Note

On the Dependence of Functions on Their Variables

Andrzej Ehrenfeucht

University of Colorado, Boulder, Colorado 80309

JEFF KAHN

M assachusetts Institute of Technology, Cambridge, M assachusetts 02139

Roger MAddux

Iowa State University, 50011

AND
Jan Mycielski

University of Colorado, Boulder, Colorado 80309
Communicated by the Managing Editors
Received May 13, 1981

Letf: $\mathrm{A}, \times \cdots \times \mathrm{A}, \rightarrow \mathrm{A}$ be a function of n variables, where $n \geqslant 2$. We say that f depends on the variable x_{i} iff there exist two sequence $(\mathrm{a}, \ldots, \mathrm{a}$,), $\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n}\right) \in A_{1} \mathrm{X} \cdots \mathrm{X} A_{n} \quad$ such that $f\left(a_{1}, \ldots, \mathrm{a},\right) \neq$ $f\left(a_{1}, \ldots, a_{i-1}, a, a_{i+1}, \ldots, a_{n}\right)$.

Theorem. If \mathbf{f} depends on all its variables, then there exist $\mathbf{i}, \mathbf{j}, \mathbf{a} \in A_{i}$, and $\mathbf{b} \in A_{j}$ such that $\mathbf{i} \neq \mathbf{j}$ and the functions $f\left(x_{1}, \ldots, x_{i-1}, \mathbf{a}, x_{i+1}, \ldots, \mathbf{x}_{1}\right)$ and $f\left(x_{1}, \ldots, x_{j-1}, b, x_{j+1}, \ldots, \mathbf{x}_{1}\right)$ depend on all their $\mathbf{n}-1$ variables.

Proof. We let $x_{i} \leqslant_{a} x_{j}$ iff $\mathbf{a} \in \mathrm{A}_{i}$ and $f\left(x_{1}, \ldots, x_{i-1}, \mathrm{a}, x_{i+1}, \ldots, \mathrm{x},\right)$ does not depend on x_{j}. Let us show that
(A) if $i \neq j, x_{i} \leqslant_{a} x_{j}$, and $x_{j} \leqslant_{b} x_{k}$, then $x_{i} \leqslant_{a} x_{k}$. 106
0097-3165/82/040106-03\$02.00/0
Copyright (C) 1982 by Academic Press, Inc. All rights of reproduction in any form reserved.

In fact, if $f\left(x_{1}, \ldots, x_{i-1}, \mathrm{a}, x_{i+1}, \ldots, \mathrm{x},\right)$ does not depend on x_{j} and $\mathrm{j} \neq i$, then

$$
\begin{aligned}
& f\left(x_{1}, \ldots, x_{i-1}, a, x_{i+1}, \ldots, x_{n}\right) \\
& \quad=f\left(x_{1}, \ldots, \mathrm{Xi}^{-}, a, x_{i+1}, \ldots, x_{j-1}, b, x_{j+1}, \ldots, x_{n}\right)
\end{aligned}
$$

But the right side does not depend on x_{k} if $x_{j} \leqslant_{b} x_{k}$, so neither does the left side, i.e., $x_{i} \leqslant a x_{k}$. Thus, (A) is true.

Now let $x_{i} \leqslant x_{j}$ iff $x_{i} \leqslant_{a} x_{j}$ for some a $\in \mathrm{A}_{i}$. Clearly, $x_{i} \leqslant_{a} x_{i}$ for all a $\in \mathrm{A}_{i}$ so \leqslant is reflexive, and \leqslant is transitive by (A). We say that x_{i} can be frozen iff there is some $\mathrm{a} \in A_{i}$ such that $f\left(x_{1}, \ldots, x_{i-1}, \mathrm{a}, x_{i+1}, \ldots, \mathrm{x},\right)$ depends on all its $n-1$ variables. Next we prove
(B) if $x_{i} \leqslant x_{j}, i \neq j$, and $x_{k} \leqslant x_{j}$ whenever $x_{i} \leqslant x_{k}$, then x_{i} can be frozen.

For any i, j let $S_{i j}=$ (a: $\left.x_{i} \leqslant_{a} x_{j}\right\}$. Notice that x_{i} can be frozen iff $\bigcup_{k \neq i} S_{i k} \neq A_{i}$. Assume x_{i}, x_{j} satisfy the hypothesis of (B). Let $k \neq i$. If $x_{i} \leqslant x_{k}$, then $S_{i k}=\varnothing$, and if $x_{i} \leqslant x_{k}$, then $x_{k} \leqslant x_{j}$, so by (A), $S_{i k} \subseteq S_{i j}$. Consequently, $\bigcup_{k \neq i} S_{i k}=S_{i j}$. If $S_{i j}=A_{i}$, then f does not depend on x_{j}, contrary to the hypothesis of the theorem. Thus, x_{i} can be frozen.

Say that x_{i} is <-maximal iff $x_{j} \leqslant x_{i}$ whenever $x_{i} \leqslant x_{j}$. Then we prove
(C) each <-maximal variable can be frozen.

