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The current observational data imply that the universe would end with a cosmic doomsday in the
holographic dark energy model. However, unfortunately, the big-rip singularity will ruin the theoretical
foundation of the holographic dark energy scenario. To rescue the holographic scenario of dark energy, we
employ the braneworld cosmology and incorporate the extra-dimension effects into the holographic the-
ory of dark energy. We find that such a mend could erase the big-rip singularity and leads to a de Sitter
finale for the holographic cosmos. Therefore, in the holographic dark energy model, the extra-dimension
recipe could heal the world.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Dark energy was found by the observations of type Ia super-
novae in 1998 [1]. It is believed that the current cosmic accel-
eration is caused by dark energy. The basic characteristic of dark
energy is that its equation of state parameter w (the definition of
w is w = p/ρ , where ρ is the energy density and p is the pres-
sure) has a negative value (w < −1/3). At present, the universe
is under the domination of dark energy. The combined analysis of
cosmological observations shows that the universe is spatially flat
and consists of about 70% dark energy, 30% dust matter (cold dark
matter plus baryons), and negligible radiation [2].

Although it can be affirmed that the ultimate fate of the uni-
verse is determined by the feature of dark energy, the nature of
dark energy as well as its cosmological origin still remain enig-
matic at present. The preferred candidate for dark energy is the
famous Einstein’s cosmological constant λ [3], however, it always
suffers from the “fine-tuning” and “cosmic coincidence” puzzles.
The fine-tuning problem asks why the vacuum energy density to-
day is so small compared to typical particle scales. The vacuum
energy density is of order 10−47 GeV4, which appears to require
the introduction of a new mass scale 14 or so orders of magni-
tude smaller than the electroweak scale. The second difficulty, the
cosmic coincidence problem, asks: Since the energy densities of
vacuum energy and dark matter scale so differently during the ex-
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pansion history of the universe, why are they nearly equal today?
To get this coincidence, it appears that their ratio must be set to
a specific, infinitesimal value in the very early universe. Lots of ef-
forts have been made to try to resolve the cosmological-constant
problem, all these efforts, however, turned out to be unsuccessful
[4,5].

On the other hand, at the phenomenological level, many dy-
namical dark energy models have been proposed to interpret the
observational data (for reviews, see, e.g., Refs. [6]). In terms of the
equation of state, these dynamical dark energy scenarios can be
classified into the following three categories: quintessence, phan-
tom, and quintom. For quintessence-like dark energy, the equation
of state parameter is always greater than −1, namely w � −1; for
phantom-like dark energy, the equation of state parameter is al-
ways less than −1, namely w � −1; for quintom-like dark energy,
the equation of state parameter crosses −1 during the evolution. In
the scenario of phantom dark energy, it is remarkable that all the
energy conditions in general relativity (including the weak energy
condition) are violated. A ghastful prediction of this scenario is the
“cosmic doomsday” [8]. Due to the equation of state less than −1,
the phantom component leads to a “big-rip” singularity at a finite
future time, at which all bound objects will be torn apart. For de-
tailed discussions on the properties of future singularities of the
universe, see Ref. [9].

Possibly, the cosmological constant (or the vacuum energy den-
sity) might also have some dynamical property. It is well known
that the cosmological constant is actually closely related to an
ultraviolet (UV) problem in the quantum field theory. A simple
evaluation in quantum field theory leads to a discrepancy of 120
orders of magnitude between the theoretical result and the ob-
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servational one [4]. Obviously, the key point is the gravity. In a
real universe, the effects of gravity should be involved in this eval-
uation. So, actually, the cosmological constant (or dark energy)
problem is in essence an issue of quantum gravity [7]. However,
by far, we have no a complete theory of quantum gravity, so it
seems that we have to consider the effects of gravity in some effec-
tive quantum field theory in which some fundamental principles
of quantum gravity should be taken into account. It is commonly
believed that the holographic principle [10] is just a fundamental
principle of quantum gravity. Taking the holographic principle into
account, dynamical vacuum energy is possible.

