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Endocrine-disrupting chemicals (EDCs), including bisphenol A (BPA), are environmental ubiquitous
pollutants and associated with a growing health concern. Anecdotally, molar incisor hypomineralization
(MIH) is increasing concurrently with EDC-related conditions, which has led us to investigate the effect of
BPA on amelogenesis. Rats were exposed daily to BPA from conception until day 30 or 100. At day 30,
BPA-affected enamel exhibited hypomineralization similar to human MIH. Scanning electron microscopy
and elemental analysis revealed an abnormal accumulation of organic material in erupted enamel. BPA-
affected enamel had an abnormal accumulation of exogenous albumin in the maturation stage. Quan-
titative real-timePCR, Western blotting, and luciferase reporter assays revealed increased expression of
enamelin but decreased expression of kallikrein 4 (protease essential for removing enamel proteins) via
transcriptional regulation. Data suggest that BPA exerts its effects on amelogenesis by disrupting normal
protein removal from the enamel matrix. Interestingly, in 100-day-old rats, erupting incisor enamel was
normal, suggesting amelogenesis is only sensitive to MIH-causing agents during a specific time window
during development (as reported for human MIH). The present work documents the first experimental
model that replicates MIH and presents BPA as a potential causative agent of MIH. Because human enamel
defects are irreversible, MIH may provide an easily accessible marker for reporting early EDC exposure in
humans. (Am J Pathol 2013, 183: 108e118; http://dx.doi.org/10.1016/j.ajpath.2013.04.004)
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The environment has become increasingly contaminated by
various pollutants. This contamination has led to an increase
in the incidence and gravity of known conditions and/or the
emergence of new conditions. Recently, the appearance of
a distinct enamel condition was identified and called molar
incisor hypomineralization (MIH) in recognition that it is
most likely to be found affecting permanent first molars
with frequent involvement of the permanent incisors.1,2

MIH is diagnosed in children at approximately 6 to 8
stigative Pathology.
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years of age and presents as random white opacities on the
enamel of affected teeth. MIH prevalence is highly variable,
with 2.4% to 40.2% (mean of approximately 18%) of
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BPA Is a Causative Agent of MIH
children affected.3 To date, the cause of MIH remains
unclear. However, given that MIH affects those teeth that
are undergoing mineralization around the time of birth, it is
clear that the enamel-forming ameloblasts are only sensitive
to the causative agent(s) responsible for MIH in a specific
time window. MIH is indicative of some adverse event(s)
occurring during early childhood that effect enamel devel-
opment.1,2 Diverse environmental conditions, such as
medication (amoxicillin), hypoxia, hypocalcaemia, dioxins,
polychlorinated biphenyls, and prolonged breastfeeding,
have been associated with MIH.4 The vast number of
putative causative agents and the difficulty in retrospectively
linking a specific exposure during the developmental
window when enamel is susceptible to MIH make epide-
miologic studies inconclusive.

An increasing prevalence of numerous adverse health
effects, such as diabetes, obesity, infertility, cancers, and
autism, has been linked to endocrine-disrupting chemicals
(EDCs).5,6 Bisphenol A (BPA) is a typical EDC widely used
in the production of polycarbonate plastics and epoxy
resins. Its widespread use in food packaging and environ-
ment is controversial and hotly debated. Despite health
agency concerns and safety policies, >95% of the pop-
ulation is contaminated by BPA.7 BPA affects different
organs and physiologic key functions, such as reproduction8

and sex determinism, brain development, and behavior.6,9 It
may also increase breast cancer risk10 and lead to
obesity.6,11,12 Although molecular mechanisms of action are
still being researched, specific BPA-target genes associated
with specific disease states have been identified in differ-
entiated cell types in epidemiologic surveys.8,13 The effects
of BPA on dental cells are unknown. Interestingly, sensi-
tivity to BPA in humans is highest during the perinatal
period.8,14 This period corresponds to the temporal window
when the enamel of the permanent incisors and first molars
is being formed. Thus, our hypothesis is that EDCs such as
BPA may be involved in MIH by having an adverse effect
on amelogenesis.

