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Abstract

The existence and uniqueness of the solution of a backward SDE, on a random (possibly
infinite) time interval, involving a subdifferential operator is proved. We then obtain a probabilis-
tic interpretation for the viscosity solution of some parabolic and elliptic variational inequalities.
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0. Introduction

Backward stochastic differential equations (BSDE) provide probabilistic formulae
for the viscosity solution of semilinear partial differential equations (PDE) (see, in
particular, Pardoux, 1997; Pardoux and Peng, 1992, and their references). In this paper
one gives such formulae for parabolic variational inequalities on the whole space and
also for the solution of a Dirichlet problem for an elliptic variational inequality. We
restrict ourselves to variational inequalities for PDEs, and not systems of PDEs. The
only difficulty in treating general systems concerns the difficulty of giving a definition
of viscosity solution for such systems. In the first part of this paper we study BSDEs on
a random (possibly infinite) time interval, whose coefficient contains the subdifferential
of a convex function.

BSDEs with subdifferential operators include as a special case BSDEs whose
solution is reflected at the boundary of a convex subset of R*. In the one-dimensional
case, BDSEs with one-sided reflection have been studied in El Karoui et al. (1997),
together with the associated optimal stopping time/optimal control problem, and an ob-
stacle problem for a PDE (also called “variational inequality”’). BSDEs with two-sided
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reflection, together with the associated stochastic game of optimal stopping, are studied
in Cvitanic and Karatzas (1996). Multi-dimensional BSDEs reflected at the boundary
of a convex set is studied in Gegout-Petit and Pardoux (1996). Our BSDEs include
this last class as a special case. Also, we prove that the bounded variation process to
be added is absolutely continuous, a result which was not formulated for all convex
sets in Gegout-Petit and Pardoux (1996). However, our results do not include those
in El Karoui et al. (1997) and Cvitanic and Karatzas (1996), since those results allow
randomly moving boundaries, while our convex function is fixed. Also, we do not
study the stochastic control problem associated with our BSDE.

The paper is organized as follows. The BSDEs and the results concerning them are
formulated in Section 1. Section 2 is concerned with a priori estimates for sequences
of penalized approximations of our equations. We prove in Section 3 the results stated
in Section 1. In Section 4, we prove that the solution of a BSDE provides the unique
solution of a certain parabolic variational inequality. Finally, in Section 4 we study the
connection between our BSDEs and the Dirichlet problem for an elliptic variational
inequality.

1. Backward stochastic variational inequalities: existence and uniqueness results

Let (Q,7,P,{%;: t=0}) be a complete right continuous stochastic basis. We will
assume that

F=0({By: 0<s<t})V A,

where A" is the class of P-null sets of # and B is a d-dimensional standard Brownian
motion.

Let A€ R, k,d € N* and 7 be a stopping time.

We introduce the notations:

S,f’i[O, 7] is the Banach space of continuous .%-progressively measurable stochastic
processes f :Q x [0,00) — R¥ such that

12
I71s= £ (3w 7o) | <o

and Mk“[O, 7] is the Hilbert space of Z;-progressively measurable stochastic processes
f:Q x[0,00) — R* such that

T 1/2
£ 1lar = {[E </0 ™| f(s)? ds)} <00,

In the sequel, we shall omit the indices &, 4,7 whenever, respectively, k=1,2=0
and 7= oo. For example, S> =57°[0,00) and M2[0,7]=M}°[0,].

The first goal of this paper is to study the existence and uniqueness of the solution
of the backward stochastic differential equation

dY, + F(t,Y,,Z,)dt € 0p(Y,)dt + Z, dB,, 0<t<r,
YT :és

(1.1)
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where
(Hp) 7:Q — [0,00) is an a.s. finite Z;-stopping time,

the function F:Q x [0,00) x Rf x R¥*¢ — R* satisfies for some a € R, f,7>0, and
n an Z;-progressively measurable process:

(i)  F(,-yz) is F-progressively measurable,
(i) y~— F(w,t,y,z2):R¥ — RF is continuous,
(Hy) (i) (y— ). F(ty.z)—Fty.2) <oly =]
|F(t,y,2) = F(t, y,.2")| <Blz = '],
(2, 3,0)[ <n(t) + 7]y]

for all t>0, y,)' €RF, z,z/ € R¥*? P-as.; d¢ is the subdifferential (see below) of
the function ¢ : R¥ —]—o00, +00] which satisfies

(i) ¢ is a proper (¢ # +00)

(Hs) convex lower-semicontinuous function,
(i) @(»)=p(0)=0

and finally ¢ is an R¥-valued .%-measurable random variable, and there exists /> 20+
%, such that

i) Ee™(EP + |p(&))] <o,
H T
() (ii) [E</ e*sm(s)z) ds < oo.
0

Denote
Dom ¢ ={u € R*: p(u)<oo},
dp(u)={u* €R*: (u*,v —u) + p(u) < p(v), Yo e R},
Dom (0¢p) = {u € R*: d¢p(u) # 0},
(u,u*)€0¢p & uecDom (0¢), u* € dp(u).

We remark that the subdifferential operator d¢ : RF —2®" is a maximal monotone
operator, i.e. that

W — v u—0v)=0, Y(u,u),(v,0*)€ do. (1.2)

In all what follows, C denotes a constant, which may depend only on A,a, and f,
which may vary from line to line.

2 This assumption is not a restriction since we can replace ¢(u) by ¢(u + ug) — @(ug) — (ug,u) where
(o, ug) € 0ep.
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The main result is given in the following theorem:

Theorem 1.1. Let the assumptions (Hy)—(Hy) be satisfied. Then there exists a unique
triple (Y,Z,U) such that

Y €SPH0,71 N ME0,7],  Ze MEL[0,7], U eMF0,1], (1.3a)

[E/Ore}“gq)(Yg)ds<+oo, (1.3b)

(Y;,Uy) € 0p, dP x dt a.e. on [0,1], (1.3¢)

Yt—i-/f Usdszf—k/r F(s,Ys,ZS)ds—/T ZsdB;, Vt=0, a.s. (1.3d)
INT INT INT

Moreover, for any stopping time 0, 0<0<, this solution satisfies

[EU e Ys|2+Zs||2)ds] <CI(0,7), (1.4a)
0
E { sup e“mz] <CI(0,7), (1.4b)
0<t<t
E[e” p(Yp)] <CI3(0,7), (1.4c)
[EU e”zfszds] <CIy(0,7), (1.4d)
0
where
r(0,7)=E {e“|§|2+/ e'““|F(s,0,0)|2ds], (1.5a)
6
Iy0,7)=F {e“uélZ + (&) + / e’“‘|n(s)|2ds} : (1.5b)
0

The triple (Y,Z,U) which satisfies Eqgs. (1.3a), (1.3b), (1.3¢) and (1.3d) will be
called a solution of BSDE (1.1) and we shall write (Y,Z,U) € BSDE (¢, 1; 0, F).