The holographic principle is expected to play an important role
in dark energy research. When considering gravity, namely, in a
quantum gravity system, the conventional local quantum field the-
ory will break down due to the too many degrees of freedom that
would cause the formation of black hole. So, there is a proposal
saying that the holographic principle may put an energy bound
on the vacuum energy density, ρvac L3 � M2

plL, where ρvac is the
vacuum energy density and Mpl is the reduced Planck mass [11].
This bound says that the total energy in a spatial region with size
L should not exceed the mass of a black hole with the same size.
The largest size compatible with this bound is the infrared (IR) cut-
off size of this effective field theory. Evidently, this bound implies
a UV/IR duality. Therefore, the holographic principle may lead to a
dark energy model that is actually based on the effective quantum
field theory with a UV/IR duality. From this UV/IR correspondence,
the UV problem of dark energy can be converted into an IR prob-
lem.

By phenomenologically introducing a dimensionless parame-
ter c, one can saturate that bound and write the dark energy
density as ρde = 3c2MplL

−2. The parameter c is phenomenolog-
ically introduced to characterize all of the uncertainties of the
theory. Now, the problem becomes how to choose an appropri-
ate IR cutoff for the theory. A natural choice is the Hubble length
of the universe, however, it has been proven that there is no cos-
mic acceleration for this choice [12]. Li proposed that, instead of
the Hubble horizon, one can choose the event horizon of the uni-
verse as the IR cutoff of the theory [13]. This choice not only gives
a reasonable value for dark energy density, but also gives rise to
an acceleration solution for the cosmic expansion.

The parameter c in the holographic dark energy model plays a
very important role in determining the final fate of the universe
[14,15]. In particular, when c is less than 1, the equation of state
of holographic dark energy will evolve across the cosmological-
constant boundary w = −1. Note that it will evolve from the
region of w > −1 to that of w < −1, so the choice of c < 1
makes the holographic dark energy finally become a phantom en-
ergy that would lead to a cosmic doomsday (“big rip”) in the
future. It should be pointed out that the holographic dark energy
model has been strictly constrained by the current cosmologi-
cal observations [16–18]. The joint analysis of the latest observa-
tional data, including type Ia supernovae (SN), cosmic microwave
background (CMB), and baryon acoustic oscillation (BAO), shows
that the parameter c is indeed less than 1 (at nearly 2 σ level):
c = 0.818+0.113

−0.097(1σ)+0.196
−0.154(2σ) [18]. Thus, it seems that the big

rip is inevitable in the holographic dark energy model. However,
on the other hand, in the framework of holographic dark energy
model, the big rip is actually not allowed, due to the reason that
the Planck scale excursion of UV cutoff in the effective field the-
ory is forbidden. So, the occurrence of the cosmic doomsday would
canker the theoretical root of the holographic dark energy scenario.

To rescue the holographic dark energy model, we have to try to
find out some working mechanism to erase the big-rip singularity
in the phantom regime of the holographic dark energy scenario.
In this Letter, we will explore such a mechanism remedied by
which the holographic theory of dark energy can be healed. We
find that the extra-dimension mechanism would provide us with a
good cure for the illness of the holographic dark energy model. In
what follows, we will incorporate the extra-dimension effects into
the holographic dark energy scenario, and we will see that such a
mend works very well: the big-rip singularity would be eliminated
successfully. Furthermore, we will find that the ultimate fate of the
cosmos is an attractor where the steady state (de Sitter) finale oc-
curs.

This Letter is organized as follows: In Section 2, we briefly re-
view the holographic dark energy model and show that the cosmic
doomsday seems inevitable in this model according to the cur-
rent cosmological observations. We also expatiate on the neces-
sity of eliminating the big-rip singularity in the holographic model
of dark energy. In Section 3, we employ the braneworld mecha-
nism to rescue the holographic dark energy model. We show that
the big-rip singularity would be erased successfully by using the
extra-dimension mechanism, and the cosmic destiny would be a
de Sitter phase. Furthermore, we give possible constraint on the
holographic dark energy model from the extra-dimension prescrip-
tion. Finally, we give the conclusion in Section 4.