Amelogenesis begins with a secretory stage during which
a partially mineralized enamel matrix is elaborated. The
enamel matrix is composed of amelogenins, enamelin,
ameloblastin, and amelotin, which are subject to extracel-
lular processing by matrix metalloprotease 20. The matrix
proteins are essential for the correct enamel formation as
evidenced by the fact that mutations in any of the proteins
involved leads to amelogenesis imperfecta.15 Once the full
thickness of the enamel has been deposited, amelogenesis
enters the maturation phase during which the serine protease
kallikrein 4 (KLK4) degrades the enamel matrix proteins.
Abnormal retention of proteins or indeed any extraneous
proteins, such as serum albumin, lead to the eruption of
hypomineralized enamel.16 The rodent incisor provides
a running record of how an effect on amelogenesis affects
future development as the incisor continues to erupt.17,18

Once amelogenesis is complete, the ameloblasts and the
overlying outer enamel epithelium cells degenerate and are
The American Journal of Pathology - ajp.amjpathol.org
ultimately lost through abrasion after tooth eruption. As
a consequence, enamel defects are irreversible and provide
a permanent record of any disturbances that occur during
enamel development. This record of previous disturbances
allows retrospective studies to be performed and provides
a means of temporally fixing a pathologic event at some
point during development.17

The objective of the present study was to assess the
possible effect of BPA on enamel development and eluci-
date any underlying mechanism of action. Rodents were
exposed daily in utero and after birth to a low dose of BPA
to mimic human exposure occurring during the critical fetal
and suckling periods when the teeth are developing. Bona
fide human MIH enamel was also compared with enamel
from BPA-treated rat to investigate whether any structural
features of MIH were replicated in the BPA-treated rat teeth.

Materials and Methods

Animals and Biological Samples

Eight-week-old Wistar Han rats were purchased (Harlan
France Sarl, Gannat, France). All animals were maintained
in accordance with the French Ministry of Agriculture
guidelines for care and use of laboratory animals (B2
231010EA).

Cages and bottles were made of polypropylene to avoid
any contamination by BPA or phthalates, and drinking
water was filtered through charcoal to eliminate pesticides.
Animals were fed a purified phytoestrogen-free diet con-
sisting of 18% casein, 40% corn starch, 20% maltodextrin,
6% sucrose, 5% corn oil, 5% cellulose, 5% mineral mixture,
and 1% vitamin mixture (INRA, Jouy en Josas, France) and
provided with water ad libitum.

At gestational day 1, determined by the presence of an
intravaginal sperm plug, the dams were randomly divided
into two groups. From gestational day 1 until weaning day
21, one group of pregnant females was orally administered
5 mg/kg of BPA daily (Sigma-Aldrich, St. Louis, MO) in
0.5 mL of corn oil, whereas the control group was admin-
istered corn oil alone. After weaning, young rats were
exposed daily to BPA as described until sacrifice at day 30
or day 100.

At each stage, 16 male control rats and 16 male treated
rats were used in the present study. Half (n Z 8) of each
group were randomly selected, anesthetized by isoflurane
inhalation, and perfused with 4% paraformaldehyde (Sigma-
Aldrich) in PBS (1�, pH 7.4). Perfused right hemi-
mandibles were analyzed by scanning electron microscopy
(SEM) and energy-dispersive X-ray spectroscopy (EDX),
whereas perfused left hemimandibles were prepared for
histologic analysis.

The remaining rats (n Z 8) in each group were sacrificed,
and their mandibles were immediately dissected. The
surrounding soft tissues were removed and the mandibular
bone encasing the lower incisors was carefully taken off
109
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under a stereomicroscope (Leica M125; Leica, Paris,
France) to expose the entire labial surface. The incisors were
then extracted, and the cervical loops were removed. For
right hemimandibles, rat enamel organ, now easily acces-
sible, was carefully harvested in its entirety and put in the
Tri-Reagent (Euromedex, Paris, France) for RNA extrac-
tion. For left hemimandibles, epithelial cells from the
secretion stage and the maturation stage were separately
dissected using the molar reference line for isolation18,19

and placed in Tri-Reagent (Euromedex) for RNA extrac-
tion. Secretory-stage enamel was then harvested from all
mandibles using a scalpel20 for the sequential extraction of
matrix proteins.

