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Voltage-gated Ca2+ channels (VGCCs) are voltage sensors that convert membrane depolarizations into Ca2+

signals. In the chromaffin cells of the adrenal medulla, the Ca2+ signals driven by VGCCs regulate catechol-
amine secretion, vesicle retrievals, action potential shape and firing frequency. Among the VGCC-types
expressed in these cells (N-, L-, P/Q-, R- and T-types), the two L-type isoforms, Cav1.2 and Cav1.3, control
key activities due to their particular activation–inactivation gating and high-density of expression in rodents
and humans. The two isoforms are also effectively modulated by G protein-coupled receptor pathways
delimited in membrane micro-domains and by the cAMP/PKA and NO/cGMP/PKG phosphorylation pathways
which induce prominent Ca2+ current changes if opposingly regulated. The two L-type isoforms shape the
action potential and directly participate to vesicle exocytosis and endocytosis. The low-threshold of activation
and slow rate of inactivation of Cav1.3 confer to this channel the unique property of carrying sufficient inward
current at subthreshold potentials able to activate BK and SK channels which set the resting potential, the
action potential shape, the cell firing mode and the degree of spike frequency adaptation during spontaneous
firing or sustained depolarizations. These properties help chromaffin cells to optimally adapt when switching
from normal to stress-mimicking conditions. Here, we will review past and recent findings on cAMP- and
cGMP-mediatedmodulations of Cav1.2 and Cav1.3 and the role that these channels play in the control of chro-
maffin cell firing. This article is part of a Special Issue entitled: Calcium channels.

© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

L-type calcium channels (LTCCs; Cav1) belong to the family of
voltage-gated Ca2+ channels (VGCCs) that are permeable to Ca2+

and sensitive to membrane voltage. VGCCs include also the Cav2 (N,
P/Q, R) and Cav3 types (T) [1] and are often classified as high-voltage
(HVA; L, N, P/Q and R-type) and low-voltage activated (T-type) [2–4].
LTCCs are hetero-oligomers consisting of a pore-forming α1-subunit
of 190–250 kDa in association with auxiliary β-, α2δ- and γ-subunits
[5]. The α1-subunit is composed of four membrane-spanning domains
(I–IV) linked together in a single polypeptide chain. Each domain con-
tains six putative transmembrane segments (S1–S6) plus a “P” loop
that dips partially into the pore to form the pore lining [5]. Like the
other VGCCs, LTCCs open readily during membrane depolarization
and allow Ca2+ to enter the cell. LTCCs, thus, regulate cell excitability
and control a variety of Ca2+-dependent physiological processes, like:
excitation–contraction coupling in cardiac, skeletal and smooth mus-
cles, gene expression, synaptic plasticity, brain aging, hormone secre-
tion, vesicle retrieval and pacemaker activity in heart, neurons and
neuroendocrine cells [6–13].

Presently, four genes are found to code for the Cav1.1, Cav1.2,
Cav1.3 and Cav1.4 subunits [1]. Of these, Cav1.1 and Cav1.4 are main-
ly expressed in skeletal muscle, pituitary cells and the retina, whereas
Cav1.2 and Cav1.3 are widely distributed throughout the central ner-
vous system, sensory and endocrine cells, atrial myocytes and cardiac
sino-atrial node cells [12,14–18]. All four Cav1 isoforms are highly
sensitive to 1,4-dihydropyridine (DHP) blockers (Ca2+ antagonists)
or activators (Ca2+ agonists), which are the most commonly used
compounds for identifying functional LTCCs. The blocking potency
of 1,4-DHPs differs depending on the holding potential [7,19–21]
but their separation on this basis is complex and is rarely used for
quantitative assays. This justifies the continuous search for new selec-
tive blockers for Cav1.2 and Cav1.3 [16,22], which are the most widely
expressed Cav1 isoforms.
2. Cav1.2 and Cav1.3 as multitask channels controlling excitability,
secretion and endocytosis in chromaffin cells

Cav1.2 and Cav1.3 channels are highly expressed in chromaffin
cells of the adrenal medulla [23–27] where they control excitability,
secretion of catecholamines and vesicle retrieval. Excitability is pri-
marily controlled by Cav1.3 which activates at very low voltages
and inactivates slowly in a voltage-dependent manner (measured in
Ba2+) with respect to Cav1.2 and other high-threshold channels
(N, P/Q, R) [7,28–30]. Depending on the C-terminal regulatory domain
[30], Cav1.3 exhibits weak or pronounced Ca2+-dependent inac-
tivation (CDI). Assuming that at the pacemaker potential (−50 to
−40 mV) the intracellular level of Ca2+ is rather low, it is clear that
CDI contributes little to the total inactivation of the channel at these
potentials. This enables Cav1.3 to carry most of the pacemaker's cur-
rent that sustains chromaffin cell's spontaneous activity [10–13,18]
and to drive sufficient SK current activation that helps in adapting the
firing rate to a sustainable frequency during prolonged depolarizations
(spike-frequency adaptation, SFA) [31]. In addition, Cav1.3 has been
shown to be tightly coupled to fast inactivating BK channels, suggesting
also a key role in the control of the AP shape [11,12]. Concerning the
secondmain activity, it is widely accepted that catecholamine secretion
is particularly sensitive to L-type currents in rat (RCCs) and mouse
chromaffin cells (MCCs) [10,32–37]. In RCCs L-type channels carry
nearly half of the total Ca2+ current and are responsible for the corre-
sponding exocytosis [36,38]. Concerning vesicle retrieval, LTCCs have a
direct control of compensatory and excess endocytosis, which are
strongly attenuated when LTCCs are blocked [39–41]. At present, how-
ever, it is not clear yet if both isoforms have distinct roles in this
process.
In addition, Cav1.2 and Cav1.3 are shown to be effectively modu-
lated by G-protein coupled receptors in membrane micro-domains
[42–45], or up- and down-regulated by cAMP/PKA and NO/cGMP/
PKG pathways, respectively [10,46–49]. These two mechanisms act
opposingly on channel gating (see [50–52] for reviews) and give
rise to Ca2+ current changes of one order of magnitude under proper
stimulation of one pathway and inhibition of the other [49]. All these
peculiarities highlight the strategic role that Cav1.3 and Cav1.2 exert
on chromaffin cell functioning.