Proposition 1.1. Under the conditions of Theorem 1.1, if (Y,Z,U) € BSDE(¢,1; ¢, F)
and (Y,Z,U) € BSDE (&, 1; ¢, F), we have

[EU MY — V> + 12 — Zsz)ds} <CA(7), (1.6a)

0

[E{ sup e”|Y, — f’ﬂ <CA(1), (1.6b)
0<r<rt

where

T
A(t) = [E[e% — &P+ / e |F(s, Y, Zy) — F(s, Y, Zo) > ds | . (1.7)
0
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Remark 1.1. In the case where t=1T is a finite fixed number, the same results hold,
with the same assumptions except that we need not assume that 4>2u + 82, and we

can choose 1=0.

Corollary 1.1. Let assumptions (Hy), (H3) and
2>20+ 2, (1.8a)

[E/ e|n(s)? ds < oo (1.8b)
0

be satisfied. Then there exists a unique triple (Y,Z,U)G(S,f’)‘ N Mkz’i) X Mkzx’d X
Mkz’ such that: YT >0

T T T
Yt+/ Usds:YTJr/ F(s,Yy,Zs)dsf/ ZydB,, YO0<t<T, P—as. (19a)
t t t

Jlim E(e”|Y,[*)=0, (1.9b)
(Y, U) €dp, dP x dt a.e. (1.9¢)
Moreover,

E {(supe”Y,V) —|—/ M (%] + ||ZS|2)ds} <C[E/ e”|F(s,0,0)* ds,
0 0

t=0

(1.10a)

sup [Ee)"q)(Y,)+[E/ e)“g|US|2<C[E/ e |n(s)|* ds. (1.10b)
0 0

t=0

2. A priori estimates on a penalized equation

The existence result for Theorem 1.1 will be obtained via an approximation of the
function ¢ by a convex C!-function ¢., £ >0, defined by

@-(u) =inf{1u — v + eq(v): veR*}
= Yu — Jau + o), @2.1)
where J.u= (I +cd¢)~'(u). For the reader’s convenience we mention some properties
of this approximation (see Barbu, 1976 or Brezis, 1973 for more details):
éDq)E(u) = é@gog(u) = é(u —Ju) € dop(Ju), (2.2a)
|Jou — Jov|<|u—v| and (gi{%Jgu:Prm(u) (2.2b)

for all u,v € R¥, ¢>0.
We first note that the convexity of ¢, implies that for all u € R¥,

?=(0)= @ (u) + (Dp-(u), —u).
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But from (H; — ii) and the definition of ¢. it follows easily that ¢.(u)>0= ¢.(0).
Hence, for all u € R¥,

0< (1) <(Do(u), u). (2.2¢)

By Eq. (2.2a) and the monotonicity of the operator d¢p we have

1 1
0< (ngs(u) - nga(v),Jsu —J5v>

1 1 1
- (ang(u) L Do) u - v) LT
€ 0 €
1 , (1 1
*5|D(P5(U)\ tlz+5 (Do-(u),Dps(v))
and then
1 1 1 1
ED%(M) - SD(/)(S(U),H —v| = - - + 3 |D@-(u)| % [Dps(v)] (2.3)
for all u,v € R, €,0>0. Consider the approximating equation

A B ) ‘ ‘
ol [ pedryas=¢+ [ Fevizoes- [ Zas. w0 p-as
€ Jint ¢ ¢

AT AT

(2.4)
It follows from the results in Darling and Pardoux (1997) that Eq. (2.4) has a unique
solution (Y%,Z°) € (S7*[0,7] N MZ"[0,1]) x M/, [0,7].

Proposition 2.1. Let assumptions (H,)—(Hy) be satisfied and let 0 be a stopping time
such that 0<0<t. Then

E [ sup e[V |* + / X+ |Zfz>ds} <CI(0,7) (2.5)
0

0<t<t

with I defined by Eq. (1.5a).

Proof. 1t6’s formula for e*|Y7|?

g [

AT

yields

T T

, 2 s .
SUEE+1Zds+ 2 [ Do)

INT

= HT|Ef 42 / P (F(s, Y7, Z0), Y] ) ds — 2 / (Y, Z; dB,).
t t

AT AT

But from Eq. (2.2¢)

1
<ED¢5(y), y) >0

and from Schwarz’s inequality

1
2(F(s,3:2), V)< Qo+ (1B + 1)y + T [l2l” + ~[F (s, 0,0)".

147
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Hence,
T
. - r ~
MY+ / e” {(ﬂ»—Za—ﬁz—r(l+ﬁ2))IY;|2+—1 125112 | ds
INT +r
[ T
<eM|¢)F + —/ e)°|F(s,0,0)\2ds—2/ e™(Y:,Z5 dBy), V=0, as.
r INT INT
We choose
>0+ B
7 _ 2 2 (26)
O<r< L—Zﬁ) Al
1+ p

The result without the sup in the expectation follows by taking the expectation in the
above inequality. Finally, the result follows by a combination with Burkholder—Davis—
Gundy’s inequality.

Indeed, the first step yields, in particular, that

T
[E/ e™
0

and one then obtains

ZF|?ds<C,

. N 1 /7 .
sup ¢[17P<e e+ [ HIF.0.0)Fds+2 sup
0

0<t<rt 0<t<rt

/ e (Y7, Z: dB,)
t

)

1 A L
<C+ E[E ( sup e”|Yf|2> + CZ[E/ e™|Z¢ | ds
0

0<t<t

Then, from Burkholder—Davis—Gundy’s inequality,

[E( sup e“Yf|2>< Ci +2[E< sup

0<t<rt 0<t<t

T
/ e™(Y7,Z5 dBy)
t

and the result follows. [J

Proposition 2.2. Under the conditions of Proposition 2.1, there exists a positive con-
stant C such that for any stopping time 0,

T 1 2
E / e’ <€|D(p5(YSE)|> ds<CI»(0,7), (2.7a)
0
Ee”o(J.Y5) +E /9 e (Y5 ) ds <CIy(0,7), (2.7b)
E(e” Y5 — J.(Y))P) <*CTa(0;7), (2.7¢)

where I'»(0,7) is given by Eq. (1.5b).

