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SUMMARY

Despite the increasing use of optogenetics in vivo,
the effects of direct light exposure to brain tissue
are understudied. Of particular concern is the poten-
tial for heat induced by prolonged optical stimula-
tion. We demonstrate that high-intensity light,
delivered through an optical fiber, is capable of
elevating firing rate locally, even in the absence of
opsin expression. Predicting the severity and spatial
extent of any temperature increase during optoge-
netic stimulation is therefore of considerable impor-
tance. Here, we describe a realistic model that simu-
lates light and heat propagation during optogenetic
experiments. We validated the model by comparing
predicted and measured temperature changes
in vivo. We further demonstrate the utility of this
model by comparing predictions for various wave-
lengths of light and fiber sizes, as well as testing
methods for reducing heat effects on neural targets
in vivo.
INTRODUCTION

Optogenetic tools have proven extremely useful for modulating

neural activity in a wide variety of model systems (Boyden

et al., 2005; Fenno et al., 2011), allowing for the activation or

inactivation of neural activity with unparalleled temporal,

anatomical, and cell-type specificity (Williams and Deisseroth,

2013). Optogenetic experiments rely on the expression of exog-

enous light-activated pumps and channels, which generate de-

polarizing or hyperpolarizing currents when exposed to light.

Typically, light is delivered into the brain through a fiber optic

attached to a laser or high-power light-emitting diode (LED)

driver. Thus, these experiments often require prolonged illumina-

tion of neural tissue with high-intensity light, which may cause

biophysically relevant temperature changes (Han, 2012; Acker

et al., 2012, Soc. Neurosci., abstract; Christie et al., 2013).

Although estimates have been made for calculating induced

temperature changes, a biophysically realistic model of light-
induced temperature changes in the brain is lacking (Yizhar

et al., 2011).

The importance of temperature for neural function has been

investigated previously. Raising or lowering bath temperatures

leads to changes in resting membrane potential, spontaneous

spiking, input resistance, membrane time constant, and synaptic

activity in acute slices (Thompson et al., 1985; Kim and Connors,

2012; Volgushev et al., 2000). Evoked synaptic responses also

have been reported to vary with temperature in vivo (Andersen

and Moser, 1995; Moser et al., 1993). In fact, this effect of tem-

perature has been exploited experimentally to reduce ongoing

neural activity by cooling (Long and Fee, 2008; Ponce et al.,

2008). Thus, optogenetics introduces the possibility of inducing

physiological effects on the basis of heat alone, even in the

absence of opsin expression (Han, 2012; Yizhar et al., 2011).

Heat changes induced by optical stimulation have not been

extensively tested, but existing data suggest that the tempera-

ture change induced by continuous light stimulation can be suf-

ficient to alter both neural and hemodynamic activity (Acker

et al., 2012, Soc. Neurosci., abstract; Christie et al., 2013; Desai

et al., 2011). We sought to model the spatial and temporal dy-

namics of heat induced by light stimulation by combining exist-

ing models for light and heat spread within three-dimensional

tissue (Wang et al., 1995; Pennes, 1948). We tested the results

of this model in vivo, finding it to be an accurate predictor of

the magnitude and time course of heat induction. This model

has been implemented in a MATLAB (MathWorks) package for

use by others in designing optogenetic experiments.
RESULTS

Modeling Light Intensity in the Brain
We simulated light spread from an optical fiber with a Monte

Carlo simulation of a random walk of photon packets through

three-dimensional space (Figure 1A,Monte Carlo). This was con-

trasted to the way that light is output from a fiber in a non-scat-

tering medium, such as air or water (Figure 1A, Idealized). To

realistically simulate light output from an optical fiber, we devel-

oped an approach for the initiation of photons into the simulation

based on the light acceptance properties of the fiber. Since light

can only travel along the length of the fiber at particular angles,

we randomized the starting trajectories of photon packets
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Figure 1. Monte Carlo Simulations Can Pre-

dict Light Spread through the Brain in Three

Dimensions

(A) Depiction shows the difference between

models with idealized light spread (left) and light

spread simulating absorption and scattering in

media (right).

(B) Model for coupling between a laser emitting

collimated light and a fiber optic cable (left) and the

method for incorporating this model into photon

initiation in the Monte Carlo simulation (right).

(C) Fluence rate (intensity) predicted for 532 nm

light out of an optical fiber (62 mm, NA 0.22) by

Monte Carlo simulation as a function of distance

from the fiber. (Inset) Intensity predicted for an

idealized model as in (A).

See also Figure S1.
such that they could not exceed the acceptance angle relative to

the normal of the circular fiber end (Figure 1B; Equation 2). Light

spread and scatter within the tissue was then simulated using a

model previously published by Wang, Jacques, and Zheng

(Wang et al., 1995; Jacques, 2011), which treats photons as

belonging to discrete packets with an initial energy. Energy

from these photon packets is absorbed as they move stochasti-

cally through the tissue, leading to both light attenuation and

heat buildup.

We have implemented this Monte Carlo simulation as a

MATLAB function,MonteCarloLight (Folder S1, Software S1), us-

ing scattering and absorption coefficients interpolated from pub-

lished values, calculated from in vivo data (Johansson, 2010).

