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a b s t r a c t

Sensitivity analysis stands in contrast to diagnostic testing in that sensitivity analysis
aims to answer the question of whether it matters that a nuisance parameter is non-zero,
whereas a diagnostic test ascertains explicitly if the nuisance parameter is different from
zero. In this paper, we introduce and derive the finite sample properties of a sensitivity
statistic measuring the sensitivity of the t statistic to covariance misspecification. Unlike
the earlier work by Banerjee and Magnus [A. Banerjee, J.R. Magnus, On the sensitivity of
the usual t- and F-tests to covariance misspecification, Journal of Econometrics 95 (2000)
157–176] on the sensitivity of the F statistic, the theorems derived in the current paper hold
under both the null and alternative hypotheses. Also, in contrast to Banerjee and Magnus’
[see the above cited reference] results on the F test, we find that the decision to accept
the null using the OLS based one-sided t test is not necessarily robust against covariance
misspecification anddependsmuch on the underlying datamatrix. Our results also indicate
that autocorrelation does not necessarily weaken the power of the OLS based t test.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

The traditional econometrics literature places a good deal of emphasis on the likely consequences of ignoring non-
spherical errors on estimators and tests. For example, much has been written about the ordinary least squares (OLS)
estimator being no longer best linear unbiased in the face of autocorrelated or heteroscedastic disturbances. In recent years,
a large literature of diagnostic testing has been developed, and the idea that a model must be tested before it can be taken
as an adequate basis for analysis has become widely accepted. Some econometricians, on the other hand, have contended
that models that do not strictly fulfill the assumptions behind their validity are still useful if estimators of the parameters
of interest are not sensitive to deviations from these assumptions. For example, in the presence of AR(1) disturbances, it
occurs frequently that after fitting the model by feasible generalized least squares, the coefficient estimates do not change
much from the OLS estimates. In other words, the OLS estimators of the coefficients are robust against AR(1) disturbances.
In practice, econometric models are invariably misspecified, and whether the estimates of parameters are sensitive to
deviations from the truth appears to be of greater importance than whether the underlying assumptions are satisfied, even
though traditional econometrics has placed much greater emphasis on the latter.
Defined in the most general terms, sensitivity analysis is an analysis of the effects of various parameters and initial value

changes on system behaviour. Over the past twenty years, a variety of sensitivity analysis tools have been developed in the
mathematical modeling and statistics literatures. These tools are typically optimized for their particular applications and
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there are ample examples of the applications of these sensitivity analysis tools across various disciplines. See [1,2] for a good
overview of the various sensitivity methodologies that have been developed.
In the context that is of interest to us here, studies by Banerjee and Magnus [3,4] and Magnus and Vasnev [5] developed

a theory of sensitivity analysis for the linear model. Banerjee and Magnus [3] proposed a sensitivity statistic for the OLS
estimator. They found that the OLS coefficient estimator is not very sensitive to covariance misspecification. In a limited
Monte Carlo study they also found that the Durbin–Watson test statistic and the sensitivity statistic of the OLS coefficient
estimator are nearly orthogonal. That is, information contained in the Durbin–Watson test is almost irrelevant for the
sensitivity of the OLS coefficient estimator. This finding was later confirmed by theoretical results derived in [6] who also
extended Banerjee and Magnus’ sensitivity analysis to a restricted linear model allowing for the possibility of incorrect
restrictions. The second paper by Banerjee and Magnus [4] discussed the sensitivity of the usual F and two-sided t tests
in the linear model to covariance misspecification. They observed that the usual F test based on OLS residuals is generally
sensitive to covariance misspecification, and the true size of the usual F test exceeds the stated size in the cases of AR(1),
MA(1) and ARMA(1,1) disturbances. They then concluded that if the null is accepted using the usual F test it will also be
accepted by the F test based on generalized least square (GLS) residuals, and hence accepting the null hypothesis using the
OLS based F test is a robust decision.
It is worth noting that [4] findings depend crucially on the null hypothesis being correct. Thus, one cannot ascertain, for

