e \tau}\right)=0$.

We next argue the implementation of the $\mu-\tau$ symmetry based on the observation that it is sufficient for the symmetry to be respected by the real part of M_{ν}. From the discussions developed in Ref. [16], it can be extended to more general case, where the real and imaginary parts are, respectively, replaced by $\left(z+e^{i \theta} z^{*}\right) / 2\left(\equiv z_{+}\right)$and $\left(z-e^{i \theta} z^{*}\right) / 2\left(\equiv z_{-}\right)$for a complex number of z and the phase parameter of θ. It is useful to notice that $z_{+}=$ $e^{i \theta / 2} \operatorname{Re}\left(e^{-i \theta / 2} z\right)$ and $z_{-}=i e^{i \theta / 2} \operatorname{Im}\left(e^{-i \theta / 2} z\right)$. The relevant mass matrix is provided by one of the textures found in Ref. [16]:

$$
M_{v}=\left(\begin{array}{ccc}
M_{e e} & M_{e \mu} & -\sigma e^{i \theta} M_{e \mu}^{*} \tag{15}\\
M_{e \mu} & M_{\mu \mu} & M_{\mu \tau} \\
-\sigma e^{i \theta} M_{e \mu}^{*} & M_{\mu \tau} & e^{i \theta} M_{\mu \mu}^{*}
\end{array}\right),
$$

where $M_{e e, \mu \tau}=e^{i \theta} M_{e e, \mu \tau}^{*}$, equivalently $\left(M_{e e, \mu \tau}\right)_{-}=0$, is imposed. This texture gives

$$
\begin{align*}
& \tan 2 \theta_{12}=2 \sqrt{2} \frac{\cos 2 \theta_{13}\left(M_{e \mu}\right)_{+}}{c_{13}\left[\left(1-3 s_{13}^{2}\right)\left(M_{\mu \mu}\right)_{+}-c_{13}^{2}\left(\sigma\left(M_{\mu \tau}\right)_{+}+\left(M_{e e}\right)_{+}\right)\right]}, \tag{16}\\
& \tan 2 \theta_{13} e^{i \delta}=2 \sqrt{2} \frac{\sigma\left(M_{e \mu}\right)_{-}}{\left(M_{\mu \mu}\right)_{+}+\sigma\left(M_{\mu \tau}\right)_{+}+\left(M_{e e}\right)_{+}} . \tag{17}
\end{align*}
$$

As discussed in Ref. [16], these expressions yield real values of $\tan 2 \theta_{12,13}$ because of the property that $z_{+}^{\prime} / z_{+}=$ $\operatorname{Re}\left(e^{-i \theta / 2} z^{\prime}\right) / \operatorname{Re}\left(e^{-i \theta / 2} z\right)$ and $z_{-}^{\prime} / z_{+}=i \operatorname{Im}\left(e^{-i \theta / 2} z^{\prime}\right) / \operatorname{Re}\left(e^{-i \theta / 2} z\right)$ for any complex values of z and z^{\prime}. As a result, $\delta= \pm \pi / 2$ is derived and M_{ν} gives maximal CP violation.

A texture with the Dirac CP violation phase related to the $\mu-\tau$ symmetric texture is obtained by decomposing z and $e^{i \theta} z^{*}$ into z_{+}and z_{-}and turns out to be $M_{\nu}=M_{+v}+M_{-v}$ with

$$
\begin{align*}
& M_{+v}=\left(\begin{array}{ccc}
\left(M_{e e}\right)_{+} & \left(M_{e \mu}\right)_{+} & -\sigma\left(M_{e \mu}\right)_{+} \\
\left(M_{e \mu}\right)_{+} & \left(M_{\mu \mu}\right)_{+} & \left(M_{\mu \tau}\right)_{+} \\
-\sigma\left(M_{e \mu}\right)_{+} & \left(M_{\mu \tau}\right)_{+} & \left(M_{\mu \mu}\right)_{+}
\end{array}\right)=e^{i \theta / 2} \operatorname{Re}\left(e^{-i \theta / 2} M_{v}\right), \\
& M_{-v}=\left(\begin{array}{ccc}
0 & \left(M_{e \mu}\right)_{-} & \sigma\left(M_{e \mu}\right)_{-} \\
\left(M_{e \mu}\right)_{-} & \left(M_{\mu \mu}\right)_{-} & 0 \\
\sigma\left(M_{e \mu}\right)_{-} & 0 & -\left(M_{\mu \mu}\right)_{-}
\end{array}\right)=i e^{i \theta / 2} \operatorname{Im}\left(e^{-i \theta / 2} M_{v}\right), \tag{18}
\end{align*}
$$