2. Cosmic doomsday in holographic dark energy scenario

The holographic dark energy model proposed by Li [13] is based
on the future event horizon as an IR cutoff. The dark energy den-
sity is written as

ρde = 3c2M2
pl R

−2
eh , (1)

where Reh is the event horizon of the universe, which is defined
as

Reh(t) = a(t)

∞∫
t

dt′

a(t′)
. (2)

From the definition of the event horizon (2), we can easily de-
rive

Ṙeh = H Reh − 1. (3)

So, taking derivative of Eq. (1) with respect to time t and using
the energy conservation equation ρ̇de + 3H(1 + w)ρde = 0, we can
obtain the equation of state of holographic dark energy,

w = −1

3
− 2

3c

√
Ωde, (4)

where

Ωde = ρde

3M2
pl H

2
= c2

H2 R2
eh

(5)

is the fractional density of holographic dark energy. For conve-
nience, hereafter, we will use the units with Mpl = 1, but we will
still explicitly write out Mpl at several places. To see the evolu-
tion dynamics of the holographic dark energy, we take derivative
of Eq. (5) with respect to ln a, and derive

Ω ′
de = 2Ωde

(
ε − 1 +

√
Ωde

c

)
, (6)

where ε ≡ −Ḣ/H2 = −H ′/H , and a prime denotes the derivative
with respect to ln a. Using the Friedmann equation 3H2 = ρm +ρde
and the equation of state of dark energy (4), we have

ε = 3
(1 + wdeΩde) = 3 − Ωde − Ω

3/2
de . (7)
2 2 2 c
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Fig. 1. The evolution of the equation of state of holographic dark energy w(z) with
1σ uncertainty. In this figure, the central black solid line represents the best fit,
and the red dotted area around the best fit covers the range of 1σ errors. The
errors quoted here are calculated using a Monte Carlo method where random points
are chosen in the 1σ region of the parameter space: c = 0.818+0.113

−0.097 and Ωm0 =
0.277+0.022

−0.021. From this figure, one can clearly see that our universe is striding into
the phantom regime of the holographic dark energy scenario. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this Letter.)

Hence, we obtain the equation of motion, a differential equation,
for Ωde ,

Ω ′
de = Ωde(1 − Ωde)

(
1 + 2

c

√
Ωde

)
. (8)

2.1. Cosmic doomsday

The parameter c plays a significant role for the cosmologi-
cal evolution of the holographic dark energy. When c � 1, the
equation of state of dark energy will evolve in the region of
−1 � w � −1/3. In particular, if c = 1 is chosen, the behavior of
the holographic dark energy will be more and more like a cos-
mological constant with the expansion of the universe, such that
ultimately the universe will enter the de Sitter phase in the dis-
tant future. When c < 1, the holographic dark energy will exhibit
a quintomlike evolution behavior (for “quintom” dark energy, see,
e.g., Refs. [19] and references therein); i.e., the equation of state
of holographic dark energy will evolve across the cosmological-
constant boundary w = −1 (actually, it evolves from the region
with w > −1 to that with w < −1). That is to say, the choice
of c < 1 makes the holographic dark energy behave as a quin-
tom energy that would lead to a cosmic doomsday (“big rip”) in
the future. Thus, as discussed above, the value of c determines the
destiny of the universe in the holographic dark energy model.

The holographic dark energy model has been strictly con-
strained by the current cosmological observations. The joint anal-
ysis of the latest observational data including the Constitution
sample of 397 SN, the shift parameter of the CMB given by the
five-year Wilkinson Microwave Anisotropy Probe (WMAP5) obser-
vations, and the BAO measurement from the Sloan Digital Sky Sur-
vey (SDSS), shows that the parameter c is indeed less than 1 (at
nearly 2σ confidence level): c = 0.818+0.113

−0.097(1σ)+0.196
−0.154(2σ) [18].

Using the fitting result of Ref. [18], we generate in Fig. 1 the evo-
lution of the equation of state of holographic dark energy w(z)
with 1σ uncertainty. In this figure, the central black solid line
represents the best fit, and the red dotted area around the best
fit covers the range of 1σ errors. The errors quoted in Fig. 1 are
calculated using a Monte Carlo method where random points are
chosen in the 1σ region of the parameter space shown in Fig. 1
of Ref. [18]. From Fig. 1, one can clearly see that our universe
is striding into the phantom regime in the holographic dark en-
ergy scenario. So, according to the current observational data, it
seems that the cosmic doomsday is inevitable in this scenario.
However, after detailedly investigating the theoretical foundation
of the holographic dark energy, one might ask such a question: Is
the cosmic doomsday really allowed in the holographic scenario?