Teeth from MIH Patients

Patients were recruited in the Centre de Référence des Mal-
adies Rares de la Face et de la Cavité Buccale MAFACE
(Hôpital Rothschild, Paris, France). Inclusion and exclusion
criteria were based on those established by the international
consensus on MIH diagnosis.21 Positive diagnosis was based
on the clinical singularity of enamel defects: random dis-
colored patches, hypomineralized status assessed by probing,
tooth-type selectivity, increased nociceptivity, and increased
susceptibility to caries. Differential diagnosis with amelo-
genesis imperfecta, enamel fluorosis, and punctual inflam-
mationeinduced hypomineralization of permanent teeth was
established by their distinct clinical features and familial and
medical antecedent analysis. MIH and control teeth, obtained
after elective extraction, were collected (n Z 10) and
immediately immersed in 4% paraformaldehyde in PBS
buffer (pH 7.4) for 48 hours. Samples were then dehydrated
using increasing concentrations of ethanol for 48 hours each
and prepared for resin embedding as described previously.22

SEM-EDX Analysis

Human molars were sectioned parallel to the longitudinal
axis of the tooth using cutting equipment (Exakt, Norder-
stedt, Germany). Sections were then polished with graded
sandpaper to a thickness of 40 mm. Each section was bonded
onto an aluminum pin stub using adhesive carbon disks. In
the case of rat hemimandibles, the incisor cervical margin
and the first molar furcation point were used as anatomical
reference points so that specimens could be prepared
consistently. Mandibles were cut transversely close to these
anatomical reference points using a rotating diamond wheel
and then ground back to the selected anatomical reference
point with graded sandpaper. Samples were dehydrated in
ethanol for 48 hours each at 4�C, stuck on a calibrated
aluminum pin stub using clear polyester resin, and ultra-
sonicated for 15 minutes. Human and rat enamel surfaces
were etched with 37% orthophosphoric acid for 30 and 15
seconds, respectively, to remove any smear layers. Each
sample was coated with platinum 6 nm thick in a vacuum
evaporator, and the enamel microstructure was observed
110
with SEM (Carl Zeiss Supra 40; Carl Zeiss AG, Oberko-
chen, Germany) at 10 kV. After the initial observations, the
samples were polished, etched, rinsed with 2.5% sodium
hypochlorite for 2 minutes, and observed a second time after
coating with platinum.
After SEM, the samples were analyzed by EDX using an

X-ray detector system attached to an SEM (JSM-6100; Jeol,
Tokyo, Japan) at 15 kV. For each specimen, 15 distinct
points distributed within the enamel were analyzed to
measure Ca and C content. Semiquantitative data were
submitted to the ZAF correction method [atomic number
effect correction (Z), absorption effect correction (A), and
fluorescent excitation effect correction (F)].

IHC Assays

Left perfused hemimandibles were postfixed by immersion in
4% paraformaldehyde solution for 24 hours. After rinsing in
PBS, hemimandibles were decalcified at 4�C in pH 7.4 PBS
solution containing 4.13% EDTA (Sigma-Aldrich) and 0.2%
paraformaldehyde for 2 months. The decalcification solution
was changed twice weekly. After washing in PBS for 4 hours
at 4�C, the samples were dehydrated in ethanol, rinsed in
Safesolv (Labonord SASA, Templemars, France), and finally
paraffin embedded (Paraplast Plus; Sigma-Aldrich). Serial
frontal sections (8 mm thick) were cut using a microtome (RM
2145; Leica). Sections were deparaffinized and rehydrated in
decreasing concentrations of ethanol. Endogenous peroxi-
dases were blocked by incubation for 20 minutes in a freshly
made solution of 3%H2O2 in PBS. Sections were thenwashed
in PBS and blocked with 5% milk in PBS for 20 minutes at
4�C. Primary anti-amelogenin antibody (Kamya Biomedical
Company, Seattle, WA) (1:300), anti-enamelin (1:300),23

anti-ameloblastin (M-300 sc-50534; Santa Cruz Biotech-
nology, Santa Cruz, CA) (1:300), or anti-albumin (M-140 sc-
50536; Santa Cruz) (1:400) were applied for 1 hour at room
temperature. Sections were incubated with Alexa Fluor 594
secondary antibody (A-11072; Life Technologies, Carlsbad,
CA) (1:500) for 1 hour in the dark. After rinsing with PBS,
section were immersed in DAPI (010M4003; Sigma-Aldrich)
(1:100,000) for 1 minute. They were finally mounted with
aquamount (13,800; Lerner Laboratories, Pittsburgh, PA). For
albumin staining, sections were incubated for 30 minutes with
Impress reagent (TM reagent ImmPRESS kit; Vector Labo-
ratories, Burlingame, CA) containing secondary peroxidase-
conjugated antibodies (1:5000) and immunocross-reactivity
was visualized by adding peroxidase substrate (K3468;
Dako, Carpinteria, CA). They were finally rinsed with water,
dehydrated, and mounted with DePeX resin (BDH Labora-
tory, Poole, England).

