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The  structure of a strongly connected permutation automaton, a quasiperfect 
automaton, and a perfect automaton are discussed algebraically using group theory. 
A characterization theorem for the three classes of automata, a condition for direct 
product decomposability of a strongly connected permutation automaton, and some 
other related results are proposed in this paper. 

i .  INTRODUCTION 

There are many articles discussing the structure of automata algebraically. In 
Fleck's first article [1], an automorphism group of an automaton is introduced, and 
it is shown that direct product decomposability of a "perfect" automaton is equivalent 
to that of its automorphism group. Trauth [2] extends the discussion to a "quasi- 
perfect" automaton and gives analogous results under a stronger condition. The same 
results are also given in Fleck [3]. Bayer [4] defines a "total" automaton, which is 
equivalent to a quasiperfect automaton, and gives a characterization of homomorphisms 
of that automaton. Extended discussions are also made in [5, 6]. 

On the other hand, an "input semigroup associated with an automaton" is intro- 
duced by Weeg [7], and relationships between an associated input semigroup and an 
automorphism group of an automaton are discussed by Arbib [9], Oehmke [10], and 
others. It is also shown that the associated input semigroup of perfect and quasiperfect 
automata forms a group respectively [1, 2]. 

Now, an automaton with associated input "group" is said to be "group-type," 
and it is easily proved that a strongly connected automaton is group-type if and only 
if it is a "permutation" automaton. So the classes of perfect and quasiperfect automata 
are proper subclasses of the strongly connected permutation one. 
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In Section 2 of this paper, a condition for one-to-one correspondence between all 
the homomorphisms and all the subgroups of an automorphism group is established 
in the strongly connected case. In Section 3, a characterization theorem for the three 
classes of automata is given. In the last section, a necessary and sufficient condition 
for a strongly connected permutation automaton to be decomposed into a direct 
product of automata is given as a condition for an input group to be satisfied. 

2. HOMOMORPHISMS OF AUTOMATA 

An automaton is a three-tuple A = (Q, M, I), where Q is a nonempty set of states, 
I is an input semigroup and M: Q • I ~ Q is a next state function. 

Let G(A) be an automorphism group of A, and H be a subgroup of G(A). Then 
a quotient automaton A/H of A mod H is defined using the congruence relation on Q 
induced by H, which is a homomorphic image of A [3]. That is, a subgroup of G(A) 
induces a homomorphism of A. But usually, not every homomorphism of an automaton 
can be induced by a subgroup in this sense [11, 12]. 

A is said to be "transitive with respect to a subgroup H of G(A)" if Yq, q' ~Q, 
3h E H, q' :-: h(q). A strongly connected automaton with a transitive automorphism 
group is called quasiperfect according to Trauth [2]. 

Let A be quasiperfect and ~ be a homomorphism of it. Define 

H = {h ~ C ( a )  I ,7(h(qo)) = ~(qo)} 

for some fixed qo in Q. Then H forms a subgroup of G(A) and the homomorphic 
image A/~ of A under ~/is isomorphic to A/H. 

Then a homomorphism of A induces a subgroup of G(A) and vice versa when A 
is quasiperfect. 

PROPOSITION 2.1. An automaton B is a homomorphic image of a quasiperfect 
automaton A if and only if there exists a subgroup H of G(A) such that B is isomorphic 
to A/H. 

We can find the same result in [11], since a right regular automaton of a group is 
equivalent to a quasiperfect one [4]. 

For a strongly connected automaton, a stronger version of this proposition can be 
obtained. 

THEOREM 2.1. Let ..I be a strongly connected automaton. The following two statements 
are equivalent: (i) All the homomorphisms of A are induced by the subgroups of G(A) by 
constructing quotient automata modulo in these subgroups. 

(ii) A is quasiperfect. 
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Proof. To induce a trivial homomorphism (i.e., a homomorphism to one-state 
automaton), .4 must be transitive with respect to G(.4) because A is strongly connected. 
The converse is true by Proposition 2.1. Q.E.D. 

3. THE CLASS OF AUTOMATA CHARACTERIZED BY GROUPS 

i, the input semigroup associated with an automaton .4, defined by Weeg [7] (just 
the same notion is also defined by Krohn and Rhodes [8]), is a quotient semigroup o f /  
under the congruence p: x, y ~ L xpy ~ Vq ~ Q, M(q, x) --- M(q, y). An equivalence 
class of p containing x is denoted by [x]. 