2.2. The physical motivation: why must eliminate the big-rip
singularity in the holographic dark energy model?

First of all, it should be necessary to review the theoretical
foundation of the holographic dark energy model. In fact, the holo-
graphic dark energy model is based on the effective quantum field
theory with some UV/IR relation [11,13]. Obviously, this is not
the case in particle physics. In general, for particle physics, one
only needs an effective field theory with a UV cutoff. It is usually
assumed that the properties of elementary particles can be accu-
rately described by an effective field theory with a UV cutoff less
than the Planck mass Mpl , provided that all momenta and field
strengths are small compared with this cutoff to the appropriate
power. The standard model of particle physics provides a good ex-
ample for this. However, when gravity is considered in the system,
especially when black holes are involved, the underlying theory of
nature is suggested to be not a local quantum field theory. Un-
der the situation that a complete theory of quantum gravity is not
available, a good way of accurately describing the world is to try
to use the effective quantum field theory in which the effects of
gravity are adequately taken into account and the range of valid-
ity for the local effective field theory is determined. To accomplish
this, some relationship between UV and IR cutoffs should be im-
posed. Of course, the proposed IR bound should not conflict with
any current experimental success of quantum field theory.

Local quantum field theory could not be a good effective low-
energy description of any system containing a black hole, and
should not attempt to describe particle states whose volume is
smaller than their corresponding Schwarzschild radius. Neverthe-
less, in an effective quantum field theory, for any UV cutoff Λ,
there is an sufficiently large volume for which the vastly over-
counted degrees of freedom of the effective field theory would lead
to the formation of a black hole spoiling the effective local quan-
tum field theory. To avoid this difficulty, Cohen et al. [11] propose
a constraint on the IR cutoff 1/L which excludes all states that
lie within their Schwarzschild radius, namely, L3Λ4 � LM2

pl . This

bound implies a UV/IR duality since the IR cutoff scales like Λ−2.
So, in fact, they propose an effective local quantum field theory in
which the UV and IR cutoffs are not independent and only those
states that can be described by conventional quantum field theory
are considered. The holographic dark energy model is nothing but
such an effective quantum field theory with the IR cutoff length
scale chosen to be the size of the event horizon of the universe
[13]. In this model, the UV cutoff Λ runs with the cosmological
evolution since the event horizon of the universe as the IR cutoff
scale varies. Therefore, the holographic dark energy is actually a
dynamical vacuum energy [15].

Let us have a look at the late-time evolution of the holo-
graphic cosmos. For the future event horizon, from Eq. (5), we have
Reh = c/(H

√
Ωde ). Hence, in the far future where the dark energy

totally dominates and other energy components are diluted away,
the event horizon behaves as Reh = cH−1. Using Eqs. (3) and (7),
we can further obtain Ṙeh = c − 1. Now, one can clearly see that
the parameter c plays a crucial role in determining the ultimate
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fate of the universe: when c = 1, we have Ṙeh = 0 that corresponds
to a de Sitter spacetime; when c > 1, Ṙeh is a positive constant
indicating that Reh increases with a constant change rate; when
c < 1, we see that Ṙeh is a negative constant implying that Reh di-
minishes with a constant change rate. Thus, c < 1 will lead to a
big-rip singularity at which Reh reaches zero and other quantities
such as the cosmological scale factor a, the dark energy density ρde
and the Hubble expansion rate H approach infinity. However, the
appearance of the big rip is definitely beyond the scope of the ef-
fective quantum field theory described above. Prior to the big rip,
the UV cutoff Λ will first exceed the Planck mass Mpl , and then
even the IR cutoff scale Reh will become smaller than the Planck
length lpl . Obviously, such a super-Planck phenomenon will break
down the theoretical foundation of the holographic dark energy
model. So, it should be confessed that the holographic dark en-
ergy model undoubtedly has some congenital flaw in the phantom
regime in some sense. In view of the successes of the holographic
dark energy model in explaining the theoretical puzzles of dark en-
ergy [13,20] and fitting the observational data [16–18], one should
remedy this model in the high energy regime to make the holo-
graphic theory of dark energy more consistent and successful. The
key for this is to find out a working mechanism to eliminate the
big-rip singularity in this model.

2.3. How to erase the big-rip singularity?

It is anticipated that some unknown high-energy physical ef-
fects, especially those from the quantum gravity, might play an
important role shortly before the would-be big rip. Hence, con-
ventionally, we expect that when considering the effects of some
unknown physics at high energies, the big rip would be erased
in the holographic dark energy model. Now a question naturally
arises asking what kind of effects appears likely to be the right
mechanism of amending the behavior of holographic dark energy
in high energy regime. In this subsection, we shall discuss this is-
sue.