Proof. Writing the subdifferential inequality

0 (Y)) = (e — e )po(Y]) + eV u(Y)) + eV (Do-(Y), Yy — Y[)
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for s=t;,1 A1, r=t; A1, where t=ty<t;j<tp<--- and t;;; — t;=1/n, summing up
over i, and passing to the limit as n — oo, we deduce:

T

; 1
ze“%(Yf)ng / e™|Dp.(YE)* ds

INT

T

CA[ATQDE(YtE/\I)‘F/

AT

T

<e™ (&) + / e (De(YE), F(s, Y5, Z5)) ds

INT
- / e (D.(YE), Z dBy), Vi=0, as. (2.8)
INT

The result follows by combining this with the following inequalities and Eq. (2.5) (the
right side of the second inequality follows from Eq. (2.2c))

HD@(»)* + ep(J-p) = 0-(»), ep(J-y)<p-(¥),
—20:(y) <[ @(¥) <|A|(Do(¥), ¥),

P=($) <ep(&),
(Do), Ay + (s, 322) < 5 D00 + SUA11Y + R G 7. 2)IY
< - 1D0- (P + (AR + FGs, 1))
< S ID.()P + L2 + 4
+72 P+ nP(s))].

Proposition 2.3. Let assumptions (H,)—(Hy4) be satisfied and €,6>0. Then

E [ / (|1 - YR+ 12 - Zf|2)ds] <(e+0)CI(v), (2.92)
0
E < sup e |Ys — Y;3|2> <(e + 0)CI'(1), (2.9b)
0<r<t
where
I'(t)=E {e”(az + (&) + / e™|F(s,0,0)|? ds} ) (2.10)
0

Proof. By It6’s formula

T
NG = VP [P VIR 125 - 20

AT

T . <1 1 o
+2/ e” <Y§ -7, ~Do-(¥7) — ng(Yf)> ds
t

AT



E. Pardoux, A. Rdscanul Stochastic Processes and their Applications 76 (1998) 191-215 199

s Lgo

T
=2 [ 0 - VARG - ¥z ds
tNT

T
2 [ vz - zhas).
INT
We have, moreover,

2(YE — YO,F(s, Y5, Z°) — F(s,Y°, Z%))
. 1 .
SQa+1+nPY =Y P + Iz = 2|
r

and by Eq. (2.3b) it follows that

T
e*<w>|m—w2+/ e [(4— 20— B> — rp)|Y: — YO

INT

T

r _ N 1 1 <
sz - zPas<e (L g) [ o iDesrlas

AT

—z/ eM(YE = Y2,(Z5 — 7°)dBy). (2.11)
t

AT

Now, from Eq. (2.7a)
1 1 ' 5
2 (E + 5) [E/ ¢ |Do-Y{||Des(Y))| ds < C(e + ) (o).
INT

Eq. (2.92) then follows by taking the expectation in Eq. (2.11), and Eq. (2.9b) follows
from Egs. (2.11), (2.9a) and Burkholder—Davis—Gundy’s inequality.

3. Proofs of the existence and uniqueness of the solution
We begin with the

Proof of Proposition 1.1. From It6’s formula we have

T
DY, — T2 +/ BT, = TP + 12 — 2,7 ds

AT

+2/ e (U — Uy, Yy — Yy)ds
t

AT

= e/lf|é - 5‘2 +2/ eAS(YS - YS)F(Sa YS,ZS) _ﬁ(sa YS=Z~S))dS

INT

- / Yy — T2 — 70)dBy). G.1)

AT
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But
20U, — U, Y, — Y)=0, dPxds ae.,
2Y = V,F(s,Y,Z) = F(s,Y,2))< Q4+ (1 + 1) + )Y — ¥

1 ~ 1 -
+—Z-Z|*+-|F(s,Y,Z) — F(5,Y,Z)|?
147 r

with 7 given by Eq. (2.6), where «, f§ are replaced by &, . With these inequalities and
Eq. (3.1), taking the expectation, we clearly have Eq. (1.6a). Then in a standard manner
from Egs. (3.1) and (1.6a), via Burkholder—Davis—Gundy’s inequality, we obtain easily
Eq. (1.6b).

Proof of Theorem 1.1. Uniqueness is a consequence of Proposition 1.1. The existence
of the solution (Y,Z,U) is obtained as limit of the triple (Y¢,Z;, f Do (Y7)).
From Proposition 2.3 we have

Y €SP0, TN ME[0, ], ZeME!, st.

lim Y=Y in S>*[0,7]NM>*[0,

lim in 5[0, 7] N M~ [0, 7], (3.2)
2,

c}{% Z°=Z in kakd,

and Eqgs. (1.4a) and (1.4b) follows by passing to the limit in Eq. (2.5). Also, from
Egs. (2.7a) and (2.7c) we have

lim J.(Y$)=7Y in M>*[0,7],
E{T\I})Jv(. ) in M;>"[0, 7]
lim E(e"'L(77) — Yo") =0

for any stopping time 0, 0<O<rt.

Egs. (1.3b) and (1.4c) follow from Egs. (2.7b), (2.9b) and the fact that ¢ is Ls.c.
Hence, the limit pair (Y, Z) satisfies Egs. (1.3a), (1.3b) and (1.4a)—(1.4c).