Enamel Matrix Protein Extraction and Western Blot
Analysis

Secretory-stage enamel matrix was sequentially extracted
with 30 mL of 50 mmol/L Tris (pH 7.4) (to extract freely
ajp.amjpathol.org - The American Journal of Pathology
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Table 1 Primer Sequences Used for Real-Time PCR Analysis

cDNA
Amplicon
size (pb) Primer sequences

Rs15 315 50-GGCTTGTAGGTGATGGAGAA-30

50-CTTCCGCAAGTTCACCTACC-30

Gapdh 260 50-GACCCCTTCATTGACCTCAACTAC-30

50-AAGTTGTCATGGATGACCTTGGCC-30

Amelogenin 271 50-ACACCCTTCAGCCTCATCAC-30

50-GAGAACAGTGGAGGCAGAGG-30

Enamelin 439 50-CATGTGGCCTCCGCCAGTCC-30

50-GTCATCTGGGGGCGGGTCCT-30

Ameloblastin 258 50-TGCAGCCTCACCAGCCAGGA-30

50-CCCGAGACAGCGAATGGGCG-30

Tuftelin 202 50-CTCCCCTGTCCGCAGCAAGC-30

50-GGCGTCCATGTGCTGCTGGT-30

Amelotin 379 50-GCAACAAAACCGACTCCAG-30

50-CTCCATTCTGCACATCTGG-30

Mmp20 320 50-CTGGGCCTGGGCCATTCCAC-30

50-CTGGTGATGGTGCTGGGCCG-30

Klk4 320 50-GCATCCGCAGTGGGTGCTGT-30

50-CACACTGCAGGAGGCTGGGC-30

BPA Is a Causative Agent of MIH
soluble proteins), then with 30 mL of 100 mmol/L PBS (pH
7.4) (to extract mineral bound proteins), and finally with
60 mL of 1% SDS (to extract remaining aggregated
proteins). The use of phosphate buffer is akin to the elution
buffer used in chromatography columns for protein adsor-
bed to hydroxyapatite. Phosphate buffer at 100 mmol/L is
able to extract all mineral bound proteins from developing
enamel.24,25

Twenty micrograms of the first (Tris) and third (SDS)
fractions and 10 mg of the second fraction (PBS) extracted
proteins were subjected to 12% SDS-PAGE. Gels were
electrotransferred onto nitrocellulose membranes, which
were subsequently blocked with 5% milk for 2 hours.
Blocked membranes were incubated at 37�C for 90 minutes
with anti-enamelin or anti-amelogenin polyclonal antibodies
(1:500). The nitrocellulose membranes were washed and
incubated for 45 minutes with a goat polyclonal antierabbit
IgG antibody coupled to horseradish peroxidase (Sigma-
Aldrich) diluted 1:2000. Immunoreactivity was visualized
by chemiluminescence (ECL Western blotting detection
system; Amersham Pharmacia Biotech, GE Healthcare Life
Sciences, Velizy-Villacoublay, France) using a bioimager
(ImageQuant LAS 4000; Uppsala, Sweden). Loading and
electrotransfer efficiency were checked by staining
membranes for total proteins with Ponceau red.

HAT-7 Rat Ameloblast-Like Cell Culture, Treatments,
and Transfections

Rat HAT-7 ameloblastic cells26 were grown in Dulbecco’s
modified Eagle’s medium/F-12 without phenol red supple-
mented with 10% fetal bovine serum (Invitrogen, Carlsbad,
CA) and 50 U/mL of penicillin-streptomycin. HAT-7 cells
were transfected with plasmids that contained the promoter
regions of interest or the plasmids alone according to the
manufacturer instructions (Qiagen, Courtaboeuf, France).
Forty-eight hours after BPA treatments (Sigma-Aldrich), 5�
106 cells were either collected for RNA extraction or lyzed
for protein content determination and promoter activity
assays. Briefly, protein content was determined using
a bicinchoninic acid protein assay kit (Pierce, Paris, France)
according to the manufacturer’s instructions, and luciferase
activity was measured by mixing 25 mL of protein extract
with 75 mL of luciferase assay substrate (Promega Corp.,
Madison, WI). Luciferase activity was measured with the
B941 TriStar microplate reader (Berthold, Bruyères, France).
The experiment was repeated four times independently.