Using this tool, we generated a predicted propagation pattern

for 532 nm light emitting out a 62 mm (numerical aperture [NA]

0.22) optical fiber (Figure 1C; generated with function LightHeat-

Plotter, Folder S1, Software S5). The light intensity spread pre-

dicted by the Monte Carlo simulation is notably wider than that

predicted by the idealized model (Figure 1C); the Monte Carlo

simulation also predicts increased light intensity dorsal to the fi-

ber tip due to back-scattering. Our results correspond well with

a previously published Monte Carlo simulation (Bernstein et al.,

2008). Consistent with previous studies, light intensity below

the fiber cannot merely be approximated by an exponential fit

(Aravanis et al., 2007), regardless of fiber optic size (Figure S1).

Modeling Heat Diffusion in the Brain
The possibility for heat buildup around the tip of the fiber is a po-

tential experimental concern, as even small fluctuations in tem-

perature can have measurable effects on neuronal function

(Kim and Connors, 2012; Wang et al., 2011). For this reason,

we sought to expand our light transport model to simulate heat

changes in neural tissue during illumination with either contin-

uous or pulsed light.

It is reasonable to assume that heat propagation through the

tissue can be ignored for short pulses of light and that tempera-

ture changes can be predicted by treating light absorption as

linear with pulse duration (Yizhar et al., 2011; Aravanis et al.,

2007). These methods predict large temperature changes,

even for stimulation epochs on the order of 50 ms. To improve

on these efforts, we modified Pennes’s bio-heat equation
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(Pennes, 1948) to develop a biophysically realistic model that

predicts heat changes, taking into account incident light energy

as well as additional variables that affect temperature in the

brain, namely, perfusion by blood vessels, metabolic heat pro-

duction, and heat diffusion in three-dimensional space (Equation

9). This heat diffusion model was implemented as a MATLAB

function, HeatDiffusionLight (Folder S1, Software S2).

To investigate the usefulness of our model for predicting tem-

perature changes induced by illumination through a fiber optic,

we simulated the temperature change for continuous 10 mW

output of 532 nm from a fiber optic (Figure 2A; 62 mm,

0.22 NA). The model predicted a steady buildup of temperature

below the fiber over 60 s of illumination (Figure 2B), with a plateau

at an average increase of�2.2�C for depthswithin a few hundred

microns of the fiber tip (temperatures at different depths were

calculated as the average in successive circular slices with

radius of 250 mm). The maximum temperature increase achieved

in a single voxel was 4.1�C (Figure S2A). Steady state was taken

to be the temperature after 60 s of illumination, though a small

amount (<5%) of additional temperature increase was observed

from 60 to 120 s. At steady state, increases of 1�C or greater

were observed within roughly a 1 mm3 cubic volume, despite

the fact that light intensities were strongly concentrated only

within a few hundred microns of the fiber tip (Figure S2A).

Adding the step of modeling heat diffusion in the brain puts the

disparity between light and heat spread in stark relief (Figures 3A

and 3B; Figure S2A). To our surprise, we found that first-order

approximations of temperature change, ignoring heat diffusion,

dramatically overestimated temperature changes even when

light pulse durationswere very short (Figure 2C, inset). Of course,

for long light durations, the two models dramatically diverged

(Figure 2C; Figure S2B). Importantly, temperature changes

even could be observed above the fiber tip and increased linearly

with power (Figure S3). We also evaluated the impact of heat

convection on the results of our simulations; while removal of

the heat convection term (and also the metabolic heat term to

maintain equilibrium) had little effect on the initial phase of heat-

ing, it led to a slight elevation of the steady-state temperature

(Figure S4). Thus, convection is a less important factor than

conduction in the dissipation of heat induced by optogenetic

stimulation.



Figure 2. Realistic Bio-Heat Models Can

Predict Light-Induced Temperature Change

(A) Depiction shows the combination of Monte

Carlo simulation with the Pennes bio-heat equa-

tion for modeling light-induced heat changes in a

homogenous block of brain.

(B) Heat changes predicted by the bio-heat model

for 532 nm light from an optical fiber (62 mm, NA

0.22), plotted as a function of time and depth. Heat

was calculated as the average heat change in

circles of 250 mm radius, concentric with optical

fibers.

(C) Temperature change for the bio-heat model

with (black) and without (gray) heat diffusion as a

function of time at the depth of 400 mm, as marked

by the stippled line in (B).

See also Figures S2–S4.
Overall, our simulations indicate that adding in a biophysically

realistic model of heat diffusion leads to a potentially more real-

istic, andmore widespread, estimation of temperature increases

in the brain and that incorporation of heat diffusion is necessary

for accurate temperature predictions, even for very short light

pulses.

Validating Model Parameters
To test the accuracy of our simulations and to select the

appropriate parameters for light scattering and absorption

from among those in the literature, we compared our predic-

tions to temperature measurements conducted during fiber

optic illumination in the brains of anesthetized mice in vivo.