For each £>0, define U7 = (1/e)Do.(Y7) and USF = fot Us ds. It follows from our
convergence results and Eq. (2.4) that there exists a progressively measurable R¥-valued
process {U,, 0<t<t} such that for all 7>0,

E( sup |U, — Ut|2> —0, £—0.
0<t<TAT
Moreover, from Eq. (2.7a),

supE/ eM|UF* dt < oc.
e>0 0

From this, it follows that for each T7'>0, U® is bounded in the space L*(Q;
H'(0,T At)), and — at least along a susequence — it converges weakly to a limit
in that space. The limit is necessarily U, hence the whole sequence converges weakly,
and U € L2(Q; H'(0,T A 1)), in particular, it is a.s. absolutely continuous, U, takes the
form U, = fo U, ds, where {U;, 0<t<t} is progressively measurable. Now, Eq. (1.4d)
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follows from the above inequality and Fatou’s lemma. Moreover, it follows e.g. from
Lemma 5.8 in Gegout-Petit and Pardoux (1996) that for all 0<a<b<T, V € M?(a,b),

bAT ant
/ (Ufth*Yf)dtH/ (U, V, = Y,)dt
a ant

AT

bAT

in probability, and from Eq. (2.7a) .fam (U7,Je(Y]) — Y7)dt — 0. Now, since Uy €
dp(J-(Y)),
bAT bAx bAT
| wir—saa [ ewoias [ oma

and taking the liminf in probability in the above, we obtain that

bAT bAT bAT
/(U,,V,—mdr+/ <p(md1</ (V) dt.

AT ant ant

Since a, b and the process V are arbitrary, this establishes Eq. (1.3¢). Egs. (1.3d) has
also been proved.

Proof of Corollary 1.1. For each n>1, let (Y",Z",U") € BSDE(0, n; ¢, F). From the
estimate (1.4) in Theorem 1.1 we have

[E/ e (Y + ||ZS”||2)ds<C1[E/ e™|F(s,0,0)| ds,
0 0

oo
[E{ sup (e’“~'*|YS"|2)} <CiE / e™|F(s,0,0) ds,
0

0<s<n

e (IS CE [ i) ds

n o0
E U e“|US”|2ds} <c2[E/ e™|n(s)| ds,
0 0

and Y]'=7Y=0,Z=0,U =0, for s>n.
Let m>n. We have

th—i—/ Usmds:Y,f”—l—/ F(s,YS’”,Z;”)ds—/ Z!" dB;
t t t
for all £ €[0,n], w-a.s., and from Proposition 1.1

n
| [ e - R 1z -z s <cerEm
0

[E( sup ™| ¥ — YS’”|2> < Ce™E|Y™ .

0<s<n

From Eq. (1.4b),

e“[E(Y;"|2)<[E( sup e“Y;"|2> <CE (/ e“|F(s,o,0)|2ds) —0
T

T<t<m
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as T =n— oo. Hence, EIYES,f’iﬂMk“, ZEMkZ’Xid and UGMkz’)' such that as n— oo
for all T >0,

Y'Y in SpH0,T)NM>P(0,T),
e'“vT[E|YT|2<C[E/ e™|F(£,0,0)) ds,
T

7" 7 in MP] 0,T),

U"— U in SH(0,T),
where U = fot U"ds, U is absolutely continuous and (Y, Z, U) satisfies the assertions
of Corollary 1.1, where U =dU/ dt.

The solution is unique since if (¥,Z, U) and (¥, Z, U) are two solutions of Egs. (1.9a),

(1.9b) and (1.9¢) then from Proposition 1.1

E( sup e“nﬁz)w/ ™Y, — %|* ds
0

0<s<n

n
+[E/ ™|z, — Z,||> ds < C E(e™|Y, — T, %)
0

and for n— oo we get Y=Y, Z=2Z; U is uniquely defined by Eq. (1.9a).

4. Connection with parabolic variational inequalities

In this section we will show that the BSDE studied in the previous sections allows us
to give a probabilistic representation of solutions of a parabolic variational inequality.

Let (2, F,P, F;,B,);>0 be a R?-valued Wiener process, 7 = a({By: 0<s<t})V N,
and

b:[0,T] xR =R ¢:[0,7] x RY - RY x R?
be continuous mappings such that

|b(t,) — b(t, )| + [[o(t.x) — o(t,5)|| <La|x — 7],
Vte[0,T], Vx,xeR?

4.1)

(for some constant L; >0).
For each (¢,x)€[0,T] x R?, let {X!*, 0<s<T} be the unique solution of the SDE

tVs tVs
X =x+ / b(r, X™)dr + / o(r,X'*)dB,. (4.2)
t t

We have (see Friedman, 1976) for 1 €[0,T]; x,x’ € R?:
XX =x, Vse[0,1], (4.3a)

X eS0T, Vp>2, (4.3b)
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E ( sup XS”‘|”> <C(1 + [x|?), (4.3c)

s€[0,7]
E ( sup X" st'x'p> SC(1+ x|? + |XP)(jt = '[P + |x = X'|P), (4.3d)
s€[0,7]

where C=C(p,T,L,K}), K; :supte[O,T]{|b(t,O)| + |a(2,0)|}.
We now consider the BSDE Eq. (1.1) in the case k=1, with the data (&, t; @, F)
of the form

=T,
{(w) =g(X7"(w)), (4.4)
F(w,s, y,z)= f(s. X{"(w), y,2),

where ¢, [ satisfies

ge C(RY;R) and 3M >0, g€ N such that

(4.5)
lg(x)| <M(1 + |x|7), for all x€RY,

feC(0,T] x R x R x R?) and
da, B,7>0, p € N such that
|f(tx, 3, 0)|<y(1 + [x]” + [ ¥]) (4.6)
(v = S (tx,3,2) = f(6,x,5,2))<aly = §P,
|f(tx,t.2) = f(tx, y,2)| < flz — 2]
for all t€[0,T]; x€RY; y,7ER; zZ€R?, and

¢ :R—[0,400] is a proper, convex ls.c. function, s.t.

P(»)=9(0)=0 (4.7)
and

IM >0,3m e N* such that

4.8
(g0 <M1+ [x|™), VxR, (4.8)

For each t>0 we denote by {Z/, s€[+,T]} the natural filtration of the Brownian
motion {B; — B;, s €[t,T]} argumented with the P-null sets of Z.

Under the assumptions (4.4)—(4.8) it follows from Theorem 1.1 (see Remark 1.1)
that for each (£,x) € [0, T] x R? there exists a unique .7/ -progressively measurable triple
(Y™, Z,U™) € S?[t, T] x M23[t, T] x M?[t,T] such that

T T T
e [ usarsgog s [exn sz [z,
s s s 4.9

Vse[t,T], P—as.
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and
(Y, U¥)edp, dPx ds ae. on Qx[4T] (4.10)

We shall extend Y™, Z>, U¥, for s€[0,T] by choosing Y* =Y/, Z¥=0, U* =0,
Vs €[0,¢]. Hence

T T
e [ urar—ga)+ [ nosex sz e

T
—/ ZMdB,, Vse€[0,T], as.

s

and Eq. (4.10) is satisfied a.e. on Q x [¢,T].