3. The autocrine modulation of LTCCs: a feedback for regulating
catecholamine secretion

Chromaffin cells constantly release catecholamines, opioids and
ATP during low and sustained sympathetic stimulation (see [51–53]
for reviews). As a consequence, Ca2+ channels experience basal and
stimulus-induced autocrine modulations, which affect their activa-
tion–inactivation gating and probability of channel opening, altering
in this way the amount of Ca2+ entry into the cell. This autocrine
effect is mediated by the adrenergic, opioidergic and purinergic
autoreceptors highly expressed in chromaffin cells and coupled to
G-proteins. This occurs in isolated chromaffin cells [42,44,48,49] but
is more prominent in cell clusters [54] and in adrenal gland slices
[45], where the released neurotransmitters can accumulate more
effectively between closely packed chromaffin cells.

3.1. Direct and remote modulation of LTCCs

For Cav2.1 (P/Q) and Cav2.2 (N) channels the autocrine modulation
driven by purinergic, opioidergic and adrenergic receptors is mostly in-
hibitory and voltage-dependent [42,44,45,55]. Cav2.1 and Cav2.2 channel
activation is markedly delayed, but short pre-pulses to positive voltages
can fully remove the Giβγ-mediated delay and channel activation returns
to normal immediately following depolarization [43,56–62]. In contrast to
this, LTCC modulation is mainly voltage-independent and can occur
through two distinct pathways (see [52] for a review): 1) by quickly
inhibiting LTCCs gating via PTX-sensitive G-proteins (direct mode); or 2)
by slowly up-regulating LTCCs activity through a cAMP/PKA-mediated
phosphorylation (remote mode), similar to the up-regulation of cardiac
Cav1.2 channels during β1-AR-mediated sympathetic stimulation. The di-
rectmodulation is fully resolved inmembranemicro-patches and derives
from the interaction of G-protein subunits with LTCCs within membrane
micro-domains where Ca2+ channels, membrane autoreceptors and
coupled G-proteins coexist [44–46,58]. The remote modulation is more
complex and involves the presence of functional adenylate cyclases, an ef-
fective cAMP-mediated PKA up-regulation and LTCCs phosphorylation
(see [51] and [52] for a review). The cAMP/PKA mediated up-regulation
of LTCCs exists in BCCs ([46]), RCCs ([48]) and MCCs ([10]) and is thus a
general property of chromaffin cells, related to the expression of β-ARs
in these and other animal species [63,64].

Although not directly related to the neurotransmitter-mediated
modulation described above, LTCCs are also regulated by a remote
mechanism which originates from the autocrine NO/cGMP/PKG path-
way which tonically inhibits LTCCs and catecholamine release in BCCs
[47,65] and MCCs [49]. Chromaffin cells possess sufficient levels
of neuronal-like NO-synthase and guanylyl cyclase to synthesize NO
and cGMP [65] which can tonically down-regulate L-type currents
and catecholamine release. A marked depression of L-type currents
occurs also when NO-donors or permeable forms of cGMP are exoge-
nously applied to isolated BCCs [47] or MCCs [49]. The action is PKG-
dependent, develops slowly by reducing the open channel probability
and causes no changes to the time course of L-type current activation.
The NO/cGMP/PKG-mediated down-regulation of LTCCs exerts an
opposite action to the cAMP/PKA-mediated up-regulation, closely re-
sembling the effects that the two pathways exert on cardiac Cav1.2
channels.
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As underlined elsewhere [49,66,67], the existence of the twomod-
ulatory pathways inMCCs, which express equal densities of functional
Cav1.2 and Cav1.3 channels [11,13], raises key questions concerning
LTCC modulation:

• Are Cav1.2 and Cav1.3 equally prone to cAMP/PKA and cGMP/PKG
phosphorylation at basal conditions and during stimulation?

• Do the PKA- and PKG-mediated phosphorylations act independently
on LTCCs?

• To what extent the two opposing mechanisms could synergistically
affect the size of Cav1.2 and Cav1.3 Ca2+ currents?

The answers to these questions are not obvious given the little
amount of information available on cAMP/PKA and cGMP/PKG modu-
lation of native Cav1.3 channels (see Ref. [5]). In the following para-
graph we briefly summarize the new findings that recently appeared
on the sensitivity of Cav1.2 and Cav1.3 to cAMP/PKA and cGMP/
PKG-mediated phosphorylation.