While we chose to use scattering and absorption parameters

obtained in vivo (Figures 3A and 3B, Parameters 1; Experi-

mental Procedures; Johansson, 2010), a set of parameters ob-

tained in vitro also has been frequently cited in the literature

(Figures 3A and 3B, Parameters 2; Experimental Procedures;

Yaroslavsky et al., 2002). We first examined the extent to

which the differences in parameters affect predicted tempera-

ture changes. We compared light propagation and steady-

state temperature changes using both parameter sets for

simulated 532 nm light (10 mW) emanating from a 62 mm op-

tical fiber (0.22 NA). Both sets of parameters featured similar

scattering coefficients, and the predicted light spread was

similar between the two models (Figure 3A), with only a

±20% difference in light intensity within 3 mm of the fiber.

However, the two sets of parameters differ considerably with

respect to their absorption coefficients. Perhaps due to ab-

sorption of light by blood, which is largely cleared away in

in vitro slices, the absorption coefficient for green light calcu-

lated by Johansson (2010) is 5-fold larger than that reported

by Yaroslavsky et al. (2002). Accordingly, Parameters 1 pre-

dicted a 300%–500% larger temperature increase than Pa-

rameters 2 (Figure 3B), demonstrating how temperature pre-

diction depends critically on accurate estimates of the
Cell Reports 12, 525–
absorption coefficient of brain tissue.

Thus, previous studies of light spread

(Yizhar et al., 2011; Aravanis et al.,

2007; Bernstein et al., 2008) would not
be sensitive to the choice of model parameters, while heat

predictions would be highly affected.

To test the accuracy of the model with the two parameter

sets, we measured heat changes in brain tissue in vivo under

continuous light stimulation. Anesthetized mice were im-

planted with a thermistor and an optical fiber (532 nm wave-

length, 10 or 20 mW, 62 mm diameter fiber, 0.22 NA)

opposing each other (anti-parallel, with centers aligned), and

the distance between the tips of the thermistor and fiber

was systematically varied (Figure 3C). The temperature

changes we recorded were close to those predicted by the

model using the in vivo-derived Parameters 1, though they

underestimated temperature changes for short distances by

as much as 1�C. This discrepancy was well explained by

direct effects of light on the thermistor; high-intensity light

heats the thermistor directly, an effect that we measured in

a temperature-controlled saline bath. Incorporating this arti-

fact into the model improved correspondence of the data

with the simulation (Figure 3C, dashed lines). The temperature

changes predicted by the in-vitro-derived Parameters 2 were

several-fold smaller, suggesting that they underestimate the

temperature change induced by optical illumination in vivo

(Figure 3C). It is notable that our predicted temperature distri-

bution peaked at 100–200 mm of depth, while the recorded

data did not. Several experimental variables might account

for this discrepancy, including non-homogeneity in the tissue

(e.g., some small amount of fluid or blood collecting near the

fiber tip), increased sensitivity of the thermistor probe at its

center (we assumed uniform sensitivity), or experimental

error preventing perfect alignment of the fiber with the

thermistor.

We also compared our model predictions to previously pub-

lished peak temperature changes of 0.42�C/mW for blue

(445 nm; 200 mm fiber) light stimulation (Christie et al.,

2013). Our model slightly underestimated these changes, pre-

dicting 0.35�C/mW for 445 nm light, possibly owing to linear
534, July 21, 2015 ª2015 The Authors 527



Figure 3. Optical Parameters Measured In Vivo Yield Accurate Predictions of Temperature Change

(A) Fluence rate using optical parameters from Johansson (2010) (left) and Yaroslavsky et al. (2002) (right).

(B) Temperature change for model parameters as in (A).

(C) Temperature changes measured for various distances between an optical fiber (532 nm, 62 mm, NA 0.22) and a thermistor for both 10 (gray circles) and 20mW

(black circles) power output. Error bars indicate the range of all measured temperatures across five repetitions. On the same axes, predicted temperature change

as a function of depth is plotted for both sets of model parameters with 10 and 20mW light power. The effects of direct light also were included and plotted for the

first model (dashed lines).

(D) Temperature change as a function of time from light onset for 20 mW light power recorded at a thermistor 400 mm away from an optical fiber. Super-imposed

are the predictions for the model with (green, dashed) and without (green) a compensatory delay measured for the thermistor. Error bars indicate the entire range

of recorded values.

(E) (Left) Schema for single-unit recordings with an optrode (fiber and stereotrode bundle) in the PFC. During ipsilateral stimulation, light (532 nm through 200 mm,

0.22 NA fiber) was delivered on the same side that the single units were recorded, while during contralateral stimulation, light was delivered on the opposite side.