example, the question of whether rejecting the null using the OLS based F test is a robust decision. This shortcoming calls
for further exploration of the problem and a new set of theoretical tools by which sensitivity of the test statistic may be
examined under both the null and alternative hypotheses. The objective of the present paper is to show that an analysis of
the test statistic’s sensitivity under the alternative hypothesis is also well within the reach. Instead of focusing on the F and
two-sided t tests as in [4], our main interest is in the one-sided t test but the theorems developed are in fact relevant to both
one- and two-sided t tests and can be readily extended to consider the F statistic’s robustness. Related studies by Smith [7],
Magnus [8] and Qin and Wan [9] have examined the sensitivity of the t statistic to situations such as non-normal errors or
dependence in the numerator and denominator of the t ratio.
The balance of the paper will begin with a discussion on the model set-up and the sensitivity measure for the decision

based on the t statistic in the next section. Section 3 presents analytical results on the finite sample moments and limiting
behaviour of the sensitivity statistic near the unit-root in the case of AR(1) disturbances. In Section 4, we conduct a
comprehensive numerical study on the behaviour of the sensitivity statistic under AR(1) andMA(1) errors. Section 5 reports
results of a comparison of the size and power of the one-sided t test based on OLS residuals with the corresponding test
based on GLS residuals, while Section 6 discusses a rule of thumb as a practical guideline for the use of the sensitivity
statistic. Section 7 concludes. Proofs of theorems are contained in Appendices A and B.

2. Model set-up and sensitivity statistic

Consider the classical linear regression model

y = Xβ + u; u ∼ N(0, σ 2Ω(θ)), (2.1)

where y is an n×1 vector of observations on the dependent variable, X is an n× k non-stochastic matrix of full column rank
containing values of k explanatory variables, β is a k × 1 unknown coefficient vector, u is an n × 1 vector of disturbances,
σ 2 > 0 is a scalar and Ω(θ) is an n × n matrix function of a nuisance parameter θ , positive definite and differentiable at
least in a neighbourhood of θ = 0. We assume for simplicity that θ is a scalar. The t statistic for testing

H0 : Rβ = r vs. H1 : Rβ < r, (2.2)

where R is a known 1× k vector and r is a known scalar, is given by

t(θ) =
Rβ̂(θ)− r√

σ̂ 2(θ)RS−1(θ)R′
, (2.3)

where β̂(θ) = S−1(θ)X ′Ω−1(θ)y is the GLS estimator of β , S(θ) = X ′Ω−1(θ)X and σ̂ 2(θ) = (y − X β̂(θ))′Ω−1(θ)(y −
X β̂(θ))/(n− k). Without loss of generality, we assumeΩ(0) = In. The familiar OLS estimator of β is β̂(0) = (X ′X)−1X ′y.
Notice that even if diagnostic tests suggest that θ 6= 0, t(0) may still be close to t(θ). So, one wants to find out if it

is still legitimate to use the OLS based t statistic t(0) instead of t(θ) when θ is not close to 0, and this is precisely what
sensitivity analysis in the present context is about. If t(θ) is close to t(0) even when θ is far from zero, then we say that t(θ)
is insensitive to changes in θ . At issue here is whether the decision to accept/reject the null based on t(0) is robust when θ
is not close to 0. Now, consider the Taylor series expansion

t(θ) ≈ t(0)+ θτ , (2.4)

where τ = dt(θ)
dθ

∣∣∣
θ=0
. Note that if θτ > 0, then t(0) < t(θ). Under this case ifHo is accepted using t(0)it will also be accepted

using t(θ) and accepting Ho using t(0) is said to be a robust decision. On the other hand, if θτ < 0, then t(0) > t(θ) and
rejecting Ho based on t(0) is a robust decision. Thus, by considering whether Eθ (θτ ) > 0 (or equivalently, Eθ (τ ) > 0
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assuming θ is positive) or whether Prθ (θτ > 0) > 1/2 (or equivalently, Prθ (τ > 0) > 1/2 assuming θ is positive) one can
gain insights into the robustness of the decisions based on t(0). In the following, we first investigate the properties of the
sensitivity statistic τ .

