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Abstract

In recent years many deterministic parabolic equations have been shown to possess global
attractors which, despite being subsets of an infinite-dimensional phase space, are finite-dimensional
objects. Debussche showed how to generalize the deterministic theory to show that the random
attractors of the corresponding stochastic equations have finite Hausdorff dimension. However, to
deduce a parametrization of a ‘finite-dimensional’ set by a finite number of coordinates a bound on
the fractal (upper box-counting) dimension is required. There are non-trivial problems in extending
Debussche’s techniques to this case, which can be overcome by careful use of the Poincaré recur-
rence theorem. We prove that under the same conditions as in Debussche’s paper and an additional
concavity assumption, the fractal dimension enjoys the same bound as the Hausdorff dimension. We
apply our theorem to the 2d Navier—Stokes equations with additive noise, and give two results that
allow different long-time states to be distinguished by a finite number of observations.

0 2005 Elsevier SAS. All rights reserved.

Résumé

Au cours des dernieres années, il a été démontré que de nombreuses équations paraboliques
déterministes possédaient des attracteurs globaux qui, tout en étant des sous-ensembles d’un espace
de dimension infinie, sont en fait des objets de dimension finie. Debussche a montré comment géné-
raliser la théorie déterministe pour établir que les attracteurs aléatoires des équations stochastiques
correspondantes ont une dimension de Hausdorff finie. Cependant, pour déduire une paramétrisation
d’un ensemble de dimension finie par un nombre fini de coordonnées, on a besoin d’'un majorant de
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la dimension fractale. Des problémes nontriviaux existent pour généraliser a ce cas les techniques de
Debussche; ils peuvent étre surmontés en utilisant le théoréme de récurrence de Poincaré. Sous les
mémes conditions que dans l'article de Debussche, nous démontrons que la dimension fractale a une
méme majorante que la dimension de Hausdorff. Nous appliquons notre théoreme aux équations de
Navier—Stokes avec bruit additif et nous présentons deux résultats qui, au moyen d’un nombre fini
d’observations, permettent de distinguer deux états donnés sur des temps longs.

0 2005 Elsevier SAS. All rights reserved.
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1. Introduction

The theory of attractors for deterministic dynamical systems, and in particular for a large
class of parabolic partial differential equations, is now well developed (see, for example,
the monographs by Babin and Vishik [2], Hale [23], Ladyzhenskaya [27], Robinson [34],
Temam [37]). As well as proofs of their existence for an ever-growing number of models,
in many cases these objects can be shown to be finite-dimensional.

One would, of course, like to deduce from this that the dynamics ‘restricted to the
attractor’ is, in some sense, also ‘finite-dimensional’. Despite the fundamental nature of
this question, only partial results in this direction are available in general [18,33,35] and
Chapter 16 in [34].

However, it is possible to prove [30,22,24] that a set with finite fractal (more properly
‘upper box-counting’) dimensiod (for a formal definition see Section 2) can be parame-
trized by 21 + 1 coordinates:

Theorem 1.1[24]. Let H be a Hilbert spaceX C H a compact set with fractal di-
mensiond, and N > 24 an integer. Then a prevaléhset of bounded linear functions
L:H — R" are one-to-one betweexi and its image.

Unfortunately no parametrization is available when it is only known that a set has finite
Hausdorff dimension (a counterexample is given by Kan in the appendix of [36]).

Crauel and Flandoli [13] and Crauel, Debussche and Flandoli [15] developed a theory
for the existence of random attractors for stochastic systems that closely parallels the deter-
ministic theory. Crauel and Flandoli [14] developed a method for bounding the Hausdorff
dimension of attractors for certain systems, but their techniques required the noise to be
bounded; Debussche [16] used a ‘random squeezing property’ (cf. [21]) to bound the Haus-
dorff dimension without the assumption of bounded noise, a technique generalized to treat
the fractal dimension by Langa [28].

However, the best bounds in the deterministic theory come not from a use of the
squeezing property, but from the method involving Lyapunov exponents developed by Con-
stantin, Foias and Temam [11]. It is this method that was adapted to the stochastic case by

1 For a precise definition see Section 6. Here it suffices to say that ‘prevalent’ is a generalizatriutif
measureto infinite-dimensional spaces.
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Debussche [17] to obtain an upper bound on the Hausdorff dimension. In his paper he re-
marks that the same arguments could be used to obtain a bound on the fractal dimension of
such sets. However, it turns out that there are non-trivial problems in adapting his argument
to this case. In this paper these are overcome by a careful use of the Poincaré recurrence
theorem.

In Section 2 we address various preliminary problems which are in fact central to the
main proof. Indeed, given these tools the main argument follows that in Debussche’s paper
in [17] a relatively straightforward way.

The main theorem requires a number of (natural) assumptions which, along with the
general framework in which we set the problem, are discussed in Section 3. The follow-
ing section contains the formal statement of the main theorem, along with its proof. We
combine the stochastic approach of Debussche with the deterministic argument of Che-
pyzhov and Vishik [7] which tracks the optimal bound more carefully than the conventional
argument. With an additional technical assumption that appears to be satisfied in all inter-
esting applications this leads to a bound on the fractal dimension which agrees with the
bound on the Hausdorff dimension (the usual argument produces an additional factor of
two).