It is the value of the parameter c that determines whether the
big rip occurs: the appearance of the big rip is closely related to
the fact of c < 1. So, to rescue the holographic dark energy model,
one may expect that at ultra-high energies some quantum gravity
effects would lead to some correction to the parameter c, which
makes the parameter c effectively change to be equal to or greater
than one. That is to say, we must impose some mechanism that
leads to the high-energy corrections to c to realize that ceff � 1 at
high energies, where the effective parameter ceff is presumed to
be of the form

ceff (t) = c + correction from high energies. (9)

For the case of c < 1, when the holographic dark energy is in the
low-energy regime, it is obvious that ceff → c; when the holo-
graphic phantom energy enters the high-energy regime, the quan-
tum gravity is expected to begin to impact and consequently c
gets a corresponding correction like Eq. (9). Of course, when c � 1,
there is no high-energy regime for dark energy, so we always have
ceff = c for these cases.

In order to erase the big rip, ceff � 1 prior to the would-be
big rip must be satisfied. However, the most natural anticipation
is presumed to be ceff → 1 for which the steady state (de Sitter)
finale will emerge. Moreover, such a finale is expected to be an
attractor solution. Can such a dramatic mechanism really be found
out and performed in the holographic dark energy scenario? In the
next section, we shall accomplish this picture by employing the
extra-dimension mechanism (braneworld scenario).
3. Holographic dark energy in braneworld cosmology

In the present section, we shall discuss the scenario of holo-
graphic dark energy in Randall–Sundrum (RS) braneworld. We will
find that the cosmic doomsday could be avoided successfully and
the de Sitter finale would emerge as an attractor.

3.1. Why braneworld?

In the holographic dark energy model, the effects of gravity
have been adequately considered by using the holographic prin-
ciple to impose a UV/IR relationship in an effective local quantum
field theory, however, another important aspect of the spacetime,
extra dimensions, is absent. When the energy scale of dark energy
is low enough, the effects from extra dimensions are absolutely
negligible; however, when the phantom energy density becomes
enormously high, the extra-dimension effects are expected to play
a significant role. Accordingly, in order to make the holographic
dark energy model more complete, the extra dimensions should
also be considered. In addition, another reason for supporting the
involvement of the effects of extra dimensions in the holographic
dark energy model comes from the fact that the braneworld sce-
nario might provide us with some positive correction to c as dis-
cussed in Section 2.3. So, it is quite interesting to study how the
physics of extra dimensions may affect the behavior of the holo-
graphic dark energy in phantom regime. In the following we will
focus on a simple braneworld case.

Considering the case with one extra dimension compactified
on a circle, the effective four-dimensional Friedmann equation
is [21,22]

3H2 = ρ

(
1 + ρ

ρc

)
, (10)

where ρc = 2σ , with σ the brane tension,

σ = 6(8π)2M6∗
M2

pl

, (11)

where M∗ is the true gravity scale of the five-dimensional theory,
and in this expression we explicitly write out Mpl . In general, the
most natural energy scale of the brane tension is of the order of
the Planck mass, but the problem can be generally treated for any
value of σ > TeV4.

It can be explicitly seen from the modified Friedmann equation
(10) that the extra-dimension physics could contribute some posi-
tive correction to the effective parameter ceff , namely,

ceff (t) = c
√

1 + 3c2ρ−1
c R−2

eh (t). (12)

Therefore, for making the holographic dark energy model more
complete and consistent, it is quite natural to have recourse to the
extra-dimension scenario.

3.2. Cosmological evolution at late times

In this subsection, we will discuss the late-time evolution of the
holographic dark energy in a braneworld, and derive the evolution
equation.

At the late times, the universe is totally dominated by the holo-
graphic phantom energy, so in Eq. (10) we have ρ = ρde . Note
that for any cases Eqs. (3)–(6) are always satisfied since they come
from the definitions of holographic dark energy (1) and event hori-
zon (2). In order to obtain the equation of motion of dark energy,
we need to calculate ε in Eq. (6).
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Taking the derivative of Eq. (10) with respect to time t and us-
ing the energy conservation equation ρ̇de = −3H(1 + w)ρde , we
can get

ε = 3

2
Ωde(1 + w)

(
1 + 2

ρde

ρc

)
, (13)

where the fractional density of dark energy is still defined as
Ωde = ρde/(3H2), hence we have