Plasmid Constructions

Rat enamelin (�1468/þ1 nt) and Klk4 (�1397/þ1 nt)
promoter regions were amplified using the Phusion
high-fidelity Taq polymerase (ThermoScientific, Villebon-
sur-Yvette, France) and the following primers: 50-CCGGGT-
ACCGGCTCACAGACTGAACCACC-30 and 50-TACACA-
GAACGAGGAACCGAGGAGCTCGCC-30 for rat enamelin
The American Journal of Pathology - ajp.amjpathol.org
promoter and 50-CCGGGTACCCTGAACTCCAGGGTCTC-
CCACTGG-30 and 50-CAGAAGTAAAGGTCCTCGGTTA-
GAGCTCGCC-30 for rat Klk4 promoter. The purified
fragments were cloned into PGL4.17 plasmid in front of
luciferase reporter gene (Promega) by insertion in KpnI/XhoI
(italicized) sites.

RNA Extraction and qPCR Analysis

Total RNA extraction was performed using Tri-Reagent
(Euromedex) according to the manufacturer procedure.
RNA concentration and purity were determined by a spec-
trophotometry at 260 nm (NanoDrop 1000; Thermo-
Scientific). Reverse transcription was performed on 1 mg of
total RNA for 45 minutes at 42�C, using a primer mix oli-
godT and random primers according to the manufacturer
instructions (Superscript II; Invitrogen). Quantitative real-
time PCR (qPCR) was performed using Opticon Monitor
device (Bio-Rad Laboratories, Hercules, CA). Each PCR
was repeated in triplicate independently, and the results
were normalized against Gapdh and Rs15. Details of the
primers and the corresponding amplicon sizes are presented
in Table 1. Results were calculated by the method of stan-
dard curves. Similar data were obtained when DDCt method
was applied.

Statistical Analysis

Data resulted from at least three independent experiments
are presented as means � SEM and were analyzed on
GraphPad Prism software version 4.0 using the two-tailed
nonparametric U-test. Values were considered significantly
different at P < 0.05.
111
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Figure 1 Phenotypic comparison between BPA-treated rat incisors and human teeth affected by MIH. A: Both incisors in all control rats were free of
defects (scored 0). Mandibular incisors from BPA treated-rats exhibited symmetrical (S) or asymmetrical (AS) white opacities and were scored as described in
the Table 2. In the case of AS-affected teeth, the score for the most affected incisor was recorded. B: On day 100, mandibular incisors from BPA-treated rats
were similar to those of control rats and scored 0. C: Human incisors affected by MIH and scored using the same criteria as for rat incisors.

Jedeon et al
Results

BPA-Affected Rat Enamel and Human MIH Enamel
Appear to be Hypomineralized

Extracted human MIH teeth were compared with BPA-
treated rat incisors (Figure 1), and both presented asym-
metrical white spots that affected the enamel. At day 30, the
lower incisors of 12 of 16 rats (75%) were affected after
administration of BPA, whereas 100% of control rats were
unaffected. Control mandibular incisor enamel was homoge-
neously yellow to orange, whereas incisors from BPA-treated
Table 2 Scoring of Enamel Defects Observed on Rat Mandibular Inciso

Score
Proportion of tooth surface presenting
white opacities

No
an

0 Enamel defect free 4
1 One-third of tooth surface or less affected 4
2 Two-thirds of tooth surface affected 2
3 Total tooth surface affected 6
b With enamel breakdown 3

b, breakdown.

112
rats had enamel white spots either symmetrically or asym-
metrically affecting the incisors to varying degrees (Figure 1
and Table 2). The severity of the phenotype was scored
using criteria based on various indices previously reported for
scoring human hypomineralization.21,27 Interestingly, the day
30 phenotype was completely consistent with the humanMIH
phenotype (Supplemental Figure S1) observed in the present
and previous studies.21 In complete contrast, incisors from
BPA-treated rats at day 100 were no longer affected and were
indistinguishable from controls (Figure 1B), indicating that rat
amelogenesis has a window of susceptibility that does not
extend to the period when the incisor enamel in day 100 rats
rs on Day 30 after BPA Exposure