Section 5.1 illustrates the application of the main theorem, which is proved for the case
of a discrete time random dynamical system, to systems evolving in continuous time by
treating the 2d stochastic Navier—Stokes equation with an additive white noise.

Section 6 shows how to apply the embedding result of Theorem 1.1, and a related
result that allows reconstruction of finite-dimensional sets of analytic functions from
measurements of point values, to random systems. As remarked above, such results rely in
a fundamental way on the fact that the fractal dimension of the attractor is finite.

2. Preliminaries

In this section we first give a formal definition of the fractal dimension, defined as a
certain limit superior as tends to zero; the most important result here is that an upper
bound on this lim sup can be obtained by considering a sequengetioht tends to zero
at some controlled rate. Then in Section 2.2 we prove that the successive excursion times
from a set of positive measure in an ergodic system cannot grow faster than linearly.

2.1. Fractal dimension

Let N(X, ¢) denote the minimum number of balls of radiugequired to coveX . Then
the fractal dimension is defined as

I X
df(X) = lim Supw
e—0 —loge

1)

(for general results on this dimension see [18,20,32,34]).

The bound on the fractal dimension we prove here would essentially follow from the
arguments in Debussche [17] if the limit superior in (1) could be replaced by a straight-
forward limit. However, “lim sup” is necessary, as there are simple sets for which the limit
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ase — 0 does not exist. For example (cf. Exercise 3.8 in [20]), form a Cantor like set
C =(NjZ1Cj, whereC; is the set at the end of stageat stage 2 — 1 remove the middle

half 2/~1 times, and at stagej2emove the middle third/21 times. Considering@z;_1,
C itself requires

Naj_1:= 2242712 jntarvals of lengthep; 1 := 4~ @-Dz-@7-1
to cover it; consideringz;, C requires
Nyj :=22"""Zintervals of lengtte,; := 4~? ~D3~@-D

to cover itself. Therefore

log Noj_1 (2 4271 —2)log2 3log2
- —

—logezj—1  (2/ —1)log4+ (2/-1—-1)log3 = 2log4-+log3’

while

logNy; (2711 - 2)log2 . 2log2
—logez; (27 —1)log4+ (2/ —1)log3 ~ log4+log3’

In what follows we will make use of an equivalent definition of the fractal dimension:

Lemma 2.1.Let M (X, ¢) denote the minimum number of balls of radiuwith centres in
X that are required to covek. Then

i logM (X, ¢)
di(X) =limsup——=.
! s%Op —|Og€

()

Proof. Denote bys:(X) the right-hand side of (2). Then itis clear thafX, ¢) < M (X, ¢),
and so that/;(X) < 8:(X). In order to prove the reverse inequality consider a cove¥ of
by N (X, ¢) balls of radiuse, B(x;, ¢). Discarding any unnecessary balls from this cover,
each ballB(x;, €) must contain a poing; € X. Since

B(yi, 2¢) D B(xi, €)
it follows that M (X, 2¢) < N(X, ¢), and so

IogM(X,Ze)< logN(X,e¢)
—log(2e) ~ —log2—loge

which yieldss; (X) < df(X) and hence (2). O

In fact we will want to take the limit (superior) through a sequence;athat tend to
zero in a potentially non-uniform way, allowing in addition for some irregularities. The
following lemma will be sufficient for our purposes.
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Lemma 2.2.Fix a strictly increasing sequendey } ;2 ; of positive integers satisfying,

limsup 2+t — 1, (3

k—oo Tk

and lete, be a sequence such that for soghe 0, given anys > 0 there exist;, Cs, and
ks for which

cse B < o < Cue BT

for all £ > k5. Then

di(X) =Ilim supw.
k—o00 —logey

4

Proof. As a first step we prove (4) witk, replaced bys, = ce %, To this end, given
¢ > 0 letk be such that; 1 < & < g¢; then we have:

logN(X,e) _10gN (X, exr1) _ I0gN (X, exv1) —l0gerra
—loge = —logex ~  —logerr1  —logex
log N (X, ex41) atiy1 —loge
= “logers:  aw —loge

and so, using (3),

log N (X
() < limsup- 23V X- €0 )
k—o00 - Ioggk

Now to prove (4), fixe > 0, choosé > 0 such that

)
% <1+e,
and then findcg such that fok > &j,
—loges + (B+ 9w
—logCs + (B — 8)wk

<1l+e. (6)

Then for allk > max(ks, kj),

logN (X, &) . log N (X, cse~ B+
“loger  © —109C + (B — )

_ log N (X, C(;e_(ﬁ‘f'a)fk) —loges + (B + 8w

~ —loges + (B + 8w <_|09C6 + (B — 5)Tk>

logN (X, cse~ B+dw)
— |Og(c‘3e*(/3+5)fk)

<(A+e¢)

3
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using (6) in the final step. It follows using (5) with= c¢s anda = 8 + § that

limsup 29N K 14 a0, 7)
k—o00 - lOggk

Since this holds for any > 0 we obtain (4). O
In the proof of the main theorem we keep track of th@pproximatey volume’,
V,(X,e):=e"N(X,e). (8)
We note the following simple corollary:
Corollary 2.3. Lete, be a sequence as in the statement of LerBrdaand suppose that

]!imo Vy (X, er) =0.
Thend;(X) < y.