An automaton is called "group-type" if the associated semigroup forms a group. 
An automaton is called a "permutation" one if each input permutes a set of states 
[13, 14]. 

It is obvious that the class of permutation automata forms proper subclass of that of 
group-type one. But assuming the strongly connectedness, we can show the equivalence. 

PROPOSITION 3.1. For a strongly connected automaton A,  the following two statements 
are equivalent: (i) A is a permutation automaton. 

(ii) A is a group-type automaton. 

Proof is straightforward and, therefore, omitted. 
Hereafter, a characterization theorem for the classes of three types of automata will 

be given. 
First, we characterize a strongly connected permutation automaton. 

PROPOSITION 3.2. For an automaton .4, the following two statements are equivalent: 

(i) .4 is a strongly connected permutation automaton. 

(ii) .4 is a homomorphic image of some quasiperfect automaton. 

Proof. Let i be an input semigroup associated with a strongly connected permuta- 
tion automaton .4. By Proposition 3. I, i forms a group. Next define A t = (L Mr,  I), 
where V[x] e L Vy ~ I, Mt([x ], y) = [xy]. Then A t is quasiperfect and `4 is a homo- 
morphic image of .41. This is a proof of (i) -+ (ii). 

The converse can be shown directly. Q.E.D. 

A characterization for a quasiperfect automaton is already given by Bayer [4] as 
follows. 

PROPOSITION 3.3. A quasiperfect automaton B is a homomorphic image of a quasi- 
perfect automaton A i f  and only i f  there exists a normal subgroup H of G(A) such that B 
is isomorphic to A/H.  
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An automaton A is called perfect if it is strongly connected and Vq e Q, Vx, y e I, 
M(q, xy) =- M(q, yx) [1]. I t  is known that the class of perfect automata forms a proper 
subclass of that of quasiperfect automata [2]. 

A perfect automaton is characterized as follows. 

PaOPOSmON 3.4. A perfect automaton B is a homomorphic image of a quasiperfect 
automaton A if and only if there exists a normal subgroup H of G(A) which contains 
a commutator subgroup of G(A) such that B is isomorphic to A/H. 

Proof. First, there must  exist a normal subgroup H of G(A) such that B is iso- 
morphic to A/H. Next, let define an operation * on the state set QH = {[q]H [ Vq ~ Q} 
of A/H as follows: [q]u * [q']~/~-- [q"]~t ~ q" = M(q, xy), where q = M(qo, x) 
and q' = M(qo, y) for some fixed q0 in Q. Then  it can be proved that the algebraic 
system (Q~/, , )  forms a group which is isomorphic to the quotient group G(A)/H. 
But, since A / H  is perfect, (QH, *) must be commutative. So must be G(A)/H. 

The  sufficiency is directly shown by constructing A/H. Q.E.D. 

Now, we can show a desired characterization theorem. 

TtlEOREM 3.1. Let A be a quasiperfect automaton. The next three propositions hold. 

(i) An automaton B is a homomorphic image of A if and only if there exists 
a subgroup H of G(A) such that B is isomorphic to ./t/11. In this case, B is always a 
strongly connected permutation automaton. 

(ii) A quasiperfect automaton B is a homomorphic image of A if and only if there 
exists a normal subgroup H of G(A) such that B is isomorphic to A/H. 

(iii) A perfect automaton B is a homomorphic image of A if and only if there 
exists a normal subgroup H of G(A) which contains a commutator subgroup of G(A) 
such that B is isomorphic to A/H. 

4. DIRECT PRODUCT DECOMPOSITION OF AN AUTOMATON 

The  input semigroup 1 associated with a quasiperfect automaton A is isomorphic 
to G(A) under the next correspondence 4: G(A)--~ i ,  if(g) = [x] where g ~ G(A), 
[x] E I such that g(qo) ~ M(qo, x) for some fixed qo in Q [2]. 

As was shown in the proof of Proposition 3.2, a strongly connected permutation 
automaton A must be isomorphic to a quotient automaton At/H of A 1 mod some 
subgroup H of G(At). But, by the construction of A t , it is clear that an input group 
associated with At is identical to that with A. Then,  there must exist a subgroup K 

57I]7/3/5" 
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in 1, the input group associated with A, which is isomorphic to the subgroup H 
of G(At) under the correspondence shown previously. 