(Right) Predicted peak temperature changes (after 30 s of illumination) and intensity values at the location of the stereotrode bundle (400 mmbelow the fiber tip) are

plotted in the box above for the three light powers tested (1, 5, and 10mW). Firing rate of single units in the PFC during 30 s periods of light illumination are plotted

for these light powers (averaged across five repetitions) for ipsilateral (green) and contralateral (black) illumination. Firing rate was calculated as the percentage

change from before illumination. *p < 0.05, **p < 0.01, Wilcoxon signed-rank test between ipsilateral and contralateral conditions; n = 23 single units from three

mice.
extrapolation of the absorption and scattering coefficients for

445 nm from the published values at 480 and 560 nm (Jo-

hansson, 2010), which do not capture the large hemoglobin

absorption peak between 400 and 450 nm (Booth et al.,

2010).
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Light-Induced Temperature Quickly Reaches Steady
State
A strong advantage to modeling, compared to experimentally

measuring temperature change, is the ability to predict the

time course of temperature changes. Any device utilized to



measure temperature change will have an intrinsic delay. When

we tested the temporal dynamics of our model compared to

measurements made with a thermistor, the model reached

steady state more rapidly than the thermistor (Figure 3D), as

expected. When we compensated for the delay of the therm-

istor by adding a computationally induced delay to account

for the temporal dynamics of the thermistor (see Experimental

Procedures), the model still had a slightly faster initial temper-

ature increase, though the time to reach 90% of steady state

was similar (Figure 3D). The same delay was found for the

offset kinetics (Figure S5A). As expected, there was no signif-

icant effect of light power on the temporal dynamics (Figures

S5B and S5C). Overall, these data suggest that, at 400 mm

below the fiber, 80% of the steady-state temperature change

is achieved within 5 s of light onset and 90% of the steady-

state temperature is reached by 14 s (Figure 3D; Figures S3B

and S3C). Note that, as expected, this is slower than the tem-

poral dynamics previously reported for brain tissue immedi-

ately below a fiber optic (Christie et al., 2013). Deeper locations

were slower to reach steady state after both light onset and

offset.

Temperature Changes from Fiber Optic Illumination Are
Sufficient to Induce Firing Rate Changes In Vivo
It has been demonstrated previously that increases in tempera-

ture can elevate neuronal firing rate (Reig et al., 2010). We

sought to investigate whether the temperature changes induced

by fiber optic illumination, as in optogenetic experiments, are

sufficient to alter neuronal activity. Wild-type mice, without

any opsin expressed, were implanted with optrodes in the pre-

frontal cortex; each optrode consisted of a 200 mm fiber optic

affixed to a stereotrode bundle, with contacts 300–500 mm

below the fiber tip. Predicted intensities and temperatures at

400 mm below the fiber were calculated for three light intensities

of 532 nm light as follows: 1, 5, and 10 mW (Figure 3E). Illumi-

nation and recording were performed during periods of quiet

restfulness.

We found that the commonly used intensities of 5 or 10 mW of

light illumination were sufficient to elicit increases in firing rates

of 31.3% ± 16.2% and 42.9% ± 17.4%, respectively (Figure 3E),

while 1 mW was not (�4.9% ± 6.0% change). These illumination

intensities corresponded to >1�C change in temperature. With

respect to absolute firing rate, at 10 mW, this change corre-

sponded to a modest but significant increase of 0.63 ±

0.21 Hz (p < 0.01, paired t test; baseline firing: 4.9 ± 1.0 Hz).

To control for other potential confounds of fiber optic illumina-

tion (e.g., potential visually evoked responses), we recorded ac-

tivity when light was delivered through a fiber contralateral to

the recording electrode; no significant effect of contralateral illu-

mination on firing rate was seen (Figure 3E; p > 0.05). Overall,

these data suggest that, consistent with data from acute brain

slices, small changes in temperature induced by fiber optic illu-

mination are sufficient to elicit increases in firing rate. It is

notable that this effect on firing rate was not seen in the same

mice when they were engaged in a prefrontal-dependent spatial

working memory task (Spellman et al., 2015), suggesting that

temperature-induced effects on firing rate can be state

dependent.
Predicting Heat Changes for Different Experimental
Protocols
The simulations and experiments described above demonstrate

that fiber optic illumination can cause physiologically significant

elevations in temperature of the brain. We next evaluated how

variations in experimental design, including light wavelength, fi-

ber diameter, and dynamics of light delivery, differentially

affected light and heat spread.

Typically, the wavelength is chosen based on the peak sensi-

tivity of the opsin, which varies considerably (and often by

design). Inhibitory opsins, in particular, range from peak absorp-

tion in the green (Archaerhodopsin) to yellow (Halorhodopsin)

and even red (Halo57) spectrum. We modeled light propagation

of the most commonly used wavelengths, as illustrated in Fig-

ure 4. Iso-contour lines are illustrated for 3 and 10 mW/mm2 light

intensities (Figure 4A), which are in the range of the effective po-

wer density for 50% activation (EPD50) for various opsins (Mattis

et al., 2012). Our results for blue (473 nm) light correspond well

with the extent of c-fos activation previously shown for ChR2-ex-

pressing cells (Root et al., 2014). Not surprisingly, longer wave-

length light penetrated deeper and spread more laterally than

shorter wavelength light, owing to slightly lower scattering by

the tissue (as noted above, absorption coefficient is not a signif-

icant factor in the attenuation of light intensity). Likewise, higher

wavelengths were associated with smaller temperature changes

since they are less readily absorbed by tissue (Figure 5). There

was nearly double the temperature increase for 532 nm light as

for 593 nm light, suggesting that experiments optimized for Hal-

orhodopsin may be less susceptible to temperature-induced ar-

tifacts than those optimized for Archaerhodopsin.