2.2. Return times

In order to complete the proof of the main theorem we will need to make use of the
Poincaré recurrence theorem to guarantee that the attractor can frequently be covered
by some fixed number of balls. In itself this is not enough, and we will require some
additional information on the growth of successive return times. The following lemma
shows that, asymptotically, successive excursion times grow sle@dy: (for any e > 0),
and hence that successive return times also grow slowly.

Lemma 2.4.Let T:22 — 2 be an ergodic transformation on the probability space
(2, F,P), and suppose thaP(A) > 0. Denote byr,(-): A — Z.g the nth return time
toA,i.e.,

(@) =min{j > 7,_1: T/ (w) € A},

wheretg := 0. Denote by, the length of therith excursion, i.e.,
S =Tn — Ta-1
then for eaclte > 0, for P-almost every element € A there exists awv,, . such that
8, <en foralln>=N,,. (9)

Note that it follows that for any > 0 the sequence of return times eventually satisfies
T + 1< 11 < (1 + &)1k, and thus in particular that

. Th+1
limsup—= =1,

k—oo Tk

as required by (3) in Lemma 2.2.



J.A. Langa, J.C. Robinson / J. Math. Pures Appl. 85 (2006) 269-294 275
Proof. Define the first return mag: A — A by:
R(w) = T™® (w).

It is a standard result (see [31], for example) that this induced transforma&tisronce
again measure-preserving. Observe that

-1 n—2
8 TwR"lw) 1 Z . n—1 1 .
—_— == 71(R! w) — — E 71(R/ w)
n n ni3 n n—1 v

— E(r1) —E(r1) =0,

using the ergodic theorem. The bound in (9) follows immediatety.

3. Assumptions

This section introduces our main assumptions and in particular defines the expansion
factors that play a central role.

3.1. The underlying random dynamical system

We consider a random dynamical system on a Hilbert spaceith norm| - |, driven
by a noise that lies in an underlying probability spdce, 7, P) whose time evolution
is governed by a measure-preserving ergodic transformatioine time evolution of an
elementu € H driven by noisev is given by the sequence:

u, S(@u, SOw)S@u, SO*w)SOw)S(u, ...
For simplicity of notation we denote:
S (w) = SO 1) SO 2w) - SOw)S(w). (10)

We are interested in the fractal dimension of a compact set that is invariant under the
stochastic flow, i.e., a random sé{w) that is compact for each, satisfies

S()A(w) = A(0w) P-as,

and for which the mapping > dist(x, A(w)) is measurable for any € H.
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3.2. Fractal dimension is a.s. constant for Lipsclfitz

We note here that under the above conditions the fractal dimension of the random
attractor is almost surely constant, provided we assume in additionStigatLipschitz
from H into H. Indeed, we can follow the argument of Crauel and Flandoli [14], noting
that the fractal dimension can be defined by analogy with the Hausdorff dimension as

di(Y) =inf{s > 0: pus(Y,s) =0},
where

pt(Y,s) = limsupVe (Y, 5)

e—0

(recall that V.(Y,s) = ¢*N(Y,¢), see (8)). Since the mapy — V.(Y,s) is Borel
measurable (cf. Lemma 3.6 in [14]) for any- 0 ands > 0, it follows thatY — u¢(Y, s)

is also Borel measurable. It then follows (Lemma 4.2 in [14]) that the map d; (A (w))

is measurable. The non-increasing nature of the fractal dimension under Lipschitz maps
(see [20], for example) implies that

di(A(Bw)) < di(A@)),

and sincé is ergodic, this implies (see Remark 2 after Theorem 16 in [38])df{at(w))
is constani?-a.s.

3.3. The linearization and its expansion factors

Our main assumptions reproduce those of Debussche: First we assume that the cocycle
is almost surely uniformly differentiable ofi(w), i.e., for allu € A(w) there exists a linear
mapDS(w, u) from H to H satisfying:

|S(@)(u + h) — S(@)u — DS(w, w)h| < K (@)1, (11)

wherea > 0 is fixed andK () is a random variable such thA&t(w) > 1 for allw € £2 and
E(nK) < oo.
Given a bounded linear operatbr we define:

()= _ su inf _|Lgl,
! GCH: diEnG:n ¢eG: |p|=1

and
wp(L)y=0a1(L) - oy (L).

The numbersy, (L), the linear expansion factors, are the eigenvalugs bk )1/2 arranged
in decreasing order: they are the semiaxes of the ellipse obtained by appliarthe unit
ball in H; w, (L) are the expansion factors ferdimensional volumes.
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Since we are concerned with coverings by a collection of balls of fixed radius, the
following lemma from [7, Chapter IIl, Lemma 2.2] will be needed. In essence it says
that to cover an ellipse with semiaxgs} with balls of radiusr, it suffices to cover the
j-dimensional ellipse whose semiaxesate. .., oj, witha; > r > ;1. The number of
balls required is then proportional to the volume of thidimensional ellipse, essentially
wj, divided by thej-volume of the bally/.