ρde

ρc
= 1

Ωde
− 1. (14)

Substituting Eqs. (4) and (14) into Eq. (13), we thus get

ε = (2 − Ωde)

(
1 − 1

c

√
Ωde

)
. (15)

Substituting Eq. (15) into Eq. (6), we eventually obtain the
equation of motion for holographic phantom dark energy (c < 1)
in a braneworld,

Ω ′
de = 2Ωde(1 − Ωde)

(
1 − 1

c

√
Ωde

)
. (16)

This differential equation governs the dynamical evolution of the
holographic dark energy when the effects of extra dimension be-
gin to play an important role. Therefore, the whole picture of the
holographic dark energy model is actually jointed by the two seg-
ments: before the extra-dimension effects work, the dynamics of
the holographic dark energy is dictated by Eq. (8); after the extra-
dimension effects emerge, the holographic dark energy model will
be governed by Eq. (16). For the former stage, the universe will
finally be totally dominated by the phantom energy, so at late
times of this stage we have Ωde = 1; this is a stable attractor of
Eq. (8). When the evolution of the phantom energy intrudes into
the ultra high-energy regime and the extra-dimension mechanism
begins to operate, we find that Ωde begins to decrease with the
expansion of the universe though the phantom energy density ρde
always increases. From Eq. (14), we see that assuredly Ωde de-
creases with the increase of ρde . Furthermore, from Eq. (16), one
can find that Ωde will decrease from 1 to a stable value c2 that
corresponds to the final state of the universe, so Ωde = c2 should
be the late-time attractor for the holographic phantom energy in
the RS braneworld.

3.3. Finale of the universe: de Sitter spacetime attractor

We will show that the finale of the universe in this scenario is
a de Sitter (steady state) spacetime.

First, let us prove that Ωde = c2 is a stable late-time attractor
solution to Eq. (16). Considering a perturbation to this solution,
we find that the solution will be recovered soon: when Ωde < c2,
owing to that 1 − Ωde > 0 and 1 − 1

c

√
Ωde > 0, we have Ω ′

de > 0
indicating that Ωde will increase until it reaches c2; when c2 <

Ωde < 1, since 1 − Ωde > 0 and 1 − 1
c

√
Ωde < 0, we have Ω ′

de < 0
implying that Ωde will keep on decreasing until it touches c2. So,
out of question, Ωde = c2 is a stable late-time attractor solution.

In this stage, the Hubble expansion rate will increase until it
becomes a constant. For convenience, we define

h̃2 ≡ H2

ρc
= 1 − Ωde

3Ω2
de

, (17)

and we find that the maximum of h̃ is

h̃max =
√

1 − c2
√

2
, (18)
3c
Fig. 2. The late-time evolution of Ωde and H in the scenario of holographic dark en-
ergy in a RS braneworld. Here we take three cases as example, namely, c = 0.88,
0.90 and 0.92. From this figure, we can explicitly see that the finale of the uni-
verse in this scenario is a steady-state spacetime. Note that in this plot the Hubble
expansion rate H is in units of (

√
ρc/Mpl) and the cosmic time t is in units of

(Mpl/
√

ρc ).

which corresponds to the late-time attractor solution Ωde = c2.
Therefore, we can draw the conclusion that the finale of the uni-
verse in this scenario is a de Sitter spacetime. At the finale, using
Eqs. (9) and (14), one can check that ceff = 1. Also, from Eq. (9),
one derives the minimum of the size of the event horizon,

Rmin
eh =

√
3c2√

(1 − c2)ρc

. (19)

By far, in this modified holographic dark energy model (with
c < 1), it is of interest to find that the universe begins with an
inflation and also ends with another inflation.

As an example, we plot the late-time evolution curves of Ωde
and H according to the solution of the differential equation (16), as
shown in Fig. 2. The initial condition of the calculation of Eq. (16)
is taken as Ωde = 1− when t = 0. Here we take three cases as
example, namely, c = 0.88, 0.90 and 0.92. From this figure, we can
explicitly see that the finale of the universe in this scenario is a
steady-state spacetime. Note that in this plot the Hubble expansion
rate H is in units of (