We also evaluated the effect of fiber size on light spread and

heat induction, as fiber sizes varying between 5 (Royer et al.,

2010) and 300 mm in diameter (Goshen et al., 2011) have been

used for optogenetic manipulations in vivo. We simulated light

and heat spread using two commonly used fiber diameters, 62

and 200 mm.Unexpectedly, the fiber diameter had remarkably lit-

tle bearing on the brain volume achieving light intensities neces-

sary for opsin activation. While there were differences in intensity

close to the fiber surface (Figure S6), both fibers seem to be

equally suited for large-volume illumination for the purpose of op-

togenetic manipulation when using high-intensity light (>1 mW;

Figure S6). By contrast, the higher light intensity at the tip of a

smaller fiber optic, in excess of what is required for opsin activa-

tion, translated into a higher predicted heat buildup locally.

Indeed, we found that temperature increases within a few hun-

dred microns of the fiber tip were much larger for a 62 mm fiber

compared to a 200 mm fiber (Figure 4A). This corresponded to

over a 50% increase in peak temperature (largest temperature in-

crease in a single voxel; Figure 4B). Temperature changes at lo-

cations farther away from the tip were similar between the two fi-

ber types (Figure 4C). Theseexperiments suggest that larger fiber

diameters may reduce the likelihood of temperature-based arti-

facts without substantial differences in illuminated volume.

The dynamics of light delivery might also affect temperature

changes. A recent study by Znamenskiy and Zador used

pulsed green light for the inhibition of cells expressing Archaer-

hodopsin-3 (Znamenskiy and Zador, 2013). Light was presented

as 1 ms pulses of 50 mW light every 10 ms (duty cycle of 10%),
Cell Reports 12, 525–534, July 21, 2015 ª2015 The Authors 529



Figure 4. The Effect of Fiber Size on Light Propagation and Heat Induction

(A) (Left) Iso-contour lines for light intensity predicted by the Monte Carlo simulation as a function of distance from the fiber (0.22 NA) for 10 mW of various

wavelengths of light out of a 62 (top) and 200 mm (bottom) fiber. (Right) Predicted temperature changes for 10mW, 532 nm light for a 62 (top) and 200 mm (bottom)

fiber.

(B) Peak temperature change (maximum temperature change in a voxel) as a function of power output for 62 and 200 mm fibers, as in Figure 3D.

(C) Temperature change as a function of depth, quantified as in (A) for the 62 and 200 mm fiber of Figure 3D.

See also Figures S5 and S6.
which was predicted to correspond to an effective 5 mW power.

To test whether this is an effective strategy for reducing heat

whilemaintaining high light-intensity levels, we simulated pulsing

10mWof 473 nm light (62 mmfiber) at a 50% and 10%duty cycle

and compared it to continuous light (100% duty cycle; Figure 6).

As expected, temperature changes oscillated with the duty cy-

cle, but the heat buildup was otherwise equivalent to continuous

light at a reduced power, proportional to the duty cycle (e.g., 5 for

10 mW at 50% duty cycle). We used a cycle duration of 100 ms,

but we found that shorter or longer cycle durations yielded the

same results. Thus, pulsing light is an effective strategy for

reducing induced heat while still achieving the volumetric

coverage of high light intensities, and it should be considered if

light-induced effects are observed in opsin-negative control

animals.

DISCUSSION

In this study, we evaluated a model of light and heat spread that

simulated the effects of fiber optic illumination of the brain on tis-

sue temperature. We also validated a set of parameters, which,

in combination with our model, accurately predicted the extent

and timing of heat changes induced in mouse brain tissue by illu-

mination through an optical fiber. We further demonstrated that

these modest temperature changes are sufficient to alter neural

activity in vivo. We have reported several useful applications of
530 Cell Reports 12, 525–534, July 21, 2015 ª2015 The Authors
this modeling method, including predicting heat changes for

various power outputs, wavelengths, and optical fiber sizes,

and we confirmed light pulses as a viable means for reducing

induced temperature changes. Finally, we provide a MATLAB

toolbox that instantiates the model for use in the design of opto-

genetic experiments by the neuroscience community.

Whilewebelieve that the results of ourmodeling are informative

for understanding the way that light and heat spread during opto-

genetic experiments, it is important to note that the results of this

modeling assume illumination in homogenous gray matter with

equal vascularization. Inpractice, variations ingrayandwhitemat-

ter and vascularizationwill affect the spread of light and heat, and,

thus, assumptions of the model will be violated to various extents

under different experimental conditions. Nevertheless, our results

elucidate several important and generalizable principles of light

and heat propagation that are true in all brain tissues.

Illuminating a Desired Brain Volume
For some optogenetic experiments, it is desirable for light illumi-

nation to be restricted to a small volume. The model is a simple

way to estimate the spread and penetration of light, as well as to

test the effect of NA, fiber size, andwavelength on the illuminated

volume. A surprising conclusion of the Monte Carlo model uti-

lized here is that light can spread slightly above the end of the

fiber tip (Figure 1C), underscoring the usefulness of a realistic

model for light propagation in the brain. While region specificity



Figure 5. The Effect of Wavelength on Light Propagation and Heat Induction

(A) Predicted temperature change as a function of distance from the optical fiber (62 mm, 0.22NA) for 473, 532, 561, and 593 nm light. All plots have the same color

scale. Text indicates peak temperature in a single voxel.