which shows that $M_{+\nu}$ has a phase $\theta / 2$ modulo π while M_{-v} has a phase $(\theta+\pi) / 2$ modulo π. The $\mu-\tau$ symmetry exists in $M_{+\nu}$ because Eqs. (12) and (13) are satisfied but is explicitly broken by M_{-v}. Therefore, this texture shows "incomplete" $\mu-\tau$ symmetry [15]. Since M_{+v} does not contribute to $\sin \theta_{13}, \sin \theta_{13}$ should be proportional to the flavor neutrino masses in M_{-v}. In fact, it is proportional to ($\left.M_{e \mu}\right)_{-}$in Eq. (17). To speak of the Majorana phases, we have to determine neutrino masses, which can be computed from Eq. (7) and are given by

$$
\begin{align*}
& m_{1} e^{-2 i \beta_{1}}=\left(M_{\mu \mu}\right)_{+}-\sigma\left(M_{\mu \tau}\right)_{+}-\frac{1+\cos 2 \theta_{12}}{\sin 2 \theta_{12}} \frac{\sqrt{2}\left(M_{e \mu}\right)_{+}}{c_{13}}, \\
& m_{2} e^{-2 i \beta_{2}}=\left(M_{\mu \mu}\right)_{+}-\sigma\left(M_{\mu \tau}\right)_{+}+\frac{1-\cos 2 \theta_{12}}{\sin 2 \theta_{12}} \frac{\sqrt{2}\left(M_{e \mu}\right)_{+}}{c_{13}}, \\
& m_{3} e^{-2 i \beta_{3}}=\frac{c_{13}^{2}\left(\left(M_{\mu \mu}\right)_{+}+\sigma\left(M_{\mu \tau}\right)_{+}\right)+s_{13}^{2}\left(M_{e e}\right)_{+}}{\cos 2 \theta_{13}} . \tag{19}
\end{align*}
$$

Since $z_{+}=e^{i \theta / 2} \operatorname{Re}\left(e^{-i \theta / 2} z\right)$, the texture gives three Majorana phases calculated to be: $\beta_{1,2,3}=-\theta / 4$ modulo $\pi / 2$. The common phase does not induce Majorana CP violation. This result reflects the fact that the source of the Majorana phases is the phase of M_{ν} in Eq. (18) equal to $\theta / 2$, which can be rotated away by redefining appropriate fields. The remaining imaginary part $\operatorname{Im}\left(e^{-i \theta / 2} M_{v}\right)$ supplies the Dirac phase δ. Therefore, our proposed mass matrix becomes $\operatorname{Re}\left(e^{-i \theta / 2} M_{v}\right)+i \operatorname{Im}\left(e^{-i \theta / 2} M_{v}\right)$, which is equivalent to M_{ν} with $\theta=0$. No CP violating Majorana phases exist in our mass matrix.