√
ρc/Mpl) and the cosmic time t is in units

of (Mpl/
√

ρc ).
So far, we have constructed a complete model of holographic

dark energy in which the evolution of the universe is divided into
two stages: In the low-energy regime, the dynamical evolution of
the universe is governed by Eq. (8); in the high-energy regime,
the dynamical evolution of the universe is dictated by Eq. (16).
Therefore, the ultimate fate of the universe in the case of c < 1
should be a steady-state spacetime, in stead of a cosmic dooms-
day. The consideration of an extra-dimension mechanism provides
a successful solution to the theoretical puzzle of the holographic
dark energy model in the presence of a cosmic doomsday. More-
over, in quantum gravity theories such as the string/M theory,
the spacetime is commonly believed to be fundamentally higher
dimensional, so the involvement of the extra dimensions makes
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the holographic dark energy model more complete. In addition, it
should be noted that the high-energy regime only exists in the
case of c < 1, and in the cases of c � 1 there is no high-energy
regime so that the extra-dimension effects will be absent in those
cases.

It is conceivable that the parameter c of the holographic dark
energy may be constrained by the braneworld cosmology. The IR
cutoff length scale Reh in the effective quantum field theory de-
scribing the holographic dark energy gets a minimum when the
universe goes into the steady-state finale, as given by Eq. (19). If
we impose a plausible additional requirement on Rmin

eh that the
IR cutoff length scale should be greater than the compactifica-
tion radius of the extra-dimensional circle, namely, Rmin

eh � l, where

l = 2
√

3ρ
−1/2
c is the anti-de Sitter length scale, we will derive the

constraint c � 2(
√

2 − 1) (namely, c � 0.91) that is consistent with
the fitting result of the observational data [18]. It should also be
noted that this constraint result should not be taken so seriously
because actually the additional requirement on IR cutoff does not
seem to be necessary.

One may also consider anther possible braneworld scenario in
which the effective four-dimensional Friedmann equation is 3H2 =
ρ(1 − ρ/ρc), where the negative sign arises from a second time-
like dimension [23]. Note that this modified Friedmann equation
can also arise from the loop quantum cosmology. Such a modified
Friedmann equation with matter and phantom energy components
can lead to a cyclic universe scenario in which the universe oscil-
lates through a series of expansions and contractions [24]. Can this
braneworld scenario help to eliminate the big-rip singularity in the
holographic dark energy model? In fact, the high-energy correc-

tion to c in this case is negative, namely, ceff = c
√

1 − 3c2ρ−1
c R−2

eh ,
so the cosmic doomsday finale could not be replaced by a steady
state one in this case. One may further conceive that perhaps the
holographic dark energy model combined with this scenario would
replace the big-rip singularity with a turnaround. However, this
is also impossible since a cyclic universe has no a future event
horizon such that the definition of holographic dark energy breaks
down in this scenario. In Ref. [25], such a scenario is investigated,
but to evade this difficulty the future event horizon is redefined.
So, it should be confessed that the scenario discussed in Ref. [25]
is not realistic but only a toy model. The steady state future of the
holographic Ricci dark energy in RS braneworld has been discussed
in Ref. [26]. Other scenarios describing the holographic dark energy
in braneworld can be found in, e.g., Refs. [27].

In addition, to avoid the big rip, it also seems quite natural to
consider some interaction between holographic dark energy and
matter [20,28]. However, from the definition of the holographic
dark energy (1), one can see that it is closely related to the fu-
ture event horizon Reh that is a global concept of spacetime. So,
unlike the interaction between scalar-field dark energy and dark
matter [29], it is rather difficult to imagine the local interaction
between holographic dark energy and matter. Therefore, we feel
that the extra-dimension recipe is better than the interaction one
for solving the big-rip crisis in the holographic dark energy model.

3.4. The whole story: From past to future

Finally, let us derive the evolution equation describing the
whole expansion history from the past to the far future for the
holographic dark energy model in a RS braneworld.

Consider, now, a general case that the universe contains dust
matter (dark matter plus baryons) and holographic dark energy,
namely, ρ = ρm + ρde , where ρm = ρm0a−3 and ρde = ρde0 f (a)

with f (a) = ρde(a)/ρde0. Note that here the subscript “0” marks
the quantities corresponding to today, and for the scale factor of
Fig. 3. The expansion history from the past to the far future for the holographic
dark energy model in a RS braneworld. As a schematic example, here we take the
case c = 0.8, Ωm0 = 0.27 and β = 10−10. Note that in this example the values of c
and Ωm0 are realistic but the value of β is evidently unrealistic because it is much
bigger than a reasonable value that is in the range of 10−119–10−59. This is only for
the display effect of the plot.