Let x_{i} be <-maximal. If $x_{i} \leqslant x_{j}$ for some $\mathrm{j} \neq i$, then x_{j} is also S-maximal and it follows from (B) that x_{i} can be frozen. If $x_{i} \leqslant x_{j}$ for all $j \neq i$, then $\bigcup_{j \neq i} S_{i j}=\varnothing \neq A_{i}$, and again x_{i} can be frozen.

Now we finish the proof of the theorem. If there are two or more $\leqslant-$ maximal variables, then they can be frozen, but if there is only one $\leqslant-$ maximal variable, then all variables can be frozen, by (B) and (C).

This theorem implies an affirmative answer to problem $\left(P_{1}\right)$ of [2] and to similar problems about some functions φ and ψ defined in [2, p. 284]. The theorem does not generalize to all $f:{ }^{\omega}\{0,1\} \rightarrow\{0,1\}$. It cannot be improved to conclude that more than two variables can be frozen. To see this, definef:

$$
\begin{array}{rlrl}
{ }^{n}\{0,1\} \rightarrow\{0,1\} \text { as } & & \\
\qquad & & \text { if } a_{3}=\ldots=a_{n}=0, \\
& =a_{2}, & & \text { if } a_{3}=\ldots=a_{n}=1, \\
& =\sum_{i=3}^{n} \mathrm{a},(\bmod 2), & & \text { otherwise. }
\end{array}
$$

It is easy to check that f depends on all its variables and $x_{i} \leqslant x_{j}$ iff either $i=j$, or else, $i \in(3, \ldots, n\}$ and $\mathrm{j} \in\{1,2\}$. The only variables which can be frozen are x_{1} and x_{2}.
R be a preorder over the variables $\mathrm{x},, \ldots, x_{n}$, i.e., a reflexive and transitive relation. Then there is a function $f:{ }^{n}\{0,1\} \rightarrow(0,1\}$ such that $x_{i} R x_{j}$ iff $x_{i} \leqslant x_{j}$. If R is a partial order, such a function may be obtained as follows: For any sequence $\mathrm{a}=(\mathrm{a}, \ldots, \mathrm{a}$,$) , let D_{a}=\left(\mathrm{j}\right.$: if $x_{i} R x_{j}$, then $\left.a_{i}=1\right\}$ and let $\mathrm{f}(\mathrm{a})=0$ if the cardinality of D_{a} is even, otherwise $f(a)=1$. Suppose $x_{i} R x_{j}$. Then $x_{i} \leqslant_{0} x_{j}$, for if a is a sequence with $a_{i}=0$, thenj $\notin D_{a}$ and the value of $\mathrm{f}(\mathrm{u})$ cannot depend on a_{j}. Now suppose $x_{i} R x_{j}$ fails. Define a, a' $\in^{n}(0,1\}$ by $a_{k}=1$ iff $x_{k} R x_{j}$, and $a_{k}^{\prime}=1$ iff $x_{k} R x_{j}$ and $k \neq \mathrm{j}$. Then $a_{k}=a_{k}^{\prime}$ whenever $k \neq \mathrm{j}$, and D_{a} has one more element than $D_{a^{\prime}}$, so $\mathrm{f}(\mathrm{u}) \neq f\left(a^{\prime}\right)$. Thus, f depends on x_{j}, and a, $=a_{i}^{\prime}=0$ since $x_{i} R x_{j}$ fails, so, in fact, $x_{i} *_{0} x_{j}$. Define $b, b^{\prime} \in^{n}(0,1\}$ by $b_{k}=1$ iff $k=i$ or $x_{k} R x_{j}$, and $b_{k}^{\prime}=1$ iff $k=i$ or $x_{k} R x_{j}$ and $k \neq \mathrm{j}$. Then $b_{i}=b_{i}^{\prime}=1, f(b) \neq f\left(b^{\prime}\right), b_{k}=b_{k}^{\prime}$ whenever $k \neq \mathrm{j}$, and so $x_{i} x_{1}$. Hence, $x_{i} \nless x_{j}$ whenever $x_{i} R x_{j}$ fails. Clearly, \leqslant and R coincide, so f has the desired property. Thus, any partial order is isomorphic to the relation \leqslant of some function. The relation \leqslant of the product function $\prod_{i=1}^{n} x_{i}$ is universal, i.e., $x_{i} \leqslant x_{j}$ for all i, j. By a straightforward combination of product functions with the construction above, it can be shown that any preorder is isomorphic to the relation \leqslant of some function.

Added in proof. We learned recently that the theorem (restricted to Boolean functions) was announced without proof in |1|, and another example showing that 2 is maximal is given there.

REFerenCes

I. Ju. JA. Breitbart. Essential variables of the functions of the algebra of logic. Soviet Math. Dokl. 8 (1967), 1-3.
2. A. Ehrenfeucht and J. Mycielski, On k-stable functions, J. Combin. Theory Ser. A 27 (1979), 282-288.