Theorem 2.1. The sensitivity statistic τ has the stochastic representation

τ = −
t(0)
2

{
−
v′MAMv
v′Mv

+
H ′AH
H ′H

}
−

√
n− k
H ′H

H ′AMv
√
v′Mv

, (2.5)

where t(0) =
√
n− k(H ′v − δ)/

√
H ′H(v′Mv), H = XS−1R′, v = u/σ , δ = (r − Rβ)/σ , S = X ′X, M = In − XS−1X ′ is a

symmetric idempotent matrix of rank n− k, and A = ∂Ω(θ)/∂θ |θ=0.

Proof. See Appendix A. �

Eq. (2.5) is helpful for analyzing the exact finite sample moments of τ and the behaviour of τ in certain extreme cases
(e.g., near the unit-root). We also observe from Eq. (2.5) that τ depends firstly on the data, and secondly on the regression
parameters β and σ 2 through δ. If the null is incorrect then δ > 0. For a given value of δ, both t(0) and τ are distributional
invariant with respect to the regression parameters.

3. Finite sample moments and behaviour near the unit-root

To gain insight into the sensitivity of the decision based on t(0), we derive the first two moments of τ :

Theorem 3.1. Let the distribution of y be evaluated at θ = 0. Then we have

E0(τ ) =
Γ
( n−k−1

2

) [
(n− k)H ′AH/H ′H − tr (AM)

]
δ

2
√
2(n− k)H ′HΓ

( n−k
2

) (3.1)

and

E0(τ 2) =
H ′AMAH
H ′H

+
(n− k)∆
4(n− k− 2)

(
1+

δ2

H ′H

)
, (3.2)

where

∆ =

(
H ′AH
H ′H

)2
−
2tr (AM)
n− k

H ′AH
H ′H

+
2tr(AM)2 + tr2(AM)
(n− k)(n− k+ 2)

. (3.3)

Proof. See Appendix A. �

Unlike the corresponding theorem given in [4] (which holds only under the null), Theorem 3.1 holds for all values of δ
irrespective of whether Rβ = r is valid. When the distribution of y is evaluated at values of θ other than 0, a corresponding
result has also been obtained and is available on request from the authors. The next theorem presents results on the limiting
behaviour of τ near the unit-root.

Theorem 3.2. Let ut be generated by the stationary AR(1) process ut = φ1ut−1 + εt , where 0 ≤ φ1 < 1 and εt ’s are i.i.d.
N(0, σ 2) such that

Ω(φ1) =
(
ωIJ(φ1)

)
, where ωIJ(φ1) =

{
1/(1− φ21) if I = J,
φ
|I−J|
1 /(1− φ21) if I 6= J,

(3.4)

i be an n × 1 vector of ones, and T (1) =
(
tIJ
)
be the symmetric Toeplitz matrix such that tIJ = 1 if |I − J| = 1 and tIJ = 0

otherwise. Note that when ut follows an AR(1) process, A = ∂Ω(φ1)/∂φ1|φ1=0 = T
(1). We have the following cases:

(i) If Mi 6= 0, H ′i 6= 0 and H ′T (1)Mi = 0, then for any real τ0 6= τ̄1(0),

lim
φ1→1

Pr (τ ≤ τ0) =


0 if τ0 < −|τ̄1(0)|,
1
2
if − |τ̄1(0)| < τ0 < |τ̄1(0)|,

1 if τ0 > |τ̄1(0)|,

(3.5)

where τ̄1(0) = −
(
t̄(0)/2

) (
d1+ H ′T (1)H/H ′H

)
, t̄(0) =

√
(n− k)/H ′HH ′i/

√
i′Mi 6= 0, and d1 = −i′MT (1)Mi/i′Mi.
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(ii) If Mi 6= 0,H ′i 6= 0 and H ′T (1)Mi 6= 0, then for any real τ0 6= τ̄ (0),

lim
φ1→1

Pr (τ ≤ τ0) =


0 if τ0 < −|τ̄ (0)|,
1
2
if − |τ̄ (0)| < τ0 < |τ̄ (0)|,

1 if τ0 > |τ̄ (0)|,

(3.6)

where τ̄ (0) = τ̄1(0)− γ̄ (0) with γ̄ (0) =
√
(n− k)/H ′HH ′T (1)Mi/

√
i′Mi.