the universe a we have let a0 = 1. From the modified Friedmann
equation (10), one can easily derive

E(a)2 = (
Ωm0a−3 + Ωde0 f (a)

)[
1 + β

(
Ωm0a−3 + Ωde0 f (a)

)]
,

(20)

where E ≡ H/H0, Ωm0 = ρm0/(3H2
0), Ωde0 = ρde0/(3H2

0), and β =
3H2

0/ρc . The dimensionless parameter β characterizes the ratio of
the present-day density ρ0 to the critical density of the brane-
world ρc . From the fact that ρ0 � 4 × 10−47 GeV4 and ρc takes
some value between 1012 and 1072 GeV4, we estimate that the
value of β lies between 10−119 and 10−59. For a given Ωm0, one
can get Ωde0 = (

√
1 + 4β −1)/2β −Ωm0 from Eq. (20) by using the

conditions E0 = E(t0) = 1 and f0 = f (t0) = 1. Also, by definition,
the fractional densities of matter and dark energy can be expressed
as

Ωm = ρm

3H2
= Ωm0a−3

E2
, Ωde = ρde

3H2
= Ωde0 f (a)

E2
. (21)

From Eq. (10) one can calculate ε = −Ḣ/H2 and obtains

ε = 3

2

[
(1 + w)Ωde + Ωm

](
1 + 2

ρ

ρc

)
, (22)

and also from Eq. (10) one derives

ρ

ρc
= 1

Ωde + Ωm
− 1. (23)

Consequently, in combination with Eq. (4) one obtains

ε =
(

3

2
Ωm + Ωde − 1

c
Ω

3/2
de

)(
2

Ωde + Ωm
− 1

)
. (24)

To get the evolutionary behavior of holographic dark energy f (a),
one only needs to substitute Eq. (24) into Eq. (6) and solve the
derived differential equation with the initial condition f (t0) = 1.
So far, we can describe the whole story of the holographic dark
energy in a RS braneworld by using Eqs. (6), (20), (21) and (24).

As a schematic example, we take the case c = 0.8, Ωm0 = 0.27
and β = 10−10, and plot the expansion history of the universe,
namely, E(ln a), in Fig. 3. Note that in this example the values of c
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and Ωm0 are realistic but the value of β is evidently unrealistic be-
cause it is much bigger than a reasonable value that is in the range
of 10−119–10−59. This is only for the display effect of the plot. We
remind the reader to notice the evolutionary trend of the universe
shown in Fig. 3 but forget the unreality as a schematic example.
The steady state (de Sitter) future can be explicitly identified in
this figure. Also, it is shown in this figure that the past and the
future of the expansion history in this scenario can be seamless
linked.

4. Conclusion

The holographic principle plays a very significant role in study-
ing the dark energy problem. With the consideration of the holo-
graphic principle, the holographic dark energy model is proposed
by constructing an effective quantum field theory with a UV/IR du-
ality. Thanks to the UV/IR correspondence, the UV problem of dark
energy can be converted into an IR problem. In the holographic
dark energy model, the IR cutoff length scale is chosen as the size
of the event horizon of the universe.

According to the observational data, it seems inevitable that the
cosmic doomsday would be the ultimate fate of the universe in
the holographic dark energy model. However, unfortunately, the
big-rip singularity will undoubtedly ruin the theoretical founda-
tion of the holographic dark energy scenario that is based upon
an effective quantum field theory. To rescue the holographic dark
energy model, we employ the braneworld cosmology and incorpo-
rate the extra-dimension effects into this model. The motivation of
considering the extra dimensions consists of two aspects: (a) The
spacetime is commonly believed to be fundamentally higher di-
mensional in quantum gravity theories such as string/M theory, so
the involvement of the extra dimensions would make the holo-
graphic dark energy model more complete. (b) With the help
of the extra-dimension mechanism, the big-rip singularity in the
holographic dark energy model could be erased successfully.

In this Letter, we have investigated the cosmological evolution
of the holographic dark energy in the braneworld cosmology. It is
of interest to find that for the far future evolution of the holo-
graphic dark energy in a RS braneworld, there is a late-time at-
tractor solution where the steady state (de Sitter) finale occurs,
in stead of the big rip. Therefore, in the holographic dark energy
model, the extra-dimension recipe could heal the world.
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