3.2. Cav1.2 and Cav1.3 are equally modulated by cAMP/PKA and
cGMP/PKG

Given the lack of selective blockers for Cav1.2 and Cav1.3, a suit-
able approach to quantify the effects of PKA/PKG activators and inhib-
itors on the two Cav1 isoforms is to use knock-out (KO) mice strains
missing either one of the two isoforms. Comparing the effects on WT
and Cav1.3−/− KO mice and normalizing the effects by the size of
L-type currents furnishes an immediate estimate of PKA/PKG actions
on Cav1.2 in Cav1.3−/− MCCs and Cav1.2+Cav1.3 in WT MCCs. In
MCCs, the estimate is further simplified since Cav1.2 and Cav1.3
carry the same quantity of Ca2+ currents [11,13]. An equal modula-
tion of the two channels (either positive or negative) would turn
out in a double effect onWT with respect to Cav1.3−/− MCCs. Follow-
ing this approach it has been possible to show that Cav1.2 and Cav1.3
are equally modulated by cAMP and cGMP in an opposing manner
[49].
Fig. 1. Ca2+ current modulation by cAMP activators, cGMP analogues and PKA- and PKG-blo
the total Ca2+ currents of a WT MCC viewed by plotting the peak Ca2+ current amplitude e
The test of H-89 was preceded by an assay of the blocking potency of 3 μM nifedipine to qua
current inhibited by H-89 in WT MCCs (27.7%; n=8), which is about twice the amount bloc
on the L-type currents remaining after blocking N-, P/Q- and R-type channels with a mixtu
The percentage of L-type current potentiation induced in WT MCCs (13.4%; n=9) is almost
membrane permeable analogue 8-pCPT-cGMP (1 mM). The action of 8-pCPT-cGMP was sele
and 19.2% for Cav1.3−/− MCCs (n=6). d, the potentiating effects of the PKG-blocker KT 582
was 20.9% for WT MMCs (n=11) and 9.7% for Cav1.3−/− MCCs (n=7). The four panels w
The cAMP/PKA pathway is already active at basal levels where
both isoforms are equally down-regulated by the PKA blocker H89
(Fig. 1a) and are fully up-regulated by the adenylyl cyclase activator
forskolin which causes a current increase proportional to the L-type
current size in both WT and Cav1.3−/− MCCs (Fig. 1b). Similar find-
ings are reported for the LTCCs of RCCs [48], BCCs [46] and are compa-
rable to the up-regulatory action of cAMP/PKA on cardiac Cav1.2
channels [68,69]. This proves unequivocally that Cav1.3 is effectively
up-regulated by the cAMP/PKA pathway, in good agreement with
works reporting the existence of: 1) PKA phosphorylation sites in
the C-terminal tail of recombinant Cav1.3 channels [70], 2) co-
localization of the neuronal Cav1.3 C-terminal with the A-kinase
anchoring protein 15 (AKAP15) and β2-AR in the mouse brain [71]
and 3) a PKA and cAMP-mediated up-regulation of Ca2+ currents
carried by the Cav1.3 long C-terminal splice variant [72] and the re-
combinant 180 kDA Cav1.3 isoform [73]. These two latter works
also suggest that at variance with Cav1.2, AKAPs are not specifically
required for reconstituting PKA-mediated up-regulation of Cav1.3
in heterologous expression systems, in apparent contradiction with
the observation that AKAP15 co-localizes with neuronal Cav1.3 α1
subunit [71]. The presence of AKAPs is critical for the reconstituted
PKA-modulation of Cav1.2 in tsA201 cells. In fact, in vivo C-terminal
proteolytic processing cleaves a distal segment of the C-terminal
(DCT) regulatory domain which acts as an auto-inhibitory module
when non-covalently bound to the truncated Cav1.2 channel [74].
The DCT domain is critical for reconstituting the PKA-modulation in
expression systems. DCT binds to AKAP15 and allows PKA to mediate
the disinhibition of the auto-inhibitory signaling complex composed
by the Cav1.2 truncated forms, AKAP15 and DCT [74].

As for cAMP/PKA, also the cGMP/PKG pathway is already active at
basal levels, with the main difference that it down-regulates the
L-type currents when activated in MCCs [49] and BCCs [47,75]. Also
in this case, comparing the effects of PKG inhibitors (KT 5823) and
cGMP analogues (8-pCPT-cGMP) on WT and Cav1.3−/− MCCs,
Cav1.2 and Cav1.3 are shown to be equally down-regulated at rest
ckers in mouse chromaffin cells. a, inhibitory effect of the PKA blocker H-89 (5 μM) on
licited by voltage steps of 20 ms to +10 mV versus time (holding potential −50 mV).
ntify the size of L-type currents. The bars to the right show the percentage of total Ca2+

ked in Cav1.3−/− MCCs (12.8%; n=8). b, the potentiating action of forskolin (100 μM)
re of ω-Ctx-MVIIC (10 μM), ω-Ctx-GVIA (3.2 μM) and SNX 482 (0.4 μM) in a WT MCC.
twice of that induced in Cav1.3−/− MCCs (7.2%; n=8). c, inhibitory effect of the cGMP
ctive for LTCCs and the percentage of current inhibition was 36.5% for WT MCCs (n=4)
3 (1 μM) on the Ca2+ currents of a WT MCC. On average the percentage of potentiation
ere adapted from Ref. [49].
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by basal levels of active PKG (Fig. 1d). Elevations of cGMP cause a pro-
portional down-regulation of L-type currents in WT and Cav1.3−/−

MCCs (Fig. 1c). Thus, as for Cav1.2, also Cav1.3 is effectively
down-regulated by cGMP/PKG. This agrees with data on cochlear
inner hair cells reporting a NO/cGMP-mediated down-regulation of
Cav1.3 currents [76].

3.3. cAMP- and cGMP-mediated phosphorylation act opposingly and
independently on LTCCs gating

The existence of two opposing modulations mediated by cAMP
and cGMP in neuroendocrine cells, closely resembling those acting
on the Cav1.2 isoform of ventricular myocytes, opens interesting
questions about the role that these two modulatory pathways are
likely to play in chromaffin cell functioning. A number of functional
and structural evidence supports the view that the two systems act
independently on both channel isoforms (or auxiliary β-subunits).
The first set of evidence comes from protein microsequencing and
peptide mapping studies which suggest that the two kinases phos-
phorylate different serine sites of the Cav1.2 α1 and β subunits. PKA
phosphorylates Cav1.2 α1-subunit at Ser1700 (cardiac) and Ser1901
(neuronal) sites [70,74,77,78] and Cav1.2 β-subunit at Ser 478/479
and Ser 459 [79–81], while PKG phosphorylates Cav1.2 α1-subunit
at Ser533 [77,82,83] and Cav1.2 β subunit at Ser 496 [82]. The same
could occur for the phosphorylating action of PKA and PKG on
Cav1.3 α1-subunit in which PKA is shown to phosphorylate Ser1964,
Ser1743 and Ser1816 [84,85], but nothing is known about the phos-
phorylation sites of PKG. PKA and PKG phosphorylate also Ser 1928
[74,83], which is also phosphorylated by PKC [86], but this serine res-
idue is shown not to be functionally linked to Cav1.2 channel gating
modification [87]. Apart from this singularity, all the other sites sensi-
tive to PKA and PKG phosphorylation appear to be distinct. It should be
noticed, however, that the existence of distinct phosphorylation sites
for PKA and PKG does not rule out the possibility that they maymutu-
ally interfere on channel gating.