(iii) If Mi 6= 0,H ′i = 0 and H ′T (1)Mi 6= 0, then for any real τ0 6= γ̄ (0),

lim
φ1→1

Pr (τ ≤ τ0) =


0 if τ0 < −|γ̄ (0)|,
1
2
if − |γ̄ (0)| < τ0 < |γ̄ (0)|,

1 if τ0 > |γ̄ (0)|.

(3.7)

(iv) If Mi 6= 0,H ′i = 0 and H ′T (1)Mi = 0, then for any real τ0,

lim
φ1→1

Pr (τ ≤ τ0) =

0 if τ0 < 0,
Pr
{
H ′
[
d∗In + T (1)M

]
P̄η ≥ d∗δ

}
if τ0 = 0,

1 if τ0 > 0,
(3.8)

where d∗ = 1
2

(
d1+ H ′T (1)H/H ′H

)
, η ∼ N(0, In−1), P̄ = J̄P , J̄ is an n × (n − 1) matrix such that J̄ ′ = [0|In−1], and P is an

(n− 1)× (n− 1) lower triangular matrix with ones on and below the diagonal and zeros elsewhere.
(v) If Mi = 0 and H ′i 6= 0, then for any real τ0,

lim
φ1→1

Pr (τ ≤ τ0) =
1
2
. (3.9)

(vi) If Mi = 0,H ′i = 0 and H ′T (1)MJ̄ = 0, then for any real τ0,

lim
φ1→1

Pr (τ ≤ τ0) = Pr
(
τ
(1)
1 (η) ≤ τ0

)
, (3.10)

where τ (1)1 (η) = −
(
t(1)(η)/2

) (
D(1)(η)+ H ′T (1)H/H ′H

)
, D(1)(η) = −η′P̄ ′MT (1)MP̄η/η′P̄ ′MP̄η, and t(1)(η) =

√
(n− k)/H ′H

(
H ′P̄η − δ

)
/
√
η′P̄ ′MP̄η.

(vii) If Mi = 0,H ′i = 0 and H ′T (1)MJ̄ 6= 0, then for any real τ0,

lim
φ1→1

Pr (τ ≤ τ0) = Pr
(
τ (1)(η) ≤ τ0

)
, (3.11)

where τ (1)(η) = τ (1)1 (η)− γ (1)(η) with γ (1)(η) =
√
(n− k)/H ′HH ′T (1)MP̄η/

√
η′P̄ ′MP̄η.

Proof. See Appendix A. �

Differentmodels are implied under the different cases of Theorem3.2. First, whenMi 6= 0 (cases i–iv), themodel contains
no intercept. Second, whenMi = 0 andH ′i 6= 0 (case v), themodel has an intercept and the constraint underHo involves the
intercept. Third, whenMi = 0 and H ′i = 0 (cases vi and vii), the model has an intercept but the intercept is not part of the
constraint implied by Ho. The form of the regressors determines the differences among the cases within these three broad
scenarios. Thus, in the case of AR(1) disturbances, the behaviour of τ near the unit-root can be vastly different depending
on the form of the regressor matrix and whether the intercept is part of the null hypothesis. For example, the results of
(3.10) and (3.11) indicate that whether H ′T (1)MJ̄ is zero or not (which in turn depends on the data matrix) can result in very
different limiting behaviour of τ , even though both (3.10) and (3.11) are associated with models with an intercept that is
not part of the restriction; similarly, depending on the underlying data matrix, sensitivity statistics in models that contain
no intercept do not necessarily have the same limiting behaviour, as shown in (3.5)–(3.8). Unlike the results of Banerjee and
Magnus [4], Theorem 3.2 holds under both H0 and H1.