Proposition 3.1.Let E be an ellipsoid whose semiaxes have lengths ay > --- >

a; = ---. Then for any < a1 the number of balls of radiug’2r needed to coveE is less
than

7.1'&
ri’
where is the largest integer such that< «;.

3.4. Assumptions on the expansion factors

We assume that for eagh=1, 2, . .. there exists an integrable random variablesuch
thatP-a.s.

wj (DS(u, a))) <oj(w) forallue A(w),

with EInw; < co. We also assume the existence of integrable random variapksda,
such thafP-a.s.

aj(DS(w,u)) <aj(w) forallueA(w), j=1.....d,

a1>landEIna; <oo, j=1,...,d.

4. The main theorem

We now state and prove the main theorem. Until Eq. (25) the argument is a combination
of that in [17] and that of [7]. The proof is concluded using the results of Section 2.

Theorem 4.1.Let the assumptions of Sectimold. Suppose that
Elnw,; <O.
ThenP-a.s.
di(A(w)) <y

for anyy such that

E[lmaxgj<a(dqg; — jqq)]
Yy >

) 12
—Eqa (12
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whereg; =loga;.

Proof. First we note that it follows from (12) that

~v/d 9

(A direct generalization of the ‘standard method’ used to bound the fractal dimension
(e.g., [37]) would require (13) to hold for = d. We obtain the extra freedom in by
following Chepyzhov and Vishik [7].)

For fixed values ofl/ andy, by considering multiple iterates Sf(w) if necessary (for
thenth iterate ofS(w), the expansion factab; can be replaced byw;, see [17]) we can
and will assume the stronger condition:

574 @i _ _
E(Iog[a)d 1r<nja<Xd@§/dD< yIn2—dIn7, (14)

or more compactly,
wj

_oyad~v/d
Elog$2, <0 where2,(w) :=2"7"w, 12@2& —d)é/d' (15)

Preliminary considerations
In the spirit of Debussche [17], we define the measurable set:
I = {w e 2! K(@n® < (2-v2)a(@)},

and note thaP(J(n)) — 1 asn — 0. We also introduce the random variable:

@ = | eI, (16)
a1(@) + K(w), & J@m).

By the dominated convergence theoremyas 0 we have:
1
E(nt,) —>]E<—In Qy> =—0, a7
4

for somef > 0. Now fix someng > 0 such that
E(nz,) <—6/2 (18)

for all n < no.
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The image of one covering und&(w)
First consider a covering o (w) by balls of radiug < 7o,
N
Aw) C | B(ui, o),
j=1

whereu; € A(w) (see Lemma 2.1). In the argument we keep track of the “total approximate
y-volume”,

Vy(X,e):=e"N(X,¢),
of a covering ofA(w): if lim i o V,, (X, &x) = O for a sequence; as in Lemma 2.2 then

di(X) < y (this was Corollary 2.3).
Under application of (w) we have:

ABw) C CIJ S(w)B(u;, ¢).
j=1
Clearly
S()B(u;, ) C S(@)u; + DS(w,u;)B(O, &) + B(0, K (w)e™+*). (19)
We now consider 3 cases in turn: in each case we show that
Vy (A(Bw), Tp(w)e) < 7y (@) Vy (A(w), €). (20)

Casel:w ¢ J(n)

In this case,

S(w)B(uj, &) C B(S(@)ui, [a1(DS(w, ui)) + K (w)e*]¢)
C B(S(@)u;, [a1(w) + K (w)e*]¢)
C B(S(@)u;, [a1(w) + K (w)]e).

And we have

N(A(Ow), [a1(w) + K (0)]e) < N(A(w), €),

N(A(Bw), Ty (w)e) < N(A(w), ),

and so (20) holds.
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Case2: w e J(n): K (w)e¥ < (2— 2)ay(w)
Case2(a):a1(DS(w, u;)) < dg(w)

In the unlikely event thate1(DS(w, u;)) < @4(w) (which is possible since; is the
local rate of expansion, whilg, is aglobal upper bound on the contraction rate) then we
can return to (19) and write:

DS(w,u)B(0,¢) C B(0,a1(DS(w, ui))e) C B(0, ag(w)e),
so that
S(@)B(ui, &) C B(S(@)u;, 2a4(w)e),
and thus
Vy (A(Bw), 204 (@)s) < (204(@))” V,, (A(), €).

Now, note thai2xy)” < £2,,; indeed,

~ Ny y -v/d —d wj \ —d
o <2 o< T (g ) A <R @

It follows that
Vy (A(Bw), 25/7e) < 2,V (Aw). ¢),
which gives (20) once more.