The second and most convincing evidence in favor of an indepen-
dent action of the two pathways is the synergist effect that cAMP
Fig. 2. The synergistic effects of cAMP/PKA and cGMP/PKG pathways inWTMCCs. To the left
phosphorylation sites (P) during basal conditions, synergistic potentiation and synergist
un-phosphorylated. Phosphorylation and dephosphorylation driven by up- and down-regul
ditions in which either two PKA P-sites are dephosphorylated and two PKG P-sites are phosp
phosphorylated–dephosphorylated (maximal Cav1 current; bottom right). The location and
show the time course of synergistic down-regulation of LTCCs induced by the sequential app
sequential application of forskolin and KT 5823 (bottom). In both cases the WT MCCs were
block N-, P/Q- and R-type channels (see Fig. 1b). The drawing and the experimental data a
and cGMP can produce when opposingly modulated (one activated
and the other inhibited) to give either minimal or maximal values
of L-type currents differing by one order of magnitude (18% vs.
180% of control value). Fig. 2 illustrates the effects of the two oppos-
ing synergistic regulations of L-type currents. In one case, the applica-
tion of the cAMP/PKA activator forskolin followed by the selective
PKG inhibitor KT 5823 leads to a nearly doubling of the L-type current
(Fig. 2 bottom-right), while in the other case the sequential applica-
tion of the PKA-blocker H89 and the cGMP analogue, 8-pCPT-cGMP,
leads to a reduction of about 80% of the same current (Fig. 2
top-right). The cumulative PKA- and PKG-mediated modulations of
L-type currents summarized in Fig. 2-left are among the most impres-
sive changes of neuronal L-type current amplitude that can be driven
by intracellular modulatory pathways. They are strikingly similar to
the changes observed for the cardiac Cav1.2 currents when separately
enhanced by cAMP or down-regulated by cGMP [5,69,88,89], which
set the systolic strength and sino-atrial node frequency during sym-
pathetic and parasympathetic regulation of heart beating.
3.4. Functional relevance of Cav1.2 and Cav1.3 modulation on chromaffin
cell functioning

Recent works on MCCs, BCCs and RCCs [46,48,49] point to a con-
verging idea that cAMP/PKA and cGMP/PKG pathways are already
active at rest due to the basal activity of the two cyclases (AC and
GC). AC is mainly activated by PACAP [90], Ca2+ entry and G protein
subunits that are activated by the basal activity of hormones and neu-
rotransmitters released by sympathetic neurons [91], surrounding
capillaries [92,93] and by the autocrine activity of chromaffin cells
[42,48,57,58]. This latter is most probably the main cause of the high
basal level of cAMP in culture conditions (2.2 mM) that rises 2- to
3-fold during β1-AR stimulation and/or PDE-4 selective inhibition
[10]. The soluble GC is activated by the resting NO levels generated
by the Ca2+-calmodulin-mediated activation of NO synthase (NOS)
expressed in most chromaffin cells [65,94]. Under these conditions,
cGMP/PKG appears towork as a ‘break’ to limit the potentiating effects
is shown a schematic representation of Cav1 channel α1 subunit with two PKA and PKG
ic inhibition. Basally, both PKA and PKG P-sites are partially phosphorylated and
ation of PKA and PKG proceed independently of each other to reach two extreme con-
horylated (minimal Cav1 current; top right) or the PKA and PKG P-sites are oppositely
the number of P-sites at the intracellular side are arbitrary. The two panels to the right
lication of H-89 and 8-pCPT-cGMP (top) and the synergistic up-regulation of LTCCs by
pretreated with a toxin mixture containing ω-Ctx-MVIIC, ω-Ctx-GVIA and SNX 482 to
re adapted from Ref. [49].

image of Fig.�2


Fig. 3. Contribution of Cav1 and Nav1 channels to MCCs action potentials. Top, repre-
sentative AP of a WT MCC. The inset represents a phase plane plot (dV/dt vs V) of
the respective AP waveform. Bottom, overlapped Nav1 (black) and Cav1 currents
(red) supporting MCCs pacemaking. The gray regions indicate the currents that flow
in between membrane potentials of −40 and −50 mV. Notice that Nav1 currents
contribute specifically to the spike upstroke while Cav1 currents support the slow
potential rise of the pacemaker phase.
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of cAMP/PKA and helps setting the resting levels of Cav1.2 and Cav1.3
currents.

A synergistic potentiation of LTCCs could occur during sustained
sympathetic stimulations that releases PACAP and induces massive
secretion of adrenaline from chromaffin cells, which would further
raise the levels of cAMP/PKA through the autocrine activation of the
β1-ARs present in RCCs and MCCs [10,48]. The increased Ca2+ entry
during high-frequency stimulation could in turn activate the cGMP-
specific Ca2+-calmodulin-dependent PDE (PDE1) that regulates the
resting levels of cGMP [65,95]. Thus, activation of a cGMP-specific
PDE that lowers cGMP/PKG levels and the parallel increase of PKA
during PACAP release and β1-AR stimulation could markedly enhance
Cav1.2 and Cav1.3 currents. This would sustain the rapid increase of
firing activity and catecholamine release that ensure the fast activa-
tion of the ‘fight-or-flight response’ in chromaffin cells.