4. Numerical analysis

This section reports results of a comprehensive numerical study on the properties of τ . Our numerical study considers
AR(1) and MA(1) disturbances. In the latter case, ut = ψ1εt−1 + εt , and so Ω(ψ1) = (1 + ψ21 )In + ψ1T

(1). Under both
AR(1) and MA(1) disturbances, A = ∂Ω(φ1)/∂φ1|φ1=0 = ∂Ω(ψ1)/∂ψ1|ψ1=0 = T

(1). Following the previous study of Wan
et al. [6], our numerical analysis is based on design matrices formed by columns or linear combinations of columns from the
following two data sets: the first comprises the eigenvectors t1, t2, . . . , tn that correspond to the eigenvalues of the n × n
Toeplitz matrix T (1) in ascending order; in the second data set, the regressors are s1 = in/

√
n representing an intercept

term, where ip is a p × 1 vector of ones, and sp =
(
i′p−1, 1− p, 01×(n−p)

)′
/
√
p(p− 1), 2 ≤ p ≤ n. We set n = 15, 50 and

100, k = 4, and R = [1, 0, 0, 0]. Table 1 presents the design matrices on which the numerical investigations are based. In
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Table 1
Regression models for numerical analysis.

n Model X1 X2 i′Mi H ′i H ′T (1)Mi `

15 1 t3 [t12, t13 + t14, t14 + t15] 7.7345 −0.8035 −1.1480 1.2818
15 2 s15 [s2, s4, s14] 15 0 0.8971 0.2323
15 3 s1 [s10 + s13, s11 + s14, s9 + s15] 0 3.8730 0 0.1956
15 4 s6 [s1, s2, s3] 0 0 0 1.3025
50 1 t38 [t47, t48 + t49, t49 + t50] 49.568 −0.3111 −0.7767 1.2438
50 2 s50 [s37, s39, s49] 50 0 0.9698 0.1386
50 3 s1 [s10 + s13, s11 + s14, s9 + s15] 0 7.0711 0 0.1443
50 4 s41 [s1, s2, s3] 0 0 0 1.4124
100 1 t88 [t97, t98 + t99, t99 + t100] 99.844 −0.3275 −1.1178 1.1668
100 2 s100 [s87, s89, s99] 100 0 0.9849 0.0990
100 3 s1 [s10 + s13, s11 + s14, s9 + s15] 0 10.0000 0 0.1022
100 4 s91 [s1, s2, s3] 0 0 0 1.4138

Fig. 1a. Pr(τ > 0) under AR(1) errors—Model 1 (n = 15).

Fig. 1b. Pr(τ > 0) under MA(1) errors—Model 1 (n = 15).

each case the design matrix is X = [X1|X2] and the null hypothesis of interest is H0 : β1 = r , where β1 is the first element
of β . Of the four models considered, only Models 3 and 4 contain an intercept term, and only the null hypothesis of Model
3 involves the intercept. In Table 1, ` =

√
H ′T (1)MJ̄J̄ ′MT (1)H is the length of H ′T (1)MJ̄ . For all models we set σ = 1 and the

values of δ are varied at 0, 1, 2 and 10.
The robustness of the decision to accept/reject Ho based on the t(0) statistic is assessed by the magnitudes of Prθ (τ > 0)

and Eθ (τ ) (where θ = φ1 or ψ1). If Prθ (τ > 0) > 1/2 or Eθ (τ ) > 0, then typically t(0) < t(θ) and in this case, accepting
Ho based on t(0) is a robust decision. On the other hand, if Prθ (τ > 0) < 1/2 or Eθ (τ ) < 0, then typically t(0) > t(θ) and
the decision to reject Ho based on t(0) is robust. The results on Prθ (τ > 0) and Eθ (τ ) under the four model settings based
on n = 15 appear in Figs. 1a, 1b, 2a, 2b, 3a, 3b, 4a, 4b, 5a, 5b, 6a, 6b, 7a, 7b, 8a and 8b. We observe, first, that the limiting
behaviour of Prθ (τ > 0) portrayed in Figs. 1a, 1b, 2a, 2b, 3a, 3b, 4a and 4b under AR(1) errors concurs with the theoretical
results presented in Theorem 3.2. For example, Fig. 1a shows that under AR(1) errors, Prθ (τ > 0) for all δ′s approach 0.5
as φ1 approaches 1. This is precisely the result expected as in the case of Model 1 (Mi 6= 0, H ′i 6= 0, H ′T (1)Mi 6= 0, and
τ̄ (0) = 0.8056 for δ = 0, 1, 2 and 10), Eq. (3.6) shows that the limiting probability is 0.5. Figs. 1a, 1b, 2a, 2b, 3a, 3b, 4a and
4b also show that both the form of the data matrix and the specification of the model have a large impact on the results. For
all cases depicted in Figs. 1a, 1b, 2a, 2b, 4a and 4b, Prθ (τ > 0) < 1/2 under both AR(1) and MA(1) errors, but exactly the
opposite is observed in Figs. 3a and 3b. So under the model settings of Figs. 1a, 1b, 2a, 2b, 4a and 4b, if we reject the null
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Fig. 2a. Pr(τ > 0) under AR(1) errors—Model 2 (n = 15).