Case2(b): a1 (DS(w, u;)) = aq(w)

In this more likely case, whea1(DS(w, u;)) > a4(w), we will use Lemma 3.1: the
number of balls of radius/2 &, (w)e required to coveD S(w, u;) B(0, €) is bounded by

2i w;j(DS(w,u))
ag(w)’

where is the largest integer such thaf(w) < o (w). Sinceay (DS (w, u)) < aq(w) for
everyu € A(w), j <d — 1. Thus no more than

N:=7/ max faj(w),
1<j<d ag(w)/

balls are needed to covérS(w, u;) B(0, ¢). It follows thatS(w) B(u, €) can be covered by
N balls of radius:

[\/é&d(a)) + K (w)e®]e < 2aq < Q)}/V&
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Thus the contribution of (w) B(u, €) to V,, (A(Qw), Q%/Vs) is bounded by:

A N G )
= 2”7j.(2y87’ =80,¢",

wheres2, was defined in (14). Thus we have, as above,

Vy (A(Bw), 27 ) < 2, Vy (A(w). &).
Iterated coverings

Whatever the status af (w.r.t. J(10)) we have obtained (20):

Vy (A(Bw), 7y ()e) < 1 (@)" Vy (A(), &),

wherer, is defined in (16). Replacing by 6~ 1w gives,
V, (A@), 7 (0 Lo)e) < 1,0 X0)" V) (A0 2w), €). (22)

We would like to iterate (22) to obtain:

k
v, (A(w), []‘[r,,(@f/@)}) <]_[r,7 G ’w)) L (A0 w), ¢), (23)
j=1

but we need to ensure that we can keg«t@‘lw)e (and successive iterates) belgw
To see that this is possible, given soméw) > 0 consider the sequence

k
ex(w) = ( I1 t,,(G_jw)>so(a)).

j=1
Using ergodicity, we have:

k
1
EZ (10 w)) — E(nt,) = —B < —6/2 ask — oo,

and so

(i) there exists &(w) such that

k
Zln(rn(e_jw)) <0

j=1



282 J.A. Langa, J.C. Robinson / J. Math. Pures Appl. 85 (2006) 269-294

forall k > k(w),
(i) for any choice ofs > 0, there exists &; such that fok > ks we have,

k
1
—B-8<7 Zln(rn(elw)) <—B+3.
j=1
It follows that we can choos&)(w) such that

(i) ex(w)<noforalk=0,1,2,...,and
(ii) given anys > 0 we have,

eo(@)e” PR < g () < eo(w)e™ P~k (24)
forall k > ks

We can therefore iterate (22) starting with= ¢o(w) to obtain:

V, (A(@), e (@) < (th(G fw)) L (A0~ w), s0(w)).

Since fork sufficiently large, we have:

(=Y

k
EZ (ty (0 w)) < —B/2,

we set; = e #7/2 < 1 and obtain, for alk sufficiently large,

Vy (A@), ex (@) < £V, (A0 Fw), e0(w)). (25)
Taking the limit using the Poincaré recurrence theorem

We would like to take the limit ak — oo in (25), but we do not know that
VV(A(G_ka)),ao(a))) is bounded. Indeed, in general one would only expect a sub-
exponential bound on the radius af®*w) (see [9], for example), and this does not
translate readifinto a bound onV (A (6 *w), ¢).

Instead we use the Poincaré recurrence theorem (see [38], for example) to find a se-
guence of times for Which’y(A(G*kw), eo(w)) is bounded, and control the length of the
excursions using Lemma 2.4.

2 One could assume a sub-exponential bound on the radingsoft ») in H1 and translate this into a bound
on the number of-balls in .2 required to cover (see [19], for example). However, the resulting estimate grows
much too rapidly to be of any use here.
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For eachw, A(w) is compact, so for each fixeflwe know thatV, (A(w), ¢) is finite.
ChooseM > 0 and consider the set:

2y ={w: V, (A(),n0) < M}.

For anyM sulfficiently large this set has positive measure: we choose and fix onésuch
It follows from the Poincaré recurrence theorem thatfalmost everyw € 2 there is a
sequencé; — oo (which can depend om) such that *iw € 2.

For this sequenck; it follows from (25) that

Vy (A(®), &;(@)) > 0 asj — oo
and hence that

. log N (A(w), &, (w))
limsup <
jooo  —l0geg; (@)

Lemma 2.4 shows that; satisfies

. kj
lim sup"—Jrl =1

Jj—00 J
thusey; (w) satisfies the asymptotic condition (3) of Lemma 2.2, and so we finally obtain:
di(A@)<y. O
We now give a corollary of Theorem 4.2 that allows for a simple bound on the fractal
dimension. Since the hypothesis of the theorem is satisfied in most applications, we obtain

the same bound on the fractal dimension as on the Hausdorff dimension. The argument is
adapted from [7], see also [6].

Corollary 4.2. Let the assumptions of Secti8rold. Suppose thdho; < ¢;(w), where
¢; is a concave function of for eachw, and

Elnw, <0 (26)
for somen € Z. Then forP-almost everyy:
di(A(w)) < n.
Proof. The key observation is that there exist positive random variabkesd 8 with
O0<Ea,EB < 400,
such that

qj < —aj+pB,
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forall j =1,2,.... Indeed, for each fixed choosex, 8 such thaty = —an + g is the
straight line through(n, ¢,) and the point(n — 1, ¢,_1). Since j — ¢; is concave, all
points(j, ¢;) lie below the lineg = —an 4 B; thus we can replace the bound

Inw; <¢;(w)
by
InJ)j < —Olj—}—ﬂ.

