Note

On the Dependence of Functions on Their Variables

ANDRZEJ EHRENFEUCHT

University of Colorado, Boulder, Colorado 80309

JEFF KAHN

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

ROGER MADDUX

Iowa State University, 50011

A N D

JAN MYCIELSKI

University of Colorado, Boulder, Colorado 80309 Communicated by the Managing Editors Received May 13, 198 1

Let: A, $\times \cdots \times A$, $\rightarrow A$ be a function of **n** variables, where $n \ge 2$. We say that f depends on the variable x_i iff there exist two sequence (a_1, \dots, a_n) , $(a_1, \dots, a_{i-1}, a, a_{i+1}, \dots, a_n) \in A_1 \times \cdots \times A_n$ such that $f(a_1, \dots, a_n) \neq f(a_1, \dots, a_{i-1}, a, a_{i+1}, \dots, a_n)$.

THEOREM. If **f** depends on all its variables, then there exist *i*, *j*, $a \in A_i$, and $b \in A_j$ such that $i \neq j$ and the functions $f(x_1, ..., x_{i-1}, a, x_{i+1}, ..., x_i)$ and $f(x_1, ..., x_{i-1}, b, x_{i+1}, ..., x_i)$ depend on all their n - 1 variables.

Proof. We let $x_i \leq_a x_j$ iff $a \in A_i$ and $f(x_1, ..., x_{i-1}, a, x_{i+1}, ..., x_j)$ does not depend on x_j . Let us show that

(A) if
$$i \neq j$$
, $x_i \leq_a x_j$, and $x_j \leq_b x_k$, then $x_i \leq_a x_k$.

In fact, if $f(x_1, ..., x_{i-1}, a, x_{i+1}, ..., x_i)$ does not depend on x_i and $j \neq i$, then

$$f(x_1,...,x_{i-1},a,x_{i+1},...,x_n) = f(x_1,...,X_{i-1},a,x_{i+1},...,x_{j-1},b,x_{j+1},...,x_n)$$

But the right side does not depend on x_k if $x_j \leq_b x_k$, so neither does the left side, i.e., $x_i \leq_a x_k$. Thus, (A) is true.

Now let $x_i \leq x_j$ iff $x_i \leq_a x_j$ for some $a \in A_i$. Clearly, $x_i \leq_a x_i$ for all $a \in A_i$ so \leq is reflexive, and \leq is transitive by (A). We say that x_i can be frozen iff there is some $a \in A_i$ such that $f(x_1, ..., x_{i-1}, a, x_{i+1}, ..., x_i)$ depends on all its n-1 variables. Next we prove

(B) if $x_i \leq x_j$, $i \neq j$, and $x_k \leq x_j$ whenever $x_i \leq x_k$, then x_i can be frozen.

For any *i*, *j* let $S_{ij} = (a: x_i \leq_a x_j)$. Notice that x_i can be frozen iff $\bigcup_{k \neq i} S_{ik} \neq A_i$. Assume x_i, x_j satisfy the hypothesis of (B). Let $k \neq i$. If $x_i \leq x_k$, then $S_{ik} = \emptyset$, and if $x_i \leq x_k$, then $x_k \leq x_j$, so by (A), $S_{ik} \subseteq S_{ij}$. Consequently, $\bigcup_{k \neq i} S_{ik} = S_{ij}$. If $S_{ij} = A_i$, then *f* does not depend on x_j , contrary to the hypothesis of the theorem. Thus, x_i can be frozen.

Say that x_i is <-maximal iff $x_i \leq x_i$ whenever $x_i \leq x_i$. Then we prove

(C) each <-maximal variable can be frozen.

Let x_i be <-maximal. If $x_i \leq x_j$ for some $j \neq i$, then x_j is also S-maximal and it follows from (B) that x_i can be frozen. If $x_i \leq x_j$ for all $j \neq i$, then $\bigcup_{i \neq i} S_{ij} = \emptyset \neq A_i$, and again x_i can be frozen.

Now we finish the proof of the theorem. If there are two or more \leq -maximal variables, then they can be frozen, but if there is only one \leq -maximal variable, then all variables can be frozen, by (B) and (C).

This theorem implies an affirmative answer to problem (P₁) of [2] and to similar problems about some functions φ and ψ defined in [2, p. 284]. The theorem does not generalize to all $f: {}^{\omega}\{0,1\} \rightarrow \{0,1\}$. It cannot be improved to conclude that more than two variables can be frozen. To see this, definef: " $\{0,1\} \rightarrow \{0,1\}$ as

$$f(a_1,..., a_n) = a_1,$$
 if $a_3 = \dots = a_n = 0,$
= $a_2,$ if $a_3 = \dots = a_n = 1,$
= $\sum_{i=3}^n a_i \pmod{2},$ otherwise.

It is easy to check that f depends on all its variables and $x_i \leq x_j$ iff either i = j, or else, $i \in \{3, ..., n\}$ and $j \in \{1, 2\}$. The only variables which can be frozen are x_1 and x_2 .

R be a preorder over the variables x, \dots , x_n , i.e., a reflexive and transitive relation. Then there is a function $f: {}^{n}\{0, 1\} \rightarrow (0, 1)$ such that $x_{i} R x_{j}$ iff $x_i \leq x_i$. If *R* is a partial order, such a function may be obtained as follows: For any sequence $a = (a, ..., a_i)$, let $D_a = (j: \text{ if } x_i R x_j, \text{ then } a_i = 1 \}$ and let f(a) = 0 if the cardinality of D_a is even, otherwise f(a) = 1. Suppose $x_i R x_j$. Then $x_i \leq_0 x_i$, for if a is a sequence with $a_i = 0$, then $\notin D_a$ and the value of f(u) cannot depend on a_i . Now suppose $x_i R x_j$ fails. Define a, a' \in " (0, 1 } by $a_k = 1$ iff $x_k R x_j$, and $a'_k = 1$ iff $x_k R x_j$ and $k \neq j$. Then $a_k = a'_k$ whenever $k \neq j$, and D_a has one more element than $D_{a'}$, so $f(u) \neq f(a')$. Thus, fdepends on x_i , and $a_i = a'_i = 0$ since $x_i R x_i$ fails, so, in fact, $x_i \leq_0 x_i$. Define b, b' \in " (0, 1) by $b_k = 1$ iff k = i or $x_k R x_i$, and $b'_k = 1$ iff k = i or $x_k R x_i$ and $k \neq j$. Then $b_i = b'_i = 1$, $f(b) \neq f(b')$, $b'_k = b'_k$ whenever $k \neq j$, and so $x_i \not\leqslant_1 x_j$. Hence, $x_i \not\leqslant x_j$ whenever $x_i R x_j$ fails. Clearly, \leqslant and R coincide, so f has the desired property. Thus, any partial order is isomorphic to the relation \leq of some function. The relation \leq of the product function $\prod_{i=1}^{n} x_i$ is universal, i.e., $x_i \leq x_i$ for all *i*, *j*. By a straightforward combination of product functions with the construction above, it can be shown that any preorder is isomorphic to the relation \leq of some function.

Added in proof. We learned recently that the theorem (restricted to Boolean functions) was announced without proof in [1], and another example showing that 2 is maximal is given there.

REFERENCES

2. A. EHRENFEUCHT AND J. MYCIELSKI, On k-stable functions, J. Combin. Theory Ser. A 27 (1979), 282-288.

I. Ju. JA. BREITBART, Essential variables of the functions of the algebra of logic. Soviet Math. Dokl. 8 (1967), 1-3.