Fig. 2b. Pr(τ > 0) under MA(1) errors—Model 2 (n = 15).

Fig. 3a. Pr(τ > 0) under AR(1) errors—Model 3 (n = 15).

Fig. 3b. Pr(τ > 0) under MA(1) errors—Model 3 (n = 15).
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Fig. 4a. Pr(τ > 0) under AR(1) errors—Model 4 (n = 15).

Fig. 4b. Pr(τ > 0) under MA(1) errors—Model 4 (n = 15).

Fig. 5a. E(τ ) under AR(1) errors—Model 1 (n = 15).

Fig. 5b. E(τ ) under MA(1) errors—Model 1 (n = 15).
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Fig. 6a. E(τ ) under AR(1) errors—Model 2 (n = 15).

Fig. 6b. E(τ ) under MA(1) errors—Model 2 (n = 15).

Fig. 7a. E(τ ) under AR(1) errors—Model 3 (n = 15).

Fig. 7b. E(τ ) under MA(1) errors—Model 3 (n = 15).
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Fig. 8a. E(τ ) under AR(1) errors—Model 4 (n = 15).

Fig. 8b. E(τ ) under MA(1) errors—Model 4 (n = 15).

using t(0), we will continue to do so using t(θ), that is, the decision to reject Ho based on t(0) is robust. In contrast, in the
case of Figs. 3a and 3b, the decision to accept Ho based on t(0) is a robust decision. Qualitatively, these results are consistent
with those observed based on the analysis of Eθ (τ ). In Figs. 5a, 5b, 6a, 6b, 8a and 8b, Eθ (τ ) < 0 for all cases under both types
of error processes under examination, implying that rejecting Ho based on t(0) is a robust decision under Models 1, 2 and
4; in Figs. 7a and 7b, however, Eθ (τ ) > 0 for all cases, implying that accepting the null based on t(0) is a robust decision
in the case of Model 3. Interestingly, these results contrast with the findings of Banerjee and Magnus [4], who show that
in the cases of the OLS based F and two-sided t tests, accepting the null is a robust decision even though the test statistics
are sensitive to covariance misspecification. Our results have shown that for the one-sided t test, this conclusion does not
generally hold true and depends much on the underlying regressionmatrix. While these commentaries are based on results
for n = 15, the results obtained for n = 50 and 100 are qualitatively very similar and are available on request from the
authors. In particular, we have found that even with a sample size as large as 100, accepting the null based on t(0) is not
always a robust decision and again depends much on the underlying data matrix.

5. Direct power comparisons

The preceding discussion is based on local sensitivity analysis. In this sectionwe conduct a direct comparison of rejection
probabilities between t(0) and t(θ) for a range of φ1 and ψ1 values based on the design matrices of Section 4. Given the
findings of the last section, the size and power of t(0) are expected to be smaller than those of t(θ) for Models 1, 2 and 4
but larger for Model 3 when θ 6= 0. Our aim here is to obtain some idea of the possible magnitude of power as well as size
distortions when t(0) is used in place of t(θ) when θ 6= 0. We first derive some theoretical results concerning the limiting
size and power of t(0):

Theorem 5.1. Let ut be generated by the stationary AR(1) process, then we have the following cases:
(i) If Mi 6= 0, then for any real t0,

lim
φ1→1

Pr (t(0) ≤ t0) =



0 if t0 < −|t̄(0)| and H ′i 6= 0,
1
2

if − |t̄(0)| < t0 < |t̄(0)| and H ′i 6= 0,

1 if t0 > |t̄(0)| and H ′i 6= 0,
0 if t0 < 0 and H ′i = 0,
Pr(H ′P̄η ≤ δ) if t0 = 0 and H ′i = 0,
1 if t0 > 0 and H ′i = 0.