Proposition 4.1. Under assumptions (4.1),(4.4)—(4.8) we have

E| sup [YF]* ] <C + [x|P) (4.11)
s€[0,7]

and

[E( sup Y5 — Y;’X’F) < ClE|gXE) — g(Xt )|
s€[0, 7]

T
TE / () f (X5, Y5, Z5%)
0

— 1 (M) (X Y, ZE)P dr] (4.12)

for all t,t' €[0,T], x,x' € R (C>0 and p €N are constants independent of t,t' € [0, T]
and x,x' € R?).

Proof. From inequality (1.4b), with (0 =¢,t=T) in Theorem 1.1,

T
E sup [Y*[P<C (fE|g<X;‘)|2+fE / |f<r,X:ﬁ0,0)2dr),
se(t,T] t
where C >0 is independent of ¢ € [0, T] and x € R?, which yields Eq. (4.11) using the
assumptions on f and g and Eq. (4.3c¢).
Eq. (4.12) follows from Eq. (1.6b) in Proposition 1.1. [J
We define

u(t,x)=Y">, (,x)€[0,T]x RY, (4.14)

which is a deterministic quantity since Y/ is Z/'-measurable, and &' is a trivial
o-algebra.
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Corollary 4.1. Under assumptions (4.1) and (4.4)—(4.8) the function u satisfies:

u(t,x)eDom ¢, Y(t,x)€[0,T]x R?, (4.15a)
lu(t,x)| <C(T)(A + |x|”?), ¥(t,x)€[0,T]x R?, (4.15b)
uc C([0,T] x RY), (4.15¢)

where C(T)>0, pe N are constants independent of t and x.

Proof. We have @(u(t,x))=E@p(Y) < + oo; Eq. (4.15a) follows, Eq. (4.15b) follows
from Eq. (4.11).
Let (t,,x,) — (¢,x). Then
u(ty, x,) — u(t,x)|2 = E‘Ytt:xn - Yttx‘z

<2E sup Y[ — YPP 4 2E|Y - PP
s€[0,7]

Using Egs. (4.12), (4.3c) and (4.3d), we obtain that u(t,x,)— u(t,x) as (¢;,x,)
—(t,x). O

In the sequel, we shall prove that the function u defined by Eq. (4.14) is a viscosity
solution of the parabolic variational inequality (PVI):

au(att,x) + Lu(t,x) + f(t,x,u(t,x), Vuo)(t,x)) € 0p(u(t,x)),

tef0,7], xeR9,
u(T,x)=g(x), xR, (4.16)

where

1 & & d 0
g,: E Z (O'O' )l:j(l‘,x)m + 12:1: bi(l,x)ani.

ij=1

Remark that at every point y € Dom ¢

dp(»)=[o_(»), ¢ . (M),

where ¢’ (y) and ¢/ (y) are the left derivative and the right derivative, respectively,
at the point y.

We shall define the notion of viscosity solution in the language of sub- and super-
jets, following Crandall-Ishii—Lions (1992). S(d) will denote below the set of d x d
symmetric non-negative matrices.

Definition 4.1. Let u € C([0,T] x R?) and (#,x) € [0, T] x R?. We denote by 2% u(t,x)
(the parabolic superjet of u at (¢,x)) the set of triples (p,¢,X) € R x R? x S(d) which
are such that

u(s, y) < u(t,x)+ p(s — ) + (g, y — x)
X (y—x)y —x)+o(s —t| + [y —x|*).
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22~ u(t,x) (the parabolic subjet of u at (#,x)) is defined similarly as the set of triples
(p,q,X)€R x R? x S(d) which are such that

u(s,y) = u(t,x) + p(s —t) +(q,y — x)
+1X(y —x)y —x)+o(|s —t| + [y — x|*).

We can give now the definition of a viscosity solution of the parabolic variational
inequality (4.16):

Definition 4.2. Let u € C([0,T] x R?) which satisfies u(T,x) = g(x).
(a) u is a viscosity subsolution of (4.16) if:

u(t,x)eDom ¢, Y(t,x)e[0,T]x R?
and at any point (£,x) € (0,7) x R?, for any ( p,q,X) € 2*Fu(t,x)

—P— %TI‘((O'O'*)(I,X)X) - (b(tax)a q) - f(taxa u(tax)a qo—(t)x))
< — @' (u(t,x)). 4.17)

(b) u is a viscosity supersolution of Eq. (4.16) if:
u(t,x)eDom ¢, Y(t,x)€[0,T] x R?,

and at any point (£,x) € (0,T) x R?, for any (p,q,X) € 2> u(t,x)

—p— %Tr (6a*(t,x)X) — (b(t,x),q) — f(t,x,u(t,x),qo(t,x))
> — ¢l (u(t,x)). (4.18)

(c) u is a viscosity solution of Eq. (4.16) if it is both a viscosity sub- and super-
solution.

Theorem 4.1. Let assumptions (4.1) and (4.4)—(4.8) be satisfied. Then the function
u(t,x) defined by Eq. (4.14) is a viscosity solution of Eq. (4.16).

Proof. For each (1,x) €[0,T]x RY, £€10,1], let (Y2, Z%,), s €[, T], the solution of
BSDE

T T T
1
Ystxs + / _D(pE(Ystxr) dr= g(X]t‘x) + / f‘(r"Xrtxa Ygtx)’Zéxr) dr — / Zixi dBr
’ N € ’ N ’ ’ N -
It is known (see Pardoux, 1997) that
u(t,x)=Y, 1€[0,T], xe R?

is the viscosity solution of the parabolic differential equation:

Ou:(t,x)
ot
u(T,x)=g(x), t€[0,T], xeR’. (4.19)

L) + 030600, (Vo) (6:6)) = - Dep- (a6,
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From Proposition 2.3 we have

Juc(t,x) — u(t,x)P <E sup [YE = YFP<C(+ [x]P)e
SE[L,T]

for all (,x)€[0,T] x R (C>0 and p€ N are constants independent of ¢ and (zx)
€[0,7] x RY).