A reversed action (synergistic inhibition) could occur if, as in most
mammalian ventricular myocytes, chromaffin cells possess cGMP-
activated PDE2 isoform that hydrolyzes cAMP [96]. Any robust
up-regulation of the NO/cGMP/PKG pathway under these conditions
would enhance cGMP and down-regulate cAMP which would rapidly
depress Cav1.2 and Cav1.3 channel gating. The existence of other
PDEs acting on cAMP beside PDE4, is supported by the findings that
in MCCs the non-specific PDE blocker IBMX increases basal cAMP
levels more potently than the PDE-4-specific blocker rolipram [10].

The Cav1.3 up- and down-regulation by PKA and PKGdescribed here
could have also key physiological significance if extrapolated to the
Cav1.3 channels of other tissues where the channel is highly expressed
and functional [12]. In cardiac sino-atrial and atrio-ventricular node
cells, Cav1.3 contributes to the pacemaker's current controlling heart
beating [8,97] and, thus, a β1-AR or a NO/cGMP/PKG-drivenmodulation
of its gating could either accelerate or decelerate the heart rate. Effective
modulations driven by the cAMP/PKA and cGMP/PKG pathways could
occur also to the Cav1.3 channels of cochlear inner hair cells [98]
and dopaminergic neurons of substantia nigra pars compacta [99]
which control key functions of hearing sensory transduction and
motor control.

4. Cav1.3 as pacemaker channels in chromaffin cells

The first recordings of AP firing in chromaffin cells date back to
1976. Current injection or application of ACh was able to make gerbil
chromaffin cells fire when measured in acute isolated slices or prima-
ry cultures [100]. Neither the absence of extracellular Ca2+, nor the
block of VGCCs by Co2+ was able to induce a cessation of firing in
their preparation, indicating a key contribution of voltage-gated
Na+ channels to spontaneous firing. Data on RCCs, published in the
same year, were also reported by Brandt et al. [101]. Interestingly,
these authors reported that by means of extracellular recordings,
RCCs fired in a slow but spontaneous manner (0.05–0.1 spikes/s).
This was not observed in recordings where the cell was impaled by
a sharp micropipette, presumably due to damage of the cell mem-
brane that typically results in a lower input resistance. A later study
by Kidokoro and Ritchie [102] strengthened the existing evidence
that RCCs possess the prerequisites to spontaneously fire APs. They
measured spontaneously discharged APs by extracellular recordings
in physiological conditions. It has to be mentioned that Brandt et al.
[101] measured APs in 10 mM extracellular Ca2+ that might elevate
tonic Ca2+-activated K+ currents which could interfere with cell's
excitability. An increased divalent cation concentration in the bath
is known to lead to a positive shift of the activation threshold of
voltage-gated channels [103,104]. This thus implicates that the cell
has to bridge a bigger voltage gap in order to trigger an AP. Under
physiological conditions as used by Kidokoro and Ritchie [102], the
ability to generate spikes was abolished by Co2+ (a non-selective
VGCC blocker) and not by TTX, suggesting a key role for VGCCs in
spontaneous spike generation in RCCs. Until recently, the general
belief was that pacemaker channels were either belonging to the
HCN family, the low-threshold persistent Nav channels or the
low-voltage activated (LVA; T-type) Ca2+ channels. One of the criteria
for a channel to contribute to the pacemaker is in fact that it has to
open at lowmembrane potentials and to carry inward cation currents.
This was the reason why HVA Ca2+ channels were excluded “by defi-
nition”. Dopaminergic neurons with an L-type dependent pacemaker
mechanism were in fact considered rather an exception [105].

4.1. Nav1 channels of chromaffin cells do not fulfill the requirements of
pacemaker channels

The Na+ currents of chromaffin cells are typically transient in
nature and mainly TTX-sensitive [13,106,107]. All inward current
ascribed to Na+ can be blocked by TTX at concentrations as low as
100 nM [108]. Klugbauer et al. [109] were the first showing that
BCCs express high densities of the NaV1.7 isoform. It is even believed
that the NaV1.7 channel that originally was called PN1 (peripheral
nervous system specific) is the only isoform expressed in chromaffin
cells [106,107]. Nav1.7 in fact shows a peculiar expression pattern
with high levels of expression in chromaffin cells, sympathetic
ganglia and Aβ- as well as C-type dorsal root ganglion (DRG) neurons
[107,110–112].

NaV1.7 channels produce fast activating and inactivating currents
that generally recover slowly from fast inactivation [107]. This slow
recovery from inactivation is generally believed not to permit and
sustain prolonged high-frequency firing of excitable cells. NaV1.7
channels, however, respond to slow depolarizing ramps due to the
slow onset of closed state inactivation and could trigger boosting
depolarizations to bring Vrest closer to Vthresh [110]. Data from our
lab unequivocally indicate that NaV1 block by 300 nM TTX does not
block spontaneous membrane oscillations of MCCs [12,13]. AP-clamp
experiments prove clearly that Na+ currents in MCCs are confined to
the AP-upstroke phase, showing a rather complete inactivation during
the broad Ca2+-dependent spikewaveforms [31] (Fig. 3). WhenMCCs
are forced into fast firing patterns (e.g. by blocking SK channels)
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we observed a continuous and steady decrease of the spike ampli-
tude, spike threshold and dV/dtmax which are all indicative of a re-
duced NaV channel availability [31]. This was not found to interfere
with the ability of MCCs to elicit spontaneous APs, indicating that
fast inactivating Na+ currents fulfill only a minor role in MCCs
pacemaking.