The simplest choice of $\theta=0$ provides the case where the real part of M_{ν} respects the $\mu-\tau$ symmetry. This texture has been discussed in Refs. [13,17], which takes the form of

$$
M_{\nu}^{\mu-\tau}=\operatorname{Re}\left(\begin{array}{ccc}
M_{e e} & M_{e \mu} & -\sigma M_{e \mu} \tag{20}\\
M_{e \mu} & M_{\mu \mu} & M_{\mu \tau} \\
-\sigma M_{e \mu} & M_{\mu \tau} & M_{\mu \mu}
\end{array}\right)+i \operatorname{Im}\left(\begin{array}{ccc}
0 & M_{e \mu} & \sigma M_{e \mu} \\
M_{e \mu} & M_{\mu \mu} & 0 \\
\sigma M_{e \mu} & 0 & -M_{\mu \mu}
\end{array}\right),
$$

where the real part is the well-known $\mu-\tau$ symmetric texture as expected while the imaginary part breaks it. ${ }^{2}$ The mixing angles of $\theta_{12,13}$ are given by

$$
\begin{align*}
& \tan 2 \theta_{12} \approx 2 \sqrt{2} \frac{\operatorname{Re}\left(M_{e \mu}\right)}{\operatorname{Re}\left(M_{\mu \mu}\right)-\sigma \operatorname{Re}\left(M_{\mu \tau}\right)-\operatorname{Re}\left(M_{e e}\right)} \\
& \tan 2 \theta_{13} e^{i \delta}=2 \sqrt{2} \sigma \frac{i \operatorname{Im}\left(M_{e \mu}\right)}{\operatorname{Re}\left(M_{\mu \mu}\right)+\sigma \operatorname{Re}\left(M_{\mu \tau}\right)+\operatorname{Re}\left(M_{e e}\right)} \tag{21}
\end{align*}
$$

from Eqs. (16) and (17). The expression of $\tan 2 \theta_{12}$ is obtained by taking the approximation $\sin ^{2} \theta_{13} \approx 0$. The maximal CP violation by $e^{i \delta}= \pm i$ is explicitly obtained.

Summarizing our discussions, we have advocated to use the possibility that the real part of M_{v} only respects the $\mu-\tau$ symmetry. This possibility is extended to the more general case of $M_{v}=M_{+v}+M_{-v}$ in Eq. (18), where M_{+v} serves as a $\mu-\tau$ symmetric texture and the symmetry-breaking term of M_{-v} acts as a source of $\sin \theta_{13} \neq 0$. The consistency of the texture is given by the property that particular combinations of z, z^{*} and $e^{i \theta}$ become real or pure imaginary. This property ensures the appearance of real values of $\theta_{12,13}$ while the real value of θ_{23} arises from $\tan \theta_{23}=\operatorname{Im}\left(\mathbf{M}_{e \mu}\right) / \operatorname{Im}\left(\mathbf{M}_{e \tau}\right)$. It should be noted that θ_{23} is not determined by $\tan \theta_{23}=-\operatorname{Re}\left(\mathbf{M}_{e \tau}\right) / \operatorname{Re}\left(\mathbf{M}_{e \mu}\right)$ as in the $\mu-\tau$ symmetric texture because the Dirac CP violation phase is now active. It turns out that $M_{\nu}=e^{i \theta / 2}\left[\operatorname{Re}\left(e^{-i \theta / 2} M_{\nu}\right)+i \operatorname{Im}\left(e^{-i \theta / 2} M_{\nu}\right)\right]$, which gives no intrinsic Majorana CP violation while the Dirac CP violation becomes maximal.