. of affected
imals

No. of animals
with symmetric
affection

No. of animals
with asymmetric
affection

3 1
2

6
1 2
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Figure 2 SEM and EDX analysis of rat and
human enamel. A: Sound human enamel was
characterized by well-organized prismatic and
interprismatic structure clearly visualized at higher
magnification. B: Enamel affected by MIH was
hidden by a covering layer. C: After an NaOCl rinse,
MIH enamel exhibited prismatic and interprismatic
structure. Scale bars: 20 mm (left); 10 mm (right).
D: Enamel of control rats on day 30. E: BPA-treated
rat enamel exhibited a covering layer obscuring
the underlying prismatic structure. F: After an
NaOCl rinse, enamel from BPA-treated rats
exhibited the classic architecture seen in controls.
Scale bars: 15 mm (left); 5 mm (right). G: Human
control enamel exhibited a smooth surface,
whereas MIH enamel presented a rough surface.
Scale bars: 10 mm. H: Rat control molars showed
an unbroken smooth surface, whereas the molars
from BPA-treated rats had a rough surface with
enamel breakdown. Scale bars: 30mm. I: Typical
EDX spectra. J: Ca/P and Ca/C ratios of BPA (nZ 8)
and MIH (n Z 10) enamel. K: Diagram showing the
location of SEM images of human molars and rat
incisors. Arrow shows the plane of sectioning. All
data are means � SEM. *P < 0.05, **P < 0.01,
***P < 0.001, U-test.

BPA Is a Causative Agent of MIH
was being laid down. This finding provides a clear parallel
between the cause associated with the effect of BPA on rat
amelogenesis and the cause associated with human MIH
(Supplemental Figure S1).

BPA Increases Organic Content of Enamel

The underlying prismatic structure in human MIH enamel
was obscured by a covering layer as reported previously.28

This layer was eliminated by hypochlorite treatment
(Figure 2, B and C) to reveal the underlying enamel struc-
ture. Enamel sections from BPA-treated rats also exhibited
a similar layer obscuring the underlying prismatic structure
(Figure 2E and Supplemental Figure S2). This layer was
also eradicated by hypochlorite, and its removal revealed the
classic decussating prismatic structure of rodent enamel
(Figure 2F). In addition, human MIH and BPA-affected rat
teeth had broken enamel in areas where the teeth occlude:
molar cusps and incisor tips (Figure 2, G and H, and
Supplemental Figure S2). These secondary defects induced
by mastication emphasize the fragility of hypomineralized
The American Journal of Pathology - ajp.amjpathol.org
enamel. Such defects were present in neither normal human
enamel nor control rats.

Enamel elemental composition was determined using
EDX (Figure 2I). There was a noticeable difference between
the elemental composition of incisors from BPA-treated and
control rats (Figure 2J). The Ca/C and Ca/P ratios were
lower in BPA-treated rats than in controls, indicating
a significant increase in the concentration of organic mate-
rial relative to the mineral phase and a calcium deficiency
compared with controls. These compositional differences
were also mirrored in human MIH (Figure 2J).

BPA Increases the Albumin and Enamelin Content of
Enamel

Enamel matrix proteins were sequentially extracted from
BPA-effected and control incisors. Western blotting experi-
ments revealed a clear and specific signal for enamelin at 66
kDa in all fractions (Figure 3A). Enamelin content was higher
in all BPA-treated fractions, with a significant difference
when comparing the fractions that contained mineral bound
113
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Figure 3 Enamel matrix proteins in rat
mandibular incisors on day 30. Enamel matrix
proteins were sequentially extracted from
secretory-stage enamel on day 30 and analyzed by
Western blotting with specific antibodies for
enamelin (A), amelogenin (B), and ameloblastin
(C). D: Densitometric quantification revealed
a significant increase (2.12-fold � 0.02) of
enamelin adsorbed to the enamel crystals (PBS
fractions) in BPA-treated rats (PZ 0.02). All data
are means � SEM (n Z 3). *P < 0.05. IHC
analysis of enamelin (E), amelogenin, (F), ame-
loblastin (G), and serum albumin (H). Scale bars:
70 mm (G); 200 mm (H). En, enamel; Am,
ameloblasts.

Jedeon et al
enamelin (PBS-extracted fractions) (Figure 3, A and D). BPA
has no significant effect on amelogenin and ameloblastin
expression as determined byWestern blotting (Figure 3, B and
C).

Similarly, immunohistochemistry (IHC) revealed that the
enamelin content was increased during the maturation stage
of BPA-treated rats compared with controls (Figure 3E).
Consistent with the Western data, IHC also indicated that
BPA had no effect on the amelogenin and ameloblastin
content (Figure 3, F and G). In addition, IHC revealed that
the early maturation stage of BPA-affected enamel was
clearly positive for serum albumin, whereas the corre-
sponding control enamel was negative (Figure 3H).