First, we shall show that u is a subsolution. From Lemma 6.1 in Crandall-Ishii—Lions
(1992), if (,x)€[0,T] x R? and (p,q,X) € Z**u(t,x), then there exist sequences

e\, 0
(£, Xn) €0, T] x RY,

(pn: qn:Xn) E '@2+u6,,(tn>xn ):
such that

(tns Xy the, (tns X0 )y Py Gn> X)) — (6, X, u(t,x), p,q,X) as n— oo.

But for any n:

—Pn— %Tr (6™ ) (tn, x0)Xn) — (B(tn, X1 ), qn)
1
— [t X the, (10 X0 ) @O (80, X)) < E—D(pgn(ug,,(tn,xn ). (4.20)

We can assume that u(¢,x)> inf(Dom ¢) since for u(z,x)= inf(Dom ¢) we have
¢’ (u(t,x))= — oo and inequality (4.17) in Definition 4.2 is clearly satisfied.
Let y € Dom ¢, y<u(t,x). The uniformly convergence u. — u on compacts implies
that Ing =np(t,x, y)>0 such that y <u. (t,,x,), Yn=no.
We multiply Eq. (4.20) by u.,(t,,x,) — », one follows:
[—pn — %Tl‘ ((O-O-*)(tn,xn)Xn) — (b(tn,Xn), qn)
— f(tn, X, ”5,,(tmxn): Gn0(Ln, Xy )](usn(tnaxn)) -)
+ O (1t (11 0)) S 9(7). (421)

Passing to liminf, ., in Eq. (4.21) we obtain

[_p - %Tr((aa*)(t,x)X) - (b(t9x)a Q)f(t,X, u(tax): qo-(tyx))](u(tax) - y)
+ o(u(t,x)) < p(y),
hence,
—pP - %Tr ((66*)(I’X)X) - (b(tsx)a Q) - f(tax’ u(t,x), qa(t,x))
_e(u(t,x)) — @(y)
u(t,x) -y
for all y <u(t,x), which implies Eq. (4.17).
Let us show that u is a supersolution. Similarly, given (£,x)€[0,7]x R? and
(p.¢,X) € 2> u(t,x) there exist the sequences

e\, 0
(tnrx) €[0,T] x RY,
(pna QnaXn) G 927u5,,(tnsxn)9

<

>
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such that
(tn,xn, usn(tnaxn )> pl’la Qan) - (taxa u(tax): pa an) as n—oQ.

For any n:

—P— %TI‘ (66" ) (s x0)Xn) — (B(tnsXn), qn)

1
— [ (tns Xps the, (805 X0 )5 GuO (L, X)) = — E_DQDE,,(usn(tnaxn))- (4.22)
n

We can assume that u(z,x)< sup(Dom ¢) since for u(¢,x)= sup(Dom ¢) we have
¢’ (u(t,x))=+o0 and Eq. (4.18) is satisfied. Let y € Dom ¢, u(t,x)<y. Then there
exists nyg =no(t,x, y)>0 such that u., (¢,,x,) <y, Yn=ny.

We multiply Eq. (4.22) by y — u.,(fy,x,), and we have

[—pn — %Tr((ao*)(tn:xn)Xn) = (b(tnsXn), qn)
ff(t,,,xn,ugn(t,,,xn), Gn0(ta, Xn)) (¥ — ”s,,(lnaxn)))
Z o(J:, (us, (tn, X)) — @(¥), Vy>u(t,x),

from where passing to liminf, _, o, inequality (4.18) follows. [J
We can now improve Eq. (4.15a).

Corollary 4.2. (a) u(t,x) € Dom (d¢), V(t,x)€[0,T] x RY.
(b) YX* €Dom (0¢), Vs€[0,T], P-as. w € Q.

Proof. (b) follows from (a) since Y“* = ¥55

s =u(s, X{").

To prove (a) we have two cases.

(c1) Dom(dp)=Dom¢ and in this case, by Eq. (4.15a), u(t,x) € Dom (d¢);
V(t,x)€[0,T x RY.

(c2) Dom (0¢)#Dom ¢. Let b€ Dom ¢\Dom (0¢). Then b= sup(Dom ¢) or b=

inf Dom ¢. If b= sup(Dom ¢) and u(t,x)=b, then (0,0,0) € 2> u(t,x) since
u(s, ) <u(t,x) + o|s — 1| + [y — x|*)

and from Eq. (4.17) it follows ¢’ (b)=¢’ (u(t,x))<oo and consequently b€
Dom (J¢); a contradiction which shows that u(f,x)<b. We argue similarly in the
case b= inf(Dom ¢). [J

In order to establish a uniqueness result, we need to impose the following additional
assumption. For each R >0 there exists a continuous function mg: Ry — Ry, mg(0)=0
such that

‘f(trxarap) - f(tay,V,P)|<mR(|x - y|(1 + |p|))>
vie[0,T], |xl,[y|<R peR’ (4.23)
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Theorem 4.2. Under assumptions (4.1),(4.4)—(4.8) and (4.23) the PVI (4.16) has
a unique viscosity solution in the class of continuous functions which grow at most
polynomially at infinity.

Proof. The existence is proved by Theorem 4.1. The proof of uniqueness is based on
the ideas in El Karoui et al. (1997). It suffices to show that if u is a subsolution and
v a supersolution such that u(7,x)=uv(T,x)=g(x), x € R, then u<v.
We perform the transformation
(1, x) = u(t,x)e™ (1 + |x[*) 742,
(4, x) = (v(t,x) n %) (1 + [x[2)~H2
as in the proof of Theorem 8.6 in El Karoui et al. (1997). For the simplicity of

notations, we will write below u,v instead of i, 0. Hence, the (transformed) u and v
satisfy (in the viscosity sense)

0 ,
,OTL; + F(t,x,u(t,x), Du(t,x), D*u(t,x)) < — @' (e *{(x)u(t,x)),
ov ) € s i €
S0 F (o o0, Do), D)) 2 5 = 0 (70 (ste0) = ) )
with F defined as in El Karoui et al. (1997) and {(x)= (1 + |x|*)¥2. Exactly as in El
Karoui et al. (1997), we need only to show that for any R>0, if Bg:= {|x| <R},

sup (u—v)"< sup (u—v)",
(0,T)xBg (0,T1x 0B

since the right-hand side tends to zero as R — oco. To prove this fact we assume there
exists R, 0>0 such that for some (#,xo) € (0,7) x Bg