Since the argument leading to (12) takes into account only the upper boynas can
simply replacey; by the upper bound-«j + 8. It follows that we must take:

. E[maxgj<a(d(—aj+ B) — j(—ad + B))]
E(ad — B)

_ Elmaxigj<a(d — j)B] dEB

N dFo —EB ~ dEa —EB’

14

However,d > n is arbitrary, so we can lef — co and show that/;(A(w)) is bounded
above byy for anyy > EB/E«. SinceEg, = —nEa + ES, we haveES/Ea < n and so
di(A(w)) <n. O

5. Application of the theorem to stochastic PDEs

In this section we discuss the application of our theorem to stochastic PDEs: we treat the
2d Navier—Stokes equations with an additive noise in some detail, and then recall previous
results for stochastic reaction—diffusion equations.

Consider a stochastic PDE (or ODE) evolving in continuous time that generates a
cocyclep: R4 x £2 x H — H, such that at time the solution starting atp with noisew
is given by:

@, wuo,
and the cocycle rule of composition,
(p(t + S, (,L)) = (P(t’ ﬁsw)(p(sﬂ (1)),
holds for allz, s > 0, whered is a two-sided shift orf2. For more details see [1], for
example.
We apply our theorem by taking§(w) := ¢(T, ) andd = ¥ for some suitable choice

of T. Note that the cocycle rule of composition reproduces the composition rule (10)
for S(w).
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5.1. The 2d Navier—Stokes equation with additive noise

Crauel et al. [15] proved the existence of a global attractor for the model:

du + (—vAu+ (u- Vyu+Vp)di = fde + Y p;dW; (1), (27)
j=1

with V - u = 0, wheref, ¢; € L? and W, (¢) are independent one-dimensional Brownian
motions, and boundary conditions are periodic®g- [0, L2

In order to cast this equation in its standard functional form,HAebe the space of
trigonometric polynomials (x) in R? of periodL in both directions and values &? such
thatV - u =0 and, u dr = 0. Define:

H = closure ofP in (LZ(Q))2
and
V = closure ofP in (Hl(Q))Z.

Equipped with th&L2(0))2 norm| - |, H is a Hilbert space.

In the standard way (see [37] or [12], for example) we rewrite Eq. (27) as a sto-
chastic evolution equation oH: Letting /T denote the orthogonal projection from in
(L?(0))? onto H, we define the Stokes operatdr=—ITA and the bilinear form
B(u,u) = H[(u - V)u]. This bilinear form satisfies the orthogonality property
(B(u,v),v) =0forallu,v e V. Eq. (27) then becomes:

du + [vAu + B(u,u) — f] df =ew; dW (1),

where for simplicity, following Flandoli and Langa [21], we have takes- 1 andg = w;,
one of the eigenfunctions of the Stokes operator.

We show that the random attractor for this equation has finite upper fractal dimension
for every choice off ande, and that the dimension estimate reduces to the deterministic
estimate:

|/
di(A) < cv2kl,
ase — 0 (11 is the first eigenvalue of the Stokes operatQr
To find bounds o, (DS(T'; u, w)), we use the trace formula due to Constantin, Foias
and Temam [11] (see also Chapter V of [37]). It is relatively simple to showShat :=
(T, w) is almost surely uniformly differentiable oA(w) in the appropriate sense, and
that Do (T'; w, uo)h is the solution of the linearized equation:

C;—lt]—I—AU—i—B(u,U)—i—B(U,u):O, U =ldgy, (28)
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whereu(t) is the solution of (27) withk (0) = ug (cf. Theorem 13.20 in [34], for example).
Writing (28) as

du/dt = L(t,u())U,
where
Lu)¢ =vAd — B(u,p) — B(¢,u),

the trace formula asserts that the volume expansion factors aftiane given by:

T

qa(T; 0, x) =INwg(De(T; w,x)) = SUp(Tr/L(s;x(s))P(s)ds),
P(0)
0

whereP (0) is an orthogonal projector of rarnkonto the space spanned hyrthonormal
elements(¢; }‘;:1 of H, and P(¢) the projector onto the space spanned by the images of
the vectorsp; under the linearized floDe(z, w; x).

We can therefore boung,; (D¢(T'; w, x)) by bounding,

TrL(s; x(s))P,
uniformly over all rankd projectorsP and all 0< s < T.