4.2. LTCCs as pacemaker channels in chromaffin cells

In contrast with TTX, nifedipine (3 μM) just like Cd2+ is very ef-
fective in blocking MCCs spontaneous activity [10–12,50]. A property
that is not limited to chromaffin cells but is shared with several cen-
tral neurons in which LTCCs are responsible for pacemaking (see [12]
for a review). Given that MCCs and RCCs express only Cav1.2 and
Cav1.3 channels [11,16,24] the pacemaking of these cells is obviously
restricted to either one of the two channels. Cav1.3 in particular ex-
hibits biophysical features that are critical for pacemaking. The chan-
nel possesses a low-threshold of activation (−50 mV in 2 mM Ca2+),
fast activation kinetics and relatively slow inactivation characteristics
[6,113]. The interest in Cav1.3 as a pacemaker channel grew substan-
tially after it was shown that it contributes to the spontaneous firing
patterns of substantia nigra (SN) dopaminergic neurons [9,114].
Given this, Marcantoni et al. [11] investigated the exact nature of
the LTCC-dependent pacemaker of MCCs. Since no Cav1 selective
DHPs are available yet, this information was provided by experiments
conducted on Cav1.3−/− mice. Strikingly, Cav1.3 deficiency leads to a
loss of firing in the majority of MCCs. The small portion of cells that
maintained their spontaneous activity, fired at elevated frequencies
and were characterized by depolarized resting membrane potentials
of −40 to −45 mV. WT-MCCs typically fluctuate around a Vrest of
−45 to −50 mV that perfectly coincides with the activation thresh-
old of Cav1.3 channels and is about 9 and 25 mV more negative
than that of Cav1.2 and Nav1 channels, respectively [13]. Especially
at Vrest the input resistance is notably elevated (4–5 GΩ) ensuring
significant membrane depolarizations, even upon small inwardly
directed Ca2+ currents (2–3 pA). Voltage- and Ca2+-dependent inac-
tivation of Cav1.3 is moreover minimal around the pacemaker poten-
tial, favoring the development of persistent Ca2+ currents that cover
the interspike intervals as is evident for WT MCCs (Fig. 3). This pace-
maker current in fact is strongly attenuated in Cav1.3−/− MCCs, un-
equivocally proving its direct involvement in MCCs pacemaking.
Impeding Ca2+ ions to flow in the cell through LTCCs leads to a cell
depolarization instead of an expected hyperpolarization. This appar-
ent anomaly can be explained by predicting a specific coupling of
LTCCs (Cav1.3 in particular) to Ca2+-activated K+ channels that
fine-tune MCCs pacemaking.

4.3. MCCs pacemaking: a healthy balance between Cav1.3 inward Ca2+

currents and Cav1.3-driven outward K+ currents

As mentioned before, Ca2+ ions serve a multitude of roles in cellu-
lar physiology, ranging from neural growth and brain plasticity to cell
death. Ca2+ is furthermore able to affect gene expression and trigger
exocytosis of neurotransmitters [115]. The “power” of Ca2+ as an
effective second messenger partly resides in the huge concentration
gradient difference that is maintained across the cell membrane.
Ca2+ outside the cell is 104 times more concentrated as the unbound
Ca2+ inside. Thus, cells that make use of a Ca2+-dependent pace-
maker need enhanced metabolic controls in order to guarantee effi-
cient Ca2+ handling [114,116]. An additional way to reduce the
total amount of Ca2+ influx is by shortening the AP duration and
slowing down the pace of firing by activating Ca2+-activated K+

channels. For MCCs in fact the “drive” of pacemaking (Cav1.3) is
strongly coupled to BK and SK channels that act as a “brake” in
these cells [11,12,31]. Cav1.3 deficiency results in a strong and almost
complete block of a transient outward current that covers the region
in between the spike peak and the antipeak. This current was shown
to reflect a paxilline-sensitive fast-inactivating BK current, which
is characteristic of MCCs [11,50], RCCs [117] and BCCs [118]. Loss of
this BK current typically results in broader APs and reduced fast
after-hyperpolarization phases [11].

Although the acute application of paxilline leads to an increase
of the firing frequency (as is the case of a fraction of spontaneously
firing Cav1.3−/− MCCs), BK−/− MCCs did exhibit reduced firing
frequencies [12]. Similarly, Purkinje neurons of BK−/− mice show re-
duced firing frequencies as compared to WTs [119]. Upon stimulation
we observed furthermore that BK loss reduces the onset of instanta-
neous firing frequency and fastens the time course of spike frequency
adaptation of MCCs (Vandael & Carbone, unpublished data). A similar
phenomenon has been observed for hippocampal pyramidal neurons
[120]. A possible explanation could be that more Ca2+ enters during
the broader APs and triggers more prominent SK currents. Thus,
even though Cav1.3 deficiency leads to an aberrant activation of
BK channels, this phenomenon is not likely the only reason of the
observed increased firing frequencies of the spontaneously active
Cav1.3−/− MCCs. Moreover, Cav1.3−/− MCCs typically respond to
BayK 8644 with a sudden strong rise in the firing frequency followed
by a depolarization block, a phenomenon that was not always ob-
served in MCCs lacking the BK channels [12]. All BK−/− MCCs could
be forced into depolarization block when BayK 8644 was co-applied
together with apamin, a potent SK channel blocker. This thus indi-
cates that Cav1.3−/− MCCs show an aberrant activation of both BK
and SK channels.