[^2]
References

[1] Y. Fukuda, et al., Super-Kamiokande Collaboration, Phys. Rev. Lett. 81 (1998) 1158; Y. Fukuda, et al., Super-Kamiokande Collaboration, Phys. Rev. Lett. 81 (1998) 4297, Erratum; Y. Fukuda, et al., Super-Kamiokande Collaboration, Phys. Rev. Lett. 82 (1999) 2430; See also T. Kajita, Y. Totsuka, Rev. Mod. Phys. 73 (2001) 85.
[2] Q.A. Ahmed, et al., SNO Collaboration, Phys. Rev. Lett. 87 (2001) 071301; Q.A. Ahmed, et al., SNO Collaboration, Phys. Rev. Lett. 89 (2002) 011301; S.H. Ahn, et al., K2K Collaboration, Phys. Lett. B 511 (2001) 178; S.H. Ahn, et al., K2K Collaboration, Phys. Rev. Lett. 90 (2003) 041801; K. Eguchi, et al., KamLAND Collaboration, Phys. Rev. Lett. 90 (2003) 021802; M. Apollonio, et al., CHOOZ Collaboration, Eur. Phys. J. C 27 (2003) 331.
[3] See for example R.N. Mohapatra, et al., hep-ph/0412099; See also, S. Goswami, Talk given at Neutrino 2004: The 21st International Conference on Neutrino Physics and Astrophysics, Paris, France, 14-19 June, 2004;
G. Altarelli, Talk given at Neutrino 2004: The 21st International Conference on Neutrino Physics and Astrophysics, Paris, France, 14-19 June, 2004;
A. Bandyopadhyay, Phys. Lett. B 608 (2005) 115.
[4] T. Fukuyama, H. Nishiura, in: Y. Koide (Ed.), Proceedings of International Workshop on Masses and Mixings of Quarks and Leptons, World Scientific, Singapore, 1997, p. 252;
T. Fukuyama, H. Nishiura, hep-ph/9702253;
Y. Koide, H. Nishiura, K. Matsuda, T. Kikuchi, T. Fukuyama, Phys. Rev. D 66 (2002) 093006;
Y. Koide, Phys. Rev. D 69 (2004) 093001;
K. Matsuda, H. Nishiura, Phys. Rev. D 69 (2004) 117302;
K. Matsuda, H. Nishiura, Phys. Rev. D 71 (2005) 073001.
[5] C.S. Lam, Phys. Lett. B 507 (2001) 214;
C.S. Lam, Phys. Rev. D 71 (2005) 093001;
E. Ma, M. Raidal, Phys. Rev. Lett. 87 (2001) 011802;
E. Ma, M. Raidal, Phys. Rev. Lett. 87 (2001) 159901, Erratum;
T. Kitabayashi, M. Yasuè, Phys. Lett. B 524 (2002) 308;
T. Kitabayashi, M. Yasuè, Int. J. Mod. Phys. A 17 (2002) 2519;
T. Kitabayashi, M. Yasuè, Phys. Rev. D 67 (2003) 015006;
P.F. Harrison, W.G. Scott, Phys. Lett. B 547 (2002) 219;
E. Ma, Phys. Rev. D 66 (2002) 117301;
I. Aizawa, M. Ishiguro, T. Kitabayashi, M. Yasuè, Phys. Rev. D 70 (2004) 015011;
I. Aizawa, T. Kitabayashi, M. Yasuè, Phys. Rev. D 71 (2005) 075011.
[6] W. Grimus, L. Lavoura, JHEP 0107 (2001) 045;
W. Grimus, L. Lavoura, Eur. Phys. J. C 28 (2003) 123;
W. Grimus, L. Lavoura, Phys. Lett. B 572 (2003) 189;
W. Grimus, L. Lavoura, J. Phys. G 30 (2004) 1073;
W. Grimus, L. Lavoura, hep-ph/0504153;
W. Grimus, A.S. Joshipura, S. Kaneko, L. Lavoura, H. Sawanaka, M. Tanimoto, JHEP 0407 (2004) 078;
W. Grimus, A.S. Joshipura, S. Kaneko, L. Lavoura, H. Sawanaka, M. Tanimoto, Nucl. Phys. B 713 (2005) 151;
M. Tanimoto, hep-ph/0505031.
[7] R.N. Mohapatra, JHEP 0410 (2004) 027;
R.N. Mohapatra, S. Nasri, Phys. Rev. D 71 (2005) 033001;
R.N. Mohapatra, S. Nasri, H. Yu, Phys. Lett. B 615 (2005) 231.