S=u(ty,x0) — v(tg,x0)= sup (u—v) > sup (u—v)"=0,
(0,T)xBr (0,T]x 0B

and we shall arrive at a contradiction.
We define (,%, ) as being a point in [0, 7] x Bz x Bz where the function

o
D,(t,x, ) =u(t,x) — v(t,x) — E|x — y?

achieves its maximum. Then by Lemma 8.7 from El Karoui et al. (1997):

for o large enough, (£,%, 7)€ (0,T) x Bg x Bg, (4.24a)
af — > —=0 and [F—H—0 as x—oo, (4.24b)
u(f,%)=v(f, ) + 9. (4.24c)

Then for o large enough
L E(ER) > L) (vd ) - 3 )
and, consequently,
—¢L (L)< — ¢, () (od ) - 5))

and the proof continues exactly as in El Karoui et al. (1997). [
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5. Connection with elliptic variational inequalities

We consider the following elliptic variational inequality (EVI):

—Lu(x) + dp(u(x)) > f(x,u(x),(Vuos)(x)), xe€D,

Uon =9, (5.1)
or equivalently:
Lu(x) + f(xu(x))(Vuo)(x) € [p_(u(x)), ¢!, (u(x))], x€D, 5.1)
ulop(x) = g(x), x € aD.
Here D is a bounded domain of R of the form
D={xe R ¢(x)>0}, (5.2)
where ¢ € C3(R?), |[Vd(x)|#0, Vx €D C {x € RY: ¢(x)=0}.
We assume that
ge C(RY), (5.3)
feC(RYxRx R and Jue R, Iy, >0 such that
/(e 3, 0) <y(1 + |y]), (5.4a)
(r =D 0.2) = f(x72)<aly = 3%, (5.4b)
|f (e p2) =[xy, D)< Plz — 2[; (5.4¢)
for all xe RY, y,7€R, z,2€R?, and
¢ :R—]— 00,400] is a proper convex l.s.c. function s.t. :
o(¥)Z¢(0)=0, (5.5a)
IM >0: |p(g(x))| <M, VxeD, (5.5b)

and ¢ is the infinitesimal generator of the Markov diffusion process X;:
t t
X,x:x—i—/o b(XS’“)ds—f—/O o(X)dB,, Vt=0,
Le.
1<, 3 d 0
& = 7 g::l(fm )ij(x)m + iz:;bi(x)a_x['

Here (@2, #,P,(#;);>0,B;) is a d-dimensional Brownian motion as in Section 4 and

b:RY - R?, ¢:RY— R are Lipschitz continuous on D. (5.6)
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Define the stopping-time: 1, = inf{z>0: X,(t) ¢ D}. We assume that

P(t,<00)=1, VxeD, (5.7a)
I'={x€0dD: P(t,>0)=0} is a closed subset of dD, (5.7b)
sup E(e*")<oo for some A>20 + 23 (5.7¢)
xeD

Consider now for each x € D the one-dimensional BSDE:

Yt+/ Urds=gX)+ | fOEY5Z0)ds
t

s Lg oL
ATy INTy

—/‘ Z*dB,, V>0, o —as., (5.8)
t

NTy

(Y re,s Uns,) €00, ae. on Q x [0,1].
It follows from Theorem 1.1 that the BSDE (5.8) has a unique solution
(Y*, 25, U%) € (S24[0, 7,1 N M>[0,7,]) x M"[0,7,] x M>*[0,7,].

As in Darling and Pardoux (1997) we can show that

X+ 1T, IS a.s. continuous, (5.9a)
u(x)=Y], x€D, is a determinist continuous function, (5.9b)
Y =u(X"), 0<t<t,, as. (5.9¢)

Proposition 5.1. If the Dirichlet problem (5.1) has a classical solution ue C*(D)N
C(D); then u(x)=Y{, x €D, where (Y*,Z*,U¥) is the solution of BSDE (5.8).

Proof. Let u*(x)= ZLu(x) + f(x,u(x),(Vuo)(x))€ dp(u(x)),x € D. Applying Itd’s
formula to e *u(X}*) we have

Tx

e M (X, ) + / e [~ Au(X,) + Lu(X,)] ds
ATy

Tx

= eizrxu(er) + / eiis(vu(Xv)r G(Xv) dBS)’

AT,

and, consequently,

e N (X, ) /

AT,

Tx Tx

e M ut(X,)ds = e*;"‘g(er) + / e M Lu(Xy)
AT,

+f(Xv,u(Xv),(Vu6)(Xv))]dS+/ e (Vu(X,), o(X;) dBy).

AT,

31f for some 1<i<d,inf (006" );i(x)>0, then IA>0 such that Eq. (5.7c) holds (see Stroock and
Varadhan, 1972).
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Hence, by uniqueness:
Vi=uX,. ), Z'=Vuo)( X, ) U =u"(Xj,) U
Under the assumptions given above, we cannot hope for a classical solution to exist
in general. That is why we define the notion of viscosity solution. 22?*u(x) (the elliptic

superjet) and 22~ u(x) (the elliptic subjet) are defined similarly as in Definition 4.1.
Let u€ C(D) and x € D; then (¢.X) € 25 *u(x) if

u(y) <ux) + (¢, y —x) + 3(X(y =x),(y =x)) +o(ly —x|*), WyeD
and (¢,.X) € 25 u(x) if

u(y)zux) + (g, y —x) + 3(X(y = x),(y —=x)) + o(|ly = x|*), VyeD.
Definition 5.1. (a) A function u € C(D) is a viscosity subsolution of Eq. (5.1) if
VxeD, V(g,X) € P u(x),

u(x) € Dom ¢, (5.10a)

V(. %) S —1Tr((00")(x)X) = (b(x),q)
—f(xu(x),qo(x) + ¢"_(u(x))<0 if xeD, (5.10b)
min{¥V_(x; ¢, X ), u(x) — g(x)} <0 if x € aD. (5.10¢)
(b) u€ C(D) is a viscosity supersolution of Eq. (5.1), if Yx € D, ¥(q,X) € 25 u(x),

u(x) € Dom o, (5.11a)

Vi(x:¢,X) = =4 Tr((00™)(0)X) = (b(x),q)
—f(x,u(x),qo(x)) + qo'+(u(x))>0 if xeD, (5.11b)
max{V,(x;q,X),u(x) — g(x)} >0 if xe€dD. (5.11¢)

(c) ue C(D) is a viscosity solution of Eq. (5.1) if it is both a viscosity subsolution
and a viscosity supersolution.