We call K the "natural subgroup" of 1. 

THEOREM 4.1. A strongly connected permutation automaton A is decomposed into 
a direct product of two automata i f  and only i f  there exist subgroups K 1 and K s in i ,  
the input group associated with A,  such that K 1 n Ko K and K I K  e --  i ,  where K 
is the natural subgroup of i. 

Proof. Suppose a strongly connected permutation automaton A is decomposed 
into a direct product of two automata A 1 and A s , i.e., A ~_ A 1 • Ao. Then  there 
exist H of G(At) such that A t / H  ~- A 1 • A s . Therefore, there must exist H 1 and 
/tl, of G(Az) which contain H such that A 1 ~ A I / H  1 and A s ~--- A t / H  e , respectively. 
In  these cases, homomorphisms ~n: At onto A, 71: A I / H  onto At~Ill and 7e: A t / H  

onto A t / H  z are defined by 7n([x]) --=- Ix]n,  71([x]n) = [x]n x and 7o([x]n ) ---- Ix]n..,. 
Therefore, for states [x]n,  [Y]u of A t /H,  [x]n(7x ~ 7~-X)[Y]n <> 

7//([X]) (71 ~ 711) 7nC[y]) ~ [x]((717n) ~ (71~/- ) -X)[Y]  "r [x]nl : [Y]n~ 

and similarly [x]n (72 o 72-1)[y]n r [x]n 2 ---- [Y]nz. Where -q o 7 -x denotes a congruence 
relation on the set of states induced by an automaton homomorphism 7- 

By the necessary and sufficient condition for the direct product decomposability 
of an automaton, 71 o ~/71 (~ 7/2 o .q~-i (intersection) must be an identity relation and 
71 ~ 7~ -1 [ ]  7z ~ 72 -1 (composition) must be an universal relation. 

The  first relation implies: [x]n = [Y]H <:> [x]n (71 o 7-~ 1 ~ 7z ~ 7 2 1 ) [ y ] H  <:> 

[x]~ (71 ~ 7i-1)[Y]n and [X]H (Ts ~ 72-1)[Y]H ~ [X]u 1 = [Y]nl and [X]H 2 = [Y]H~ " This 
implies the following: (3h e H, h([x]) = [y]) <:> (Shl ~ 111, hi(Ix]) = [y] and She e H e , 
h2([x]) = [y]). 

Then  we have h - -  h I --- hz by the strongly connectedness of M [1], which implies 
t I = t Z ,  n n z .  

The second relation implies: V [ x ] n , V [ y ] n , q [ z ] n ,  [x]n(TtoT-{t)[z]n and 
[Z]n (73~ 7~-l)[y]n ~ V[x], V[y], q[z], [x]n~ = [Z]nx and [z]n~ = [Y]n~ �9 This implies 
for any Ix], [y] in i ,  there exist h~ in H 1 and h s in H e such that h-~ths([y]) = [x], i.e., the 
subset HxH s of G(A~) must be transitive on the state set of A t . Since a quasiperfect 
automaton cannot be transitive with respect to any proper subset of its automorphism 

group, H1Hg. must be equal to G(AI) _~ i.  
The  sufficiency can be proved in a straight manner by constructing the quotient 

automata and, therefore, omitted here. Q.E.D. 

Notice that the factor automata are also strongly connected permutation ones, 
since every homomorphism preserves strongly connectedness and group-typeness. 
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COROLLARY 4.1. A strongly connected permutation automaton is decomposed into 
a direct product of two automata if  the associated input group is decomposed into a direct 
product of two groups. 

Proof. Assume i is decomposed into a direct product of two groups Jt and Ja.  
Let K be a natural subgroup of i and define K 1 z KJI and K s = KJ~. Clearly K 1 
and K 2 satisfy the condition of Theorem 4.1. Q.E.D. 

The result for the direct product decomposability of perfect or quasiperfect automata 
given by Fleck [1, 3] or Trauth [2] are shown as the corollaries of this theorem in 
a straight manner, since the natural subgroup is a trivial group of identity when the 
given strongly connected permutation automaton is quasiperfect. 
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