We therefore need to estimate:

n n

(L. ¢)=> (vAp; — Bu.¢;) — B($;.u). ¢))

Jj=1 Jj=1
=Y (A b))+ D _b(gj.u, ).
j=1 j=1
Following the standard argument, using the Lieb—Thirring inequality (see [37], for
example), we obtain:

n

Lwoi, ¢i)< —cv)»lnz + E|Du|2.
i Pj »
j=1

It follows that

T
gn(T; w,x) < /(—cvklnz + E|Du(t)|2dr)
v
0

T

=T (—cvklnz + El /|Du(t)|2dt). (29)
vT
0
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Thus, given a fixed choice df, we have an estimate fqy, of the form,
gn < T(—an®+ ),

wherea = cvi; is deterministic, and

Vv

T
B = C%/|Du(r)|2dt.
0

The problem therefore reduces to bounding the expectation of the time integieal
We note here that in the deterministic case it is easy to show that

z 2
%/‘Du(s)|2ds < ﬁ (30)

lim
T—o00 VA1
0

Obtaining a bound on this quantity in the stochastic case can be done by carefully following
the analysis in [21], the end result being that, uniformly for all 8 < &,

Vs

T
- /|Du(t)|2dt STR() + e M(T, 0) + (1 + &)=,
T VA1
0

whereE R = o < +00, andEM (T, -) = u(T) < +oc. (It is possible to obtain explicit, but
unpleasant, expressions forandw(7).)
Therefore,
an(T; 0, %) < T(—an®+ ),

wherea = cvi1 and

Eg< < (7% 112
< S(17% + e + @+l ).
v VA1

It follows that for any choice of the parametets;can be chosen sufficiently large,

s ¢ (4 | /12
nz—=—|\T o+en(M+A+e)—|,
VoA VA1

to ensure thakg, < 0. (Given the explicit forms fop andu one would naturally optimize
overT to minimizen.) Since the estimate fay, is concave for every, Corollary 4.2 now
guarantees thak (A (w)) < n for P-a.e.w.
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We note in particular, given ard/> 0, we can choose firdt and thereg to ensure that
for all ¢ < gg,

|f|2
Eg, <T —cvin? + — —i—cvk 82

di(A(w)) <c vﬂ +38,

showing that for smalt the estimate is close to that in the deterministic case.
5.2. Reaction—diffusion equations

We also mention here the bounds on the Hausdorff dimension of the random attractors of
certain reaction—diffusion equations obtained by Debussche [17] and Caraballo, Langa and
Robinson [3,4]. Since the estimates required to obtain the Hausdorff and fractal dimensions
are identical, previous calculations now yield the same bounds on the fractal dimension of
these attractors.

For the equation:

du = (Au+ Bu — u®)dr +epdW, with ulyy =0,

on a bounded domaity ¢ R¢ with ¢ € D(A) (for d < 4), the analysis in Debussche’s
paper show that;(A) < ¢f?/?, an estimate of the same order as in the deterministic case.
However, we note here that it has recently been shown that in fact the random attractor for
this equation consists of a single random poitp) = {a(w)}, and hence has dimension
zero ([5]; see [10] for a related result for Neumann boundary conditions).

The same equation with a multiplicative noise,

du = (Au + Bu — u3) dr +ouodW, withul|yy =0,

also hasit(A) < ¢84/2 [5]. In this case the attractor does not collapse to a point: its dimen-
sion is bounded below by 84/2, showing that as in the deterministic case [4],

di(A) ~ 72,
In particular it is interesting to note that this dimension estimate does not dependton
level of the noise.
6. Distinguishing experimental observations

Suppose that a particular experiment is governed by a random dynamical system. Then
comparing the observations in two different experiments involves two different realizations
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of the noise. The results here guarantee a rich choice of measurements that will distinguish
between distinct states of the system, even allowing for the different realizations of the
noise.

More mathematically, we suppose that the evolution of the physical system is governed
by a random dynamical system that has a finite-dimensional random attractor. Then ‘most’
choices of observation function (in some precise sense) will distinguish between all points
in

{A(@): ©=06,w1 0162, 1 €R},

with P x P probability one. We follow and expand on the approach in [29], which treated
similar problems for non-autonomous dynamical systems.

6.1. Abstract linear embeddings

The first result is based on the embedding theorem due to Hunt and Kaloshin [24] dis-
cussed in the introduction (Theorem 1.1). Their result uses the concept of ‘prevalence’,
which generalizes the notion of ‘almost every’ from finite to infinite-dimensional spaces
and was introduced by Hunt, Sauer and Yorke [25].

Definition 6.1. A Borel subsetS of a normed linear spack is prevalentif there exists
a compactly supported probability measureuch thatu (S +v) =1forallv e V.

For a more intuitive version of the definition, if we sBt= supfu) then E can be
thought of as a ‘probe set’, which consists of ‘allowable perturbations’ with which, given
av eV, we ‘probe’ and test whether+ ¢ € E for u-almost every € E.

Note that

() If Vv isfinite-dimensional then this corresponds (via the Fubini theorerfi)aeing a
set whose complement has zero measure;
(i) If Sis prevalent ther§ is dense inv;
(iii) The countable intersection of prevalent sets is itself prevalent.

For convenience we restate Hunt and Kaloshin’s theorem here:

Theorem 6.2[24]. Let H be a Hilbert spaceX c H a compact set with fractal dimension
d, andN > 2d an integer. Then a prevalent set of bounded linear function& — RY
are one-to-one betweexi and its image.