(B) Predicted temperature change as a function of depth as in (A) for the same wavelengths as in (A).
can often be achieved by limited viral expression, the light itself

must be restricted for some applications. For instance, Tye et al.

sought to illuminate the terminals of the basolateral amygdala

(BLA) in the central amygdala without directly illuminating BLA

cells (Tye et al., 2011). To this end, they restricted the light output

with a beveled guide cannula, which blocked light out of one side

of the fiber. Our model can be helpful for testing the efficacy of

interventions of this sort, and, to this end, we have included other

functions, MonteCarloLightCartesian and HeatDiffusionLight-

Cartesian (Folder S1, Software S3 and S4), for modeling light

scatter that is not symmetric about the central axis.

Controlling for Heat in Optogenetic Experiments
Our work argues for the need of opsin-negative control animals

in all optogenetic experiments. In this work, we predict temper-

ature changes for continuous 10 mW light ranging from 1�C to

4�C across a large volume of tissue, depending on wavelength

and fiber size. This temperature range is sufficient to induce

both physiological and behavioral changes (Thompson et al.,

1985; Moser et al., 1993). It is important to note that there can

be a dissociation between physiology and behavior as changes

in temperature can induce physiological changes in the absence

of changes in behavior (Moser and Andersen, 1994). For this

reason, physiological as well as behavioral effects from light

stimulation should be compared to opsin-negative controls

whenever possible, even in the absence of a behavioral change.

It is also important to note that the effects of temperature could

lead to light-induced effects in non-opsin-expressing cells,

thereby compromising the specificity of effects in experiments

with cell-type-specific expression.

If effects of light presentation are seen in control animals, one

may want to alter the stimulation parameters to reduce con-
founding effects of heat. To this end, we have provided evidence

for the efficacy of pulsing light for reducing heat. Our model also

highlights the importance of fiber size on induced heat effects.

While light propagation and heat induction are not grossly

affected by different fiber sizes, there is a substantial difference

in heat induced near the tip of the optical fiber. Larger fiber sizes

reduce the temperature around the fiber tip (where the largest

heat change occurs), and, thus, they may be favored over

smaller tips for certain applications. Lastly, heat-induced effects

may be reduced by using opsins activated by higher wave-

lengths of light, as temperature near the tip is predicted to be

approximately 2-fold less when illuminating with 593 nm light

compared to 532 nm light.

Indeed, many optogenetic studies have thus far kept temper-

ature changes to a minimum. For instance, several studies have

used 5 (Tye et al., 2011; Kim et al., 2013) or 10 mW (Warden

et al., 2012) of 593 nm light out of a 200 mm fiber for Halorhodop-

sin stimulation, predicted by the model to keep temperature in-

creases below 1�C. In these same studies, 5 or 10mWof 473 nm

light (200 mm fiber) were used for activation, which would be pre-

dicted to yield a higher temperature change; but, because the

light was pulsed with at most a 50% duty cycle, peak tempera-

ture increases should have been confined to a range of 0.5�C–
0.9�C. Nevertheless, with the increasing use of continuous stim-

ulation with 532 nm light to support Archaerhodopsin-mediated

inhibition, heat may become more of a concern as a confound-

ing effect of light stimulation independent of opsin activation.

Concluding Remarks
We provide here, for use by the scientific community, a MATLAB

toolbox for modeling light and heat propagation in the brain. We

believe this will help researchers to optimally plan experiments,
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Figure 6. Light-Induced Temperature Change Drops Linearly with

Duty Cycle

Predicted temperature change is plotted in gray as a function of time for

10 mW power light out of an optical fiber (473 nm, 62 mm, 0.22 NA) at duty

cycles of 100% (top), 50% (middle), and 10% (bottom). Superimposed blue

lines indicate predicted temperature changes for continuous 10 (top), 5

(middle), and 1 mW (bottom) light power.
potentially reducing the number of animals used by avoiding

experimental pitfalls.

EXPERIMENTAL PROCEDURES

Monte Carlo Modeling of Light Transport

To simulate light propagation in neural tissue, we modeled neural tissue in cy-

lindrical coordinates as a cylinder of 6 mm radius and 10 mm thickness with

absorbing ends. Cylindrical voxels were generated, discretizing space in

10 mmsteps. Identical results were obtained for a 63 63 10mmcube of tissue

in Cartesian coordinates using 10 mm3 voxels, but cylindrical coordinates were

favored for computational efficiency. Cylindrical coordinates, however, have

the notable problem of increased noise for positions directly below the light

source, so caremust be taken to run a sufficiently large simulation (107 packets

of photons were used for all simulations reported, but similar results could be

obtainedwith 106 packets). Results were also not sensitive to the size of voxels

that were selected, in the range of 5 to 30 mm3. Light transport through the

brain was implemented using an anisotropic scattering model utilizing the He-

nyey-Greenstein phase function as follows:

pðcos qÞ= 1� g2

2ð1+g2 � 2gcos qÞ3=2
; (Equation 1)

where g is the anisotropy parameter, between 0 (no anisotropy) and 1 (pure for-

ward scatter).