BPA Modulates Enamelin and Klk4 mRNA Expression

Levels of amelogenin, ameloblastin, amelotin, tuftelin, and
matrix metalloprotease 20 mRNAs in whole dental enamel
epithelia were unaffected by BPA. In contrast, enamelin
114
mRNA levels were significantly increased, whereas the
Klk4 mRNA level were significantly decreased (Figure 4A).
Microdissection was used to isolate the secretion and
maturation-stage enamel epithelia. In both BPA-treated and
control rats, enamelin mRNA was essentially localized to
the secretory-stage tissue (as previously described by Lacruz
et al29). Consistent with the results from whole dental
enamel epithelia, secretory-stage enamelin expression was
increased in BPA-treated rats. Klk4 mRNA expression was
detected in secretory- and maturation-stage epithelia from
both BPA-treated and control rats. Expression levels were
greater in maturation-stage enamel epithelia, and consistent
with the results from whole dental enamel epithelia, levels
of maturation stage Klk4 expression were markedly reduced
in BPA-treated rats (Figure 4B). These modulations were
not observed in rats exposed to BPA at the late postnatal
stage of day 100 (Supplemental Figure S3).
The effect of BPA on enamelin and Klk4 expression was

examined in ameloblastic HAT-7 cells. Both genes were
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Figure 4 Enamel gene expression analyzed by qPCR. A: Analysis of lower incisor dental epithelium mRNAs on day 30 demonstrated the presence of all
enamel matrix mRNAs and of the 2 main protease mRNAs (n Z 4). B: qPCR analysis of mRNAs extracted from microdissected dental epithelium (n Z 4). All
data are means � SEM. Each sample was analyzed in 3 independent experiments. **P < 0.01, ***P < 0.001.

BPA Is a Causative Agent of MIH
expressed by HAT-7 cells and were modulated by 10�9

mol/L BPA. Enamelin mRNA levels were significantly
increased and Klk4 levels were significantly decreased by
BPA (Figure 5A). Transcriptional regulation by BPA was
investigated by measuring its effect on enamelin and Klk4
promoter activity. Cells transfected with these promoters
controlling the luciferase reporter gene were treated with
10�9 mol/L BPA. Luminescence was significantly increased
when luciferase expression was driven by the enamelin
promoter and decreased when driven by the Klk4 promoter
(Figure 5B). Similar modulations were observed using 10�6

mol/L to 10�12 mol/L BPA (Supplemental Figure S4).
Discussion

MIH is a recently described pathology1,2 that is frequently
diagnosed in many populations throughout the world,
although precise etiologic factors remain unclear.4,30

Comparing the features of human MIH previously reported,
and those reported here, to the features of BPA-affected rat
The American Journal of Pathology - ajp.amjpathol.org
enamel, there are apparent similarities between BPA-induced
enamel defects in the rat model and human MIH lesions.

A key characteristic of human MIH is that it preferentially
affects permanent incisors and first molars. The causative
agents underpinning human MIH thus appear to exert their
effects during a specific developmental time window. Teeth
that develop outside this critical window are not affected.
Likewise, the present study indicates that the continually
growing rat incisor is only susceptible to BPA during
a specific developmental time window because enamel
erupting in rats on day 100 is unaffected (in contrast to
affected enamel erupting on day 30).

To explain the existence of this time window of suscepti-
bility to BPA in the rat, it is useful to consider the biochemical
elimination of xenoestrogens, such as BPA. In adult rats, BPA
is eliminated in the bile after extensive glucuronidation (to
yield BPA-GA) by an isoform of hepatic uridine 50-diphos-
pho-glucuronosyltransferase (UGT2B1).31 BPA-GA conju-
gates are excreted into the bile via a pathway that involves the
hepatic protein Mrp2, although in the gut BPA-GA is decon-
jugated and BPA is readsorbed. This enterohepatic circulation
115
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Figure 5 Modulation of enamelin and Klk4 expression by BPA. Enamelin
and Klk4 expression was measured in rat epithelial cell line HAT-7 after 48
hours of treatment with 10�9 mol/L BPA. A: Enamelin and Klk4 mRNAs were
assayed by qPCR (n Z 4). B: Enamelin and Klk4 promoter activities were
measured in transfected cells (n Z 4). C: BIOBASE biological databases
were used for promoter sequence analysis. All data are means � SEM (n Z
4). *P < 0.05, **P < 0.01, U-test.