4.4. A functional coupling between Cav1.3 (the motor) and SK channels
(the brake) drives MCC firing

The abovementioned issues were the drive for studying the role
of Cav1.3 in SK channel activation. SK channels were first identified
in BCCs by Marty and Neher [121], and later in RCCs by Neely and
Lingle [122] but their role on chromaffin cell excitability remained
elusive. We have recently shown that MCCs express SK1-3 channels
that contribute to a tonic current that slows down basal firing fre-
quencies [31]. Interestingly, the resting firing frequency does reflect
the amount of SK channels that contribute to MCCs pacemaking.
A negative correlation in fact exists between the basal frequency
and its percentage increase induced by apamin [31] (Fig. 4). In
other words, the more SK channels are available in a chromaffin cell
the lower is its resting firing frequency. Fig. 4 shows two examples
of MCCs displaying low and high firing frequencies and how apamin
affects more markedly the MCC firing slowly. In line with this, SK
channels contribute to spike frequency adaptation upon current in-
jection (Fig. 5a, c). In brief, SK channels give rise to a gradual increase
in interspike interval duration when MCCs are stimulated. Spike
frequency adaptation furthermore enhances the availability of Nav
channels, necessary to maintain stable AP waveforms. As suggested
by Engel et al. [123], SK currents might shunt the membrane resis-
tance, meaning that more current is required to induce a certain
change in voltage. This also implicates that cells activating a sufficient
amount of SK channels can deal with stronger current inputs as com-
pared to cells with little SK activation. In this regard we found that
Cav1.3−/− MCCs show a remarkable lower degree of spike frequency
adaptation (Fig. 5a, c) and an earlier switch into depolarization block
as compared to WTs [31]. Both findings suggest that Cav1.3−/− MCCs
have difficulties in triggering SK currents. It is thus tempting to hy-
pothesize that the observed increased firing frequencies of the sub-
group of spontaneously active Cav1.3−/− MCCs can be attributed to
a reduced degree of SK activation.

When SK currents are measured during a train of APs it is striking
that they build up during the interspike intervals in WT MCCs and
that this phenomenon is strongly attenuated in Cav1.3−/− MCCs
(Fig. 5b, d). Nifedipine was moreover able to induce a complete



Fig. 4. SK channels slow down the MCC pacemaker cycle. Top left, representative current clamp recordings of spontaneously firing MCCs without current injection. Notice that
apamin (200 nM) leads to stronger increases of firing rate in cells with low basal firing frequencies as compared to cells with elevated basal firing rates. Top right, close-ups of
the APs indicated by the asterisks (left). Again the effects of apamin on the AP shape are more evident in cells that show low basal firing rates. Bottom, graphical representation
of the degree of correlation between the basal firing rate and the percentage increase (or decrease) on frequency (left), after hyperpolarization (middle) and baseline (right) in-
duced by apamin.
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block of the interspike interval specific SK current, enforcing the idea
that LTCCs are critical in triggering SK channels activation in MCCs.
Voltage-clamp experiments on slow SK tail currents pointed out al-
though that LTCCs and non-LTCCs contribute equally to SK activation.
Indeed, a train of APs is not at all comparable to a square pulse
voltage-clamp protocol. Analyzing the total amount of Ca2+ charge
flowing in the cell during the firing cycle we concluded that Cav1.3
shows a major contribution as compared to the other HVA channels.
Already the interspike interval is in charge of 50% of the total Ca2+

charge surging into the cell and is largely absent in Cav1.3−/−

MCCs. Thus, Cav1.3 is coupled in a functional rather than in a molec-
ular manner to SK channels in MCCs.

Noteworthy is the overlap between the outward Cav1.3-dependent
SK current and the inwardly directed Cav1.3 current itself during the
pacemaker cycle (Fig. 5b, d). The sum of both has its implications on
the rate of depolarization and consequently on the duration of the
interspike interval. MCCs are thus a perfect example of a spontaneously
active cell type where the “motor” of the system (Cav1.3) controls the
“brake” (SK) in order to prevent over-excitation. These findings further-
more indicate that modulation of the “brake” could have as important
consequences on catecholamine release as modulation of the “motor”.
5. L-type channels and secretion: any specific role for Cav1.2
and Cav1.3?

In chromaffin cells, the different VGCCs (L, N, P/Q, R, T) contribute
to exocytosis proportionally to their density of expression and gating
properties [33–36,124–128]. Secretion is not particularly linked to
any specific Ca2+ channel type and either deletion or up-regulation
of one of them causes a proportional change in secretion. For instance,
Cav2.1 deletion causes a loss of the P/Q-type currents with a compen-
satory increase of L-type currents and secretion [129]. Similarly,
when up-regulated by cAMP [130] or chronic hypoxia, [131] T-type
channels contribute to low-threshold exocytosis with the same Ca2+-
dependence of L-type channels [38].
As shown above, Cav1.2 and Cav1.3 represent the final target of
different modulatory pathways mediated by direct activation of G
protein-coupled autoreceptors or remote pathways involving PKA
and PKG activation. In principle, by acting on the two isoforms, any
of these signaling loops can exert also a potent modulatory effect on
the exocytotic response. In fact, the L-type current increase induced
by cAMP stimulation only accounts for 20% of the total secretory re-
sponse, suggesting an additional down-stream effect on the secretory
machinery [36]. It is also interesting to notice that, due to their slower
and less complete time-dependent inactivation, LTCCs (in particular
Cav1.3) are favored in triggering exocytosis with respect to other
HVA Ca2+ channels during sustained stimuli. Nevertheless, the con-
tribution of Cav1.2 and Cav1.3 to exocytosis remains proportional to
the quantity of Ca2+ ions entering the cell, suggesting that there is
no preferential co-localization of LTCCs to secretory granules [51].