[8] For a recent review O. Mena, Mod. Phys. Lett. A 20 (2005) 1;
See also J. Burguet-Castell, M.B. Gavela, J.J. Gomez-Cadenas, P. Hernandez, O. Mena, Nucl. Phys. B 646 (2002) 301;
W.J. Marciano, hep-ph/0108181;
J. Burguet-Castell, O. Mena, Nucl. Instrum. Methods A 503 (2003) 199;
T. Ota, J. Sato, Phys. Rev. D 67 (2003) 053003;
T. Ota, J. Phys. G 29 (2003) 1869;
M.V. Diwan, Int. J. Mod. Phys. A 18 (2003) 4039;
H. Minakata, H. Sugiyama, Phys. Lett. B 580 (2004) 216;
O. Mena, S. Parke, Phys. Rev. D 70 (2004) 093011;
M. Ishitsuka, T. Kajita, H. Minakata, H. Nunoka, hep-ph/0504026.
[9] B. Pontecorvo, Sov. Phys. JETP 7 (1958) 172, Zh. Eksp. Teor. Fiz. 34 (1958) 247;
Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28 (1962) 870.
[10] S.M. Bilenky, J. Hosek, S.T. Petcov, Phys. Lett. B 94 (1980) 495;
J. Schechter, J.W.F. Valle, Phys. Rev. D 22 (1980) 2227;
M. Doi, T. Kotani, H. Nishiura, K. Okuda, E. Takasugi, Phys. Lett. B 102 (1981) 323.
[11] See for example S.T. Petcov, Nucl. Phys. B (Proc. Suppl.) 143 (2005) 159.
[12] See for example M. Frigerio, A.Yu. Smirnov, Nucl. Phys. B 640 (2002) 233;
M. Frigerio, A. Yu. Smirnov, Phys. Rev. D 67 (2003) 013007;
S.F. King, in: M. Baldo-Ceolin (Ed.), Proceedings of 10th International Workshop on Neutrino Telescopes, University of Padua Publication, Italy, 2003;
S.F. King, hep-ph/0306095;
Z.Z. Xing, Int. J. Mod. Phys. A 19 (2004) 1;
O.L.G. Peres, A.Yu. Smirnov, Nucl. Phys. B 680 (2004) 479;
C.H. Albright, Phys. Lett. B 599 (2004) 285;
J. Ferrandis, S. Pakvasa, Phys. Lett. B 603 (2004) 184;
S. Zhou, Z.Z. Xing, Eur. Phys. J. C 38 (2005) 495;
S.T. Petcov, W. Rodejohann, Phys. Rev. D 71 (2005) 073002;
G.C. Branco, M.N. Rebelo, New J. Phys. 7 (2005) 86;
S.S. Masood, S. Nasri, J. Schechter, Phys. Rev. D 71 (2005) 093005.
[13] E. Ma, Mod. Phys. Lett. A 17 (2002) 2361;
K.S. Babu, E. Ma, J.W.F. Valle, Phys. Lett. B 552 (2003) 207;
W. Grimus, L. Lavoura, Phys. Lett. B 579 (2004) 113;
P.F. Harrison, W.G. Scott, Phys. Lett. B 594 (2004) 324.
[14] R.N. Mohapatra, S. Nasri, H. Yu, in Ref. [7].
[15] W. Grimus, L. Lavoura, hep-ph/0504153, in Ref. [6].
[16] I. Aizawa, T. Kitabayashi, M. Yasuè, hep-ph/0504172.
[17] I. Aizawa, M. Yasuè, Phys. Lett. B 607 (2005) 267.

[^0]: E-mail addresses: teruyuki@keyaki.cc.u-tokai.ac.jp (T. Kitabayashi), yasue@keyaki.cc.u-tokai.ac.jp (M. Yasuè).

[^1]: 1 It is understood that the charged leptons and neutrinos are rotated, if necessary, to give diagonal charged-current interactions and to define the flavor neutrinos of ν_{e}, ν_{μ} and ν_{τ}.

[^2]: ${ }^{2}$ In this context, another solution is to abandon to have $\sin \theta_{13}=0$ in $\operatorname{Re}\left(M_{\nu}^{\mu-\tau}\right)$, which is realized by $M_{e \tau}=\sigma M_{e \mu}$ instead of $M_{e \tau}=$ $-\sigma M_{e \mu}$ in Eq. (20), and CP violation ceases to be maximal [16]. To discuss $\mu-\tau$ symmetry in this type of texture is out of the present scope.