Figure 6 Scheme of the effects of BPA on amelogenesis. A: Amelo-
genesis in control rats. B: Disturbed amelogenesis in BPA-treated rats.
Decreased Klk4 expression and protein accumulation led to enamel hypo-
mineralization. En, enamel; hEn, hypomineralized enamel.
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of BPA prolongs clearance times in rats.32 During pregnancy,
maternal rat hepaticMrp2 expression is reduced by 50%,33 and
bilious excretion of BPA-GA is decreased in favor of a recip-
rocal release of BPA-GA into the systemic circulation.34 BPA-
GA in thematernal circulation can cross the rat placenta and be
deconjugated back to BPA in the fetus.31 The fact that this,
together with the fact that UGT2B1 glucuronidase activity
against xenoestrogens appears undetectable in rat fetus and
activity in the neonate, only reaches adult levels by day 21 after
a linear increase from birth35 indicates that the risk of BPA
exposure is greatest in the fetus and neonate, a time corre-
sponding exactly to when the affected enamel described in this
study would have been under formation. We assume that once
young rats have reached day 21 and UGT2B1 glucuronidase
activity has reached adult levels, the BPA load previously
affecting amelogenesis is relieved and formation of enamel
forming thereafter is unaffected (as seen rats on day 100).

In the case of humans, the teeth mostly affected by MIH
(ie, permanent first molars and permanent incisors) begin
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to mineralize between birth and 5 months of age, which
identifies the window of susceptibility for human MIH. It
has been argued using a physiologically based pharmaco-
kinetic modeling approach that human newborns exhibit
plasma BPA concentration 11 times greater than that found
in adults, whereas at 3 months of age the ratio has decreased
to 2.36 This finding agrees well with the hypothesis that
exposure to BPA during the first months of life affect the
development of the teeth that are developing during that
window time, thus giving rise to MIH.
Our results also provide information of the possible

molecular mechanisms by which BPA affects enamel
formation in the rat model. Gene expression data obtained
from BPA-treated rats on day 30 indicated that enamelin
expression was significantly increased, whereas Klk4 gene
expression was significantly decreased. In addition, early
maturation stage enamel of BPA-treated rats contained
significantly increased levels of serum albumin. It is unclear
whether increased albumin levels are a consequence of
increased ingress or reduced proteolytic degradation due to
reduced Klk4 expression, but the presence of mineral bound
albumin and enamel matrix proteins in the early maturation
stage could inhibit enamel crystal growth, leading to
hypomineralization37,38 (Figure 6). Inhibition of crystal
growth during the maturation stage by the organic material
ajp.amjpathol.org - The American Journal of Pathology
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revealed by SEM and EDX would not affect the underlying
prism structure because the actual prismatic architecture of
the enamel is laid out during the secretory stage. Retention of
protein in the later maturation stage would inhibit the growth
of the crystals already laid out in the classic decussating
prism pattern, but the prism architecture would still be
present, albeit in a hypomineralized state. The presence of the
organic layer obscuring the underlying prism structure in both
rat and human teeth studied here is in accordance with
previously published data on MIH.28,39,40 The nature of this
organic material is unclear at present, but its sensitivity to
hydrolysis by hypochlorite suggests it may be proteinacious.

The mechanism by which BPA affects ameloblast gene
expression is unclear. However, BPA has been reported to
interact with steroid, retinoid, and thyroid nuclear receptor
pathways.41 BPA has been reported to bindmultiple receptors,
including estrogen receptors,6,41,42GPR30,43 retinoid receptor-
g,44 and estrogen-related receptor-g.45 It modulates androgen,
thyroid, and glucocorticoid receptor activities and expression
levels of key transcription factors, such as CREB, CEBP,
STAT3, THR, PPAR-g, or GATA-4. BPA may have a direct
influence on ameloblasts by binding to a BPA sensitive
receptor. The presence of estrogen receptor-a, vitamin D, and
thyroid receptors in ameloblasts17,46 at the developmental
stages where both enamelin and Klk4 expression is occurring
maximally invites the suggestion that BPA affects the expres-
sion of these genes through nuclear hormone pathway. This is
evidenced by our luciferase data that suggest BPA influences
enamelin and Klk4 expression by transcriptional regulations.

In conclusion, the present data indicate that ameloblasts
are susceptible to BPA and that BPA may be a causative
agent in human MIH etiology. The rat model has enabled us
to propose a hypothetical scheme for MIH pathophysiology
at the molecular level. MIH may thus represent a permanent
record of exposure to BPA (or EDCs sharing similar
molecular effects) and could be easily used as a biomarker
for retrospective analysis of infant exposure to EDCs and
the effect of such exposure on health in later life.
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