Theorem 5.1. Under assumptions (5.2)—(5.7) the function uc C(D) given by u(x)=
Yy is a viscosity solution of Eq. (5.1). Moreover, u(x) € Dom (d¢), Vx €D,

Proof. Assuming that u is a viscosity solution of Eq. (5.1), we deduce as in

Corollary 4.2 that u(x) € Dom (d¢). In order to prove that u(x)=Yy is a viscosity

solution we could use as in the previous section an argument based on penalization.
Let us, however, give a direct proof of the fact that u is a viscosity subsolution.
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Let x €D and (¢,X) GQD-zJ’u(x). From the 0—1 law, there are two possible cases:

(a) Tx(w)=0 a.s. Then x€ 0D, u(x)=Yj=g(x) and consequently (5.10a) is satisfied.

(b) 7, >0 a.s. We want to show that in this case V_(x; g,X ) <0, which will conclude
the proof.

Suppose this is not the case. Then V_(x;q,X)>0. It follows by continuity of f,u,b
and o, left continuity and monotonicity of ¢’ that there exists €>0, 6>0 such that
for all |y — x| <9,

—3Ttloa™ (V)X +eD)] = (b(¥).q + (X +el)(y —x))
—f(u(y).lg + X +el)(y —x)]a(y) + ¢ (u(y))>0. (5.13)

Now, since (¢,X) € ?D-”u(x) there exists 0<o’<J such that u(y)<y(y), for all
y €D such that |y — x| <’, where

Y(»)i=u(x) + (g, y —x) + 3 (X +el)(y —x),y —x)).
Let
vi=inf{r>0; X — x| =0} At AL
We note that
(Y, Z1):= (Y Lon(DZ), 0<t<]1,
solves the BSDE
T, =u(xy) + / oL Z0) — U1 ds - / 2,8,
(Y,,U") € 0¢,dP x dt a.e. on [0,V].
Moreover, it follows from It6’s formula that
(P Z0) = (PG Lo (VY o) (X)), 0<r<1,

satisfies
A 1 1 A
Ytzlp(Xg‘)—/ 1[0,\,](s)$!,0(sz)ds—/ 2,dB,, 0<i<l.
t t
Let (Y,,Z,):=(Y, — ¥,,Z, — Z;). We have
1
7, = X — u(x) + / Lo ()= LYCED) — FOCEu(XE).Z,) + U] ds
t
1 ~
—/ Z,dB,,0<r<1.
t
Let

By =LY + [ u(X)), Z)] 1o, (s),
B =L + f X u(X), Z)] 0,0 (s)-
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Since | ﬁs — B|<C|Z; — Z,], there exists a bounded d-dimensional progressively mea-
surable process {y;;0<s<1} such that

Now,
~ 1 A ~ 1 ~
Yo =y(X7) — u( 5‘)+/ [—ﬁﬁU;?“r(vs,Zs)]dS—/ Zs dB;.
t t

It is easily seen (see e.g. the proof of Theorem 1.6 in Pardoux, 1997) that ¥, takes
the form

Yo=E {Fv(lﬂ(Xf)—u(Xf))Jr/o (e _Bs)dsj| )

where I :exp(fot (ys,dBy) — 1 fot 75| ds).
We first note that (Y;*, U*) € d¢ implies that

oL (XN <YT

and this holds dP x d¢ a.e. Moreover, the choice of ¢’ and v implies that
u(X7) <y(X7),

v>0 a.e. and for 0<z<v, it follows from Eq. (5.13) that

B, <o (u(X[)).

All these inequalities and the above formula for ¥, imply that ¥5>0, i.e. y(x)>u(x),
which contradicts the definition of . Hence, V_(x;¢,X)<0. [

Remark 5.1. Under appropriate additional assumptions, namely Eq. (4.23) and the fact
that o is large enough, one can show that the above elliptic variational inequality has
a unique viscosity solution, adapting the proof in Crandall-Ishii—Lions (1992).

References

Barbu, V., 1976. Nonlinear Semigroups and Differential Equations in Banach Spaces. Ed. Academiei Romane
& Noordhoff International Publishing, Leiden.

Brezis, H., 1973. Opérateurs Maximaux Monotones et Semigroupes de Contractions Dans les Espaces de
Hilbert. North-Holland, Amsterdam.

Crandall, M., Ishii, H., Lions, P.L., 1972. User’s guide to the viscosity solutions of second order partial
differential equations. Bull. A.M.S. 27, 1-67.

Cvitanic, J., Karatzas, 1., 1996. Backward stochastic differential equations with reflection and Dynkin games.
Ann. Probab. 24, 2024-2056.

Darling, R.W.R., Pardoux, E., 1997. Backward SDE with random terminal time and applications to semilinear
elliptic PDE. Ann. Probab. 25, 1135-1159.

El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S., Quenez, M.C., 1997. Reflected solutions of backward
SDE’s and related obstacle problems for PDE’s. Ann. Probab. 25, 702-737.

Friedman, A., 1976. Stochastic Differential Equations and Applications. Academic Press, New York.

Gegout-Petit, A., Pardoux, E., 1996. Equations différentielles stochastiques rétrogrades réfléchies dans un
convexe. Stochastics Stochastic Rep. 57, 111-128.



E. Pardoux, A. Rdscanul Stochastic Processes and their Applications 76 (1998) 191-215 215

Pardoux, E., 1997. Backward stochastic differential equations and viscosity solutions of systems of semilinear
parabolic and elleiptic PDEs of second order. In: Decreusefond, L., Gjerde, J., @ksendal, B., Ustiinel, A.S.,
(Eds.), Stochastic Analysis and Related Topics VI: The Geilo Workshop, 1996, Birkhduser, Basel,
pp. 79-128.

Pardoux, E., Peng, S., 1992. Backward SDE’s and quasilinear PDE’s. In: Rozovski, B.L., Sowers, R.B.,
(Eds.), Stochastic PDE and Their Applications, Lecture Notes in Computer Science vol. 176, Springer.
Stroock, D.W., Varadhan, S.R.S., 1972. On degenerate elliptic—parabolic operators of second order and their

associated diffusions. Comm. Pure Appl. Math. 25, 651-713.