Although the critical role of LTCCs in triggering exocytosis is well
established [36,53,132,133] there are no clear indications of a possible
distinct role of Cav1.2 and Cav1.3 to exocytosis, despite the different in-
activation kinetics and voltage range of activation of the two isoforms
[7]. Preliminary observations show that deletion of the Cav1.3 subunit
in MCCs lowers the amount of exocytosis at very negative potentials
(−50 to−30 mV in 10 mM Ca2+) (Navarro V, Carbone E, Carabelli V,
unpublished data), indicating that besides sustaining action potential
firing, Cav1.3 preferentially contributes to exocytosis at lowmembrane
potentials [66]. This is in good agreement with what recently reported
by Peréz-Alvarez et al. [26], in which secretion of Cav1.3−/− mice is
partially reduced at very negative potentials. In this way, Cav1.3 con-
tributes to the low-threshold exocytosis similar to the T-type Cav3.2
channel when expressed during cAMP/PKA elevations [38,127] or
chronic hypoxia conditions [131].

6. L-type channels and endocytosis: are Cav1.3 and Cav1.2
equally involved?

Another open question to solve concerns the role of Ca2+ and
Ca2+ channels in the retrieval of synaptic vesicles during endocytosis.
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Fig. 5. Spike frequency adaptation of MCCs is dependent on Cav1.3-driven SK channels. a, representative current clamp traces of a MCC after 15 pA current injection in control (top),
after block of BK channels by 1 μM paxilline (middle) and after block of SK channels by 200 nM apamin (bottom). Notice that apamin and not paxilline reduces the naturally oc-
curring spike frequency adaptation of WTMCCs. b, representative AP-clamp traces of a WT MCC. The top trace represents the AP train recorded in response to a 15 pA current stim-
ulus. To the bottom are illustrated the SK currents (black) and the total Ca2+ currents (blue) that flow during the spike train. Red traces are recorded in the presence of 3 μM
nifedipine to block the L-type currents. Notice that the L-type Ca2+ current perfectly overlaps with the interspike interval specific outward SK current. c and d, same as in a and
b but referring to Cav1.3−/− MCCs. Notice that the reduced spike frequency adaptation of Cav1.3−/− MCCs can be ascribed to the inability of these cells to build up sizeable SK cur-
rents (adapted from Ref. [31]).
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Neuroendocrine chromaffin cells exhibit different types of endocyto-
sis, according to cell activity and stimulation protocols. Square pulse
depolarizations cause exocytosis followed by a decline in membrane
capacitance, which can reach the pre-stimulus level (compensatory
endocytosis) or fall even below (excess endocytosis) [134,135]. Tran-
sition between these two modes appears to be regulated by intracel-
lular Ca2+: the retrieval being accelerated and potentiated by
increasing Ca2+ levels. It is interesting that in chromaffin cells
endocytosis is also supported by barium [136] by the activation of
kinase/phosphatase-mediated pathways [134,137] and by additional
pathways of vesicle recycling independent of dynamin and calmodu-
lin [40] In bovine chromaffin cells, the mechanism of action involves
sphingosine and originates at the intracellular site [138]. The phe-
nomenon is lost when applying repeated stimuli [139].

Concerning the role of Ca2+ channels in sustaining endocytosis, a
preferential coupling of LTCCs to endocytosis has been recently pro-
posed: Ca2+-entry through LTCCs in bovine chromaffin cells is more
effective in triggering endocytosis than exocytosis [39] (see also [41]
for a recent review). Even at the mammalian neuromuscular junction,
endocytosis is mainly sustained by LTCCs, while P/Q-type channels
trigger exocytosis [140]. Block of LTCCs by DHPs decreases endocytosis
and directs newly formed synaptic vesicles to a slow-release vesicle
pool during high-frequency stimulation. According to the proposed
model, in the absence of functioning LTCCs, endocytosis cannot be
sufficiently fast to balance exocytosis causing vesicular membrane to
accumulate at the presynaptic surface.

Given the main role of LTTCs in controlling compensatory and
excess endocytosis, the next issue is whether Cav1.2 or Cav1.3 has a
preferential control on vesicle retrieval. One argument in favor of
Cav1.3 is its slower and less complete time-dependent inactivation
with respect to Cav1.2. The delayed inactivation of Cav1.3 could
be physiologically relevant for sustaining prolonged Ca2+ influxes
that support normal endocytosis. This can be certainly clarified by
comparing the endocytotic responses to Ca2+ loads in WT and
Cav1.3−/− MCCs and by checking whether the hypothesis of an
equal role of Cav1.2 and Cav1.3 on vesicle retrieval is satisfied.
Under these conditions, a nearly half reduction of functional LTCCs,
as occurred in Cav1.3−/− MCCs, should cause a proportional decrease
of endocytosis. Finally, also the coupling of Cav1.2 and Cav1.3 to cal-
modulin, the Ca2+ sensor of different forms of endocytosis [141],
could be a further molecular target of differential regulation of the en-
docytosis that needs to be tested.

7. Concluding remarks

The importance of Cav1.2 and Cav1.3 channels in the control of
chromaffin cell firing, catecholamine secretion and vesicle retrieval
is of growing interest and supported by an increasing number of
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up-coming papers [12,18,41,67]. Cav1.3 and Cav1.2 contribute to
shape the AP waveform and support the pacemaker current. Cav1.3,
in particular, activates BK and SK channels that in turn set the fre-
quency of spontaneously firing cells and help in adapting the spike
frequency during prolonged depolarization. At present, there are no
indications of any preferential coupling of either one isoform to the
exo- and endocytotic machinery. Since both channels are equally
modulated by PKA- and PKG-mediated pathways and may undergo
drastic up and down autocrine regulations, it is expected that both
isoforms play a critical role in chromaffin cell functioning.

Future works will certainly help to identify how the voltage-
dependence of activation–inactivation gating and modulatory path-
ways acting on these Cav1 channels may fine-tune cell firing and
Ca2+-dependent excitation–secretion coupling. New findings on the
functional role of these two LTCCs on chromaffin cells activity will
be beneficial not only for understanding stress-related pathologies
associated to the adrenal gland [67] but also for resolving the origin
of diseases of central neurons, sensory and cardiac cells where the
two LTCCs are highly expressed and play vital roles [12,16].
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