Photon packets were launched from the tip of an optical fiber located 4 mm

deep along the central axis of the tissue. For each packet, the initial starting

position was randomized so that it was equally likely to be at any position on

the circular surface of the fiber. The initial direction of each packet was then

determined from the angle in the plane of the surface, q, chosen randomly be-

tween 0 and 2p, and the angle relative to the orthogonal, 4, which was

selected from a random uniform distribution between ± qaccept given by

qaccept = sin�1

�
NA

n

�
; (Equation 2)

where NA is the numerical aperture (NA = 0.22 for all simulations in this pa-

per) and n is the index of refraction (n = 1.36) of brain (Binding et al., 2011;

Aravanis et al., 2007). This models the conical spread of light out of the op-

tical fiber.

Light transport was based on a previously published model (Wang et al.,

1995; Jacques, 2011). In brief, the light transport model was initiated with

packets of light with weight set to 1. Upon each iteration of the light transport
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model, light packets were moved a random distance, such that, at time t, the

nth light packet moved a distance given by

Sn;t =
�log Xn

sa + ss

; (Equation 3)

where sa and ss are the absorption and scattering coefficients of brain tissue

and Xn is a pseudo-random variable uniformly distributed between 0 and 1.

After moving, some of the packet’s energy was absorbed by the tissue (and

thereby attenuated). This wasmodeled by dropping the weights of the packets

by a factor of ðss=sa + ssÞ so that

wn;t +1 =wn;t

ss

sa + ss

; (Equation 4)

where wn;t is the weight of the nth photon packet at time t, and

w�
r;z;t + 1 =w�

r;z;t +wn;t

sa

sa + ss

; (Equation 5)

wherew�
r;z;t is the total stored weight in the voxel at which the photon packet is

located up until time t.

The light is then scattered, choosing a deflection-scattering angle in the

radial plane as governed by the Henyey-Greenstein phase function (Equation

1), and the azimuthal-scattering angle in the depth plane is calculated as

4n;t = 2pYn; (Equation 6)

where Yn is a pseudo-random variable uniformly distributed between 0 and 1.

Photon packets of low weight (w < 1 3 10�4) are extinguished with 90%

probability. If not extinguished, their weight is increased by 10-fold with 10%

chance. This process allows the model to reach an endpoint without leaking

net weights out of the system (conservation of energy). Photon packets that

left the simulated tissue were eliminated, but this was a negligible amount of

photon energy for the dimensions used. Light that back-scattered upward

was allowed to penetrate through the optical fiber as if it were brain tissue

for computational simplicity. More complicatedmodels allowing for reflections

off the optical fiber were simulated but gave nearly identical results.

After simulation was complete, the fluence rate, the sum total of incident

light power from all directions per unit volume at each voxel, fr;z, was given by

fr;z =P
w�

r;x

manphotons2pðr � 0:5Þdr2 dz ; (Equation 7)

whereP is the light power, nphotons is the number of photon packets launched in

total, dr is the discretization parameter in the radial dimension, and dz is the

discretization parameter in the depth dimension. Throughout the paper, light

intensity means the fluence rate (mW/mm2).

Values for ss, sa, and g were linearly interpolated from in vivo data (Johans-

son, 2010). Note that the absorption coefficient used is several-fold larger than

that reported for in vitro tissue (Yaroslavsky et al., 2002), likely due to the ab-

sorption of light by blood and melanin in vivo. Some in vitro measurements

have yielded values closer to those obtained in vivo, possibly due to differ-

ences in tissue preparation (Gebhart et al., 2006). We directly compared the

results obtained by linearly interpolating from in vitro and in vivo data in

Figure 3.
Modeling Heat Diffusion

For modeling heat diffusion, tissue was again modeled as a cylinder of 6 mm

radius and 10 mm thickness with absorbing boundaries. Heat transport in the

brain was treated as a diffusion process using the well-known modification of

the diffusion equation, Pennes’s bio-heat transfer equation (Pennes, 1948),

which has been applied to brain tissue previously (Aronov and Fee, 2011):

rc
vT

vt
=VkVT + rbcbwbðTA � TÞ+qm: (Equation 8)

T is the local tissue temperature (37�C at baseline in the absence of heat input);

TA is the temperature of the blood in the main arteries supplying the scalp,



assumed to be constant (36.7�C); and k, r, and c are the thermal conductivity,

density, and specific heat of the brain, respectively. Values for blood are given

by rb and cb; wb and qm are the blood perfusion rate and the metabolic heat

production in the tissue, respectively. Variables and input parameters were

defined as in Table S1 based on previous studies (Elwassif et al., 2006; Jans-

sen et al., 2005). Equation 9 was modified to incorporate incident light so that

rc
vT

vt
=VkVT + rbcbwbðTA � TÞ+qm +f ma; (Equation 9)

where f is fluence rate (intensity).