With the danger of labouring the point, the theorem says that there is a subset
E C L(H,RY), ‘the probe set’, such that for evedy e L(H,R"), L + e is one-to-one
betweenX and its image foyt-almost every € E. It is important to remark here that the
probe spacé can be chosen to be independen&ofif not of di (X)).
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We now show that a prevalent set of bounded linear functions will distinguish between
elements of random attractors. We denote\lgy) the entire history of the random attractor
over a particular realization,

Alw) := U A6;w).

teR

In what follows we will use the shorthand. ‘is one-to-one orX’ to mean thatL is one-
to-one betweelX and its image.

Theorem 6.3.Suppose thafA(w)} is a compact random set for a random dynamical
system for which the map,

(1, 0, u) > @1, w)u,
is Lipschitz continuous in and«-Hélder continuous in. Suppose that
df(A(a))) =d<oo P-as.

Let N > 2(d + 1)/« be an integer. Then there is a prevalent geof bounded linear
functionsL : H — R" such thatifL € G, L is one-to-one on

Alw1) UA(w2)
with P x P probability one.

Proof. Denote the fullP-measure set ab for which di(A(w)) = d by §2, and fixw € £2.
The set

M@= | AW

—n<t<n

is the image of théd + 1)-dimensional sef—n, n] x A(w) under the mag (¢, w). Since

the fractal dimension of (X) is bounded above by (X)/a when f is a-Hblder, see [20]
or [18], for example, it follows that;(4,) < (d + 1)/«. It follows from Theorem 6.2 that
if N is aninteger withV > 2(d + 1)/« then for each: a prevalent sef, of bounded linear
mapsL : H — RY are one-to-one oA, (w).

The countable intersectidi, = (o, Gn is still prevalent (by (iii) above), and consists
of bounded linear maps that are one-to-oneAqw). Indeed, if not there must be two
elements:, v € A(w) and anL € G4, such thatLu = Lv. But since we must have, v €
A, (w) for somen, andL € G,, this cannot be.

Now, it is clear that given a choice of two realizations, ws € 2, for every L €
L(H,RY), u-almost every choice of € E makesL + ¢ one-to-one om\(w1) U A(wy).
For eachL € £L(H,RY), denote byG; the set of alllwy, wo, e) € 2 x 2 x E for which
L + e is one-to-one o\ (w1) U A(wy).
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We have
///X(GL)d,ud]P’d]P’zl,
QQE

where x (G1) is the characteristic function @&, . Fubini’s theorem allows us to change

the order of integration,
///X(GL)dIP’d]P’duzl.

E 2

It follows that u-almost every choice of € E makesL + e one-to-one o\ (w1) U A(w2)
with P x P probability one. Since this is true for evefye £L(H,R"), the theorem fol-
lows. O

6.2. Point measurements

We now give a result allowing for more physical observations, provided that the attractor
consists of analytic functions. The deterministic version of the result is as follows:

Theorem 6.4[26]. LetU be a bounded open subsetRf, and letX be a compact subset
of L2(U, R?) with finite fractal dimensionl that consists of real analytic functiohso
that, in particular, for eachr € N and for every compact subsgtof U, X is a bounded
subset ofC” (K, R?). Then fork > 164 + 1 Lebesgue-almost every set (x1, ..., x) of

k points inU makes the mapy, defined by,

Ex[u] = (u(x1), ..., u(xp)),
one-to-one betweek and its image.
In the light of Theorem 6.3, the stochastic version of this result is unsurprising:

Theorem 6.5.Let {A(w)} be the a compact random set such that fea.e. w, A, (w)
satisfies the conditions of Theoren for everyn € Z,.. Then fork > 164 + 1, almost
every choice ok is one-to-one between

JAGw) U A6 (31)

teR teR
and its image witl? x P probability one.
3 This can in fact be weakened: the requirement is that the attractor consis® &iinctions with derivatives

bounded uniformly in every compa#t C U as in the statement of Hu theorem, and that v has finite order of
vanishing for every pair of distinct elementsv € X .
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We will omit the proof, which is a simplified version of that of Theorem 6.3. As in
Theorem 6.3, the condition required on the dimengigrcould be satisfied ifl; (A(w)) <
d and A(w) is invariant for a random dynamical system for whighis Lipschitz onH
anda-Hélder in time. Then we could také= (d + 1)/a. The analyticity properties need
to hold in a uniform way over each,; this is usually the case in applications (see, for
example, [8]).

7. Conclusion

We have shown that the random attractors that arise in the random dynamical systems
generated by certain stochastic PDEs enjoy the same estimates on their fractal dimension
as those on their Hausdorff dimension.

As a particular example we have obtained a bound on the dimension of the 2d Navier—
Stokes equations with a particular form of additive noise. It is an interesting open problem
to obtain similar bounds for more general additive noise, and for multiplicative noise.

One consequence of our results is that a single finite-dimensional linear map can be
used to embed most realizations of the random attractor into a finite-dimensional space
(Theorem 6.3). It is therefore natural to ask whether the dynamics restricted to the ran-
dom attractor can be captured by a finite-dimensional random dynamical system. However,
even in the deterministic case this question has not been satisfactorily settled (see, e.g.,
Chapter 16 in [34] and [33,35]).
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