Equation 9 was discretized using a forward difference scheme. Space was

discretized using steps, Dx, of 30 mm, which gave very similar results to 10 mm.

The optical fiber was treated as equivalent to brain tissue for heat diffusion, for

simplicity. To assure numerical stability, time was discretized with steps

given by

Dt =
ðDxÞ2rc

6k
= 1:1 ms: (Equation 10)

Animal Use

All animal procedures were conducted in accordance with NIH regulations and

approved by Columbia University and New York State Psychiatric Institute

Institutional Animal Care and Use Committees.

In Vivo Temperature Measurement

Two mice (male C57/B6, 8–12 weeks old) were deeply anesthetized with iso-

flurane and mounted into a stereotax. The internal temperature of the mice

(measured intra-rectally) was maintained at 36.7 degrees using a heating

pad throughout the experiment. A craniotomy was made over the lateral sur-

face of the frontal cortex, on either side. A small, 62 mm diameter optical fiber

was coupled to a 532 nm laser (OEM Laser) and passed through the brain from

left to right hemisphere. A thermistor probe (Wavelength Electronics,

TCS10K5) was pressed firmly into the cortex, anti-parallel to the optical fiber

so that their centers aligned. Heat measurements were made before, during,

and after 60 s of illumination at various distances between the thermistor

and fiber (0–1.6mm). Both 10 and 20mW intensities were tested. After surgery,

the mice were euthanized with a lethal dose of ketamine.

We chose to use a thermistor because of its high temperature sensitivity at

physiological temperatures. Thermistor resistance readings were calibrated to

temperature by touching the thermistor tip to temperature-controlled baths of

water. As expected, a log-linear relationship was found between resistance

and temperature. To compare model outputs to thermistor readings, we ac-

counted for two unavoidable sources of experimental error introduced by

the thermistor readings. First, the temporal delays introduced by the thermistor

were calculated. In a medium of constant temperature, the temperature

reading of the thermistor was found to be accounted for by a simple exponen-

tial time constant of about 4 s. However, in our experiment, only part of the

metal was in contact with the brain, introducing a non-linearity into the tempo-

ral dynamics of the thermistor readings. To correct for this, a temporal kernel

was measured by touching the tip of the thermistor to a water bath held at

various temperatures (equivalent to step function increase). Since water has

a similar thermal conductivity to brain, we reasoned that this should approxi-

mately emulate the temporal dynamics in our experiment. The calculated

kernel was used to convolve the model output to introduce a non-linear tem-

poral delay. Second, the effects of light directly hitting the thermistor and being

absorbed by the metal were modeled. The conversion of incident light power

to steady-state resistance changes in the metal were measured in water held

at 37�C by illuminating the thermistor with an optical fiber at various distances

(0–1.6 mm). There was a measured increase of 2.4 3 10�5�C/mW/mm2 at a

distance of 0 mm, with the measured temperature change dropping off in a

way that was well-modeled by the attenuation of light in saline (non-scattering

medium). For modeling, the temporal dynamics for this direct light absorption

were treated as having the same non-linear kernel as measured previously.

An important caveat for any means of measuring temperature change is the

potential contribution of the device itself to temperature changes in the tissue.

In particular, direct heating of the thermistor by incident light might artificially
elevate the temperature change in the brain. However, the contribution of

direct light absorption was negligible past 1 mm from the fiber, at which dis-

tances our model reliably predicted recorded temperature changes in the

brain. For this reason, we concluded that incident light on the thermistor did

not explain our results.

In Vivo Electrophysiological Recordings

Three mice (male C57/B6, 8–12 weeks old) were placed inside a flow box and

anesthetized with isoflurane gas (2%) until sedated, at which point they were

placed in a stereotax and maintained on 0.5% isoflurane for the duration of

the surgery. Craniotomies were made bilaterally above the prefrontal cortex

(mPFC), and skull screws placed over cerebellum and olfactory bulb served

as ground and reference, respectively.

An optrode was implanted in the left mPFC (1.8 mm anterior, 0.4 mm lateral,

1.4 mm ventral), while a ferrule-coupled optical fiber (Thorlabs, 200 mm diam-

eter) was implanted over the right mPFC. The optrode consisted of 13 stereo-

trodes made from 13 mM-diameter tungsten fine wire (California Fine Wire)

glued to a ferrule-bound optical fiber positioned 300–500 mmdorsal to the ster-

eotrode tips, which were arrayed semi-circularly around the lateral edge of the

fiber.

Recordings were amplified, band-pass filtered (600–6,000 Hz), and digitized

using the Neuralynx Digital Lynx system. Spikes were detected by online

thresholding and collected at 32 kHz. Units were initially clustered using Klus-

takwik (KenHarris, University College London) and sorted according to the first

two principal components, voltage peak, and energy for each channel. Clus-

ters were then accepted, merged, or eliminated based on visual inspection

of feature segregation, waveform distinctiveness and uniformity, stability

across recording session, and ISI distribution. Isolation distances were consis-

tently above 15.

Subsequently, electrothermolytic lesions were made to histologically

confirm recording sites. Fiber optic tracks were also visualized.
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