(5.1)
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Table 2a
Comparison between t(0) and t(θ) under Model 3 (Nominal α = 0.05; n = 15; critical value t0 = −1.7959).

AR(1) Pr(t(0) ≤ t0) Pr(t(φ1) ≤ t0)
δ

φ1 0 1 2 10 0 1 2 10

0.000 0.050 0.240 0.591 1.000 0.050 0.240 0.591 1.000
0.100 0.071 0.257 0.579 1.000 0.050 0.214 0.522 1.000
0.200 0.093 0.276 0.570 1.000 0.050 0.189 0.452 1.000
0.300 0.118 0.294 0.558 1.000 0.050 0.166 0.384 1.000
0.400 0.148 0.312 0.543 1.000 0.050 0.145 0.319 1.000
0.500 0.176 0.330 0.528 1.000 0.050 0.126 0.259 1.000
0.600 0.214 0.350 0.514 1.000 0.050 0.109 0.205 0.993
0.700 0.261 0.371 0.503 0.995 0.050 0.093 0.158 0.940
0.800 0.314 0.400 0.495 0.967 0.050 0.079 0.119 0.748
0.900 0.377 0.433 0.491 0.869 0.050 0.066 0.086 0.399
1.000 0.500 0.500 0.500 0.500 0.050 0.050 0.050 0.050

MA(1) Pr(t(0) ≤ t0) Pr(t(ψ1) ≤ t0)
δ

ψ1 0 1 2 10 0 1 2 10

0.000 0.050 0.240 0.591 1.000 0.050 0.240 0.591 1.000
0.100 0.069 0.255 0.579 1.000 0.050 0.216 0.528 1.000
0.200 0.085 0.268 0.570 1.000 0.050 0.197 0.474 1.000
0.300 0.099 0.276 0.558 1.000 0.050 0.181 0.428 1.000
0.400 0.109 0.279 0.542 1.000 0.050 0.168 0.390 1.000
0.500 0.118 0.280 0.524 1.000 0.050 0.157 0.356 1.000
0.600 0.125 0.277 0.507 1.000 0.050 0.148 0.328 1.000
0.700 0.128 0.272 0.489 1.000 0.050 0.140 0.304 1.000
0.800 0.131 0.267 0.469 1.000 0.050 0.134 0.283 1.000
0.900 0.132 0.260 0.449 1.000 0.050 0.128 0.264 1.000
1.000 0.132 0.253 0.428 1.000 0.050 0.123 0.248 0.999

(ii) If Mi = 0 and H ′i 6= 0, then for any real t0,

lim
φ1→1

Pr (t(0) ≤ t0) =
1
2
. (5.2)

(iii) If Mi = 0 and H ′i = 0, then for any real t0,

lim
φ1→1

Pr (t(0) ≤ t0) = Pr
(
t(1)(η) ≤ t0

)
, (5.3)

where t(1)(η) =
√
(n− k)/H ′H

(
H ′P̄η − δ

)
/
√
η′P̄ ′MP̄η as in (3.10).

Proof. See Appendix A. �

The results of the size and power comparisons for n = 15 are summarized in Tables 2a and 2b. Since the qualitative
findings are similar forModels 1, 2 and 4, Tables 2a and 2b only present the results based onModels 3 and 4. In all evaluations,
the nominal size is set to 0.05. Recall that the null hypothesis is incorrect when δ > 0. Hence in Tables 2a and 2b, the null
rejection probabilities corresponding to δ = 0 are the true sizes of the tests, while the rejection probabilities for δ > 0
represent powers. For t(θ), the true size of the test equals the nominal size over the whole range of φ1 or ψ1 considered.
For t(0), the true size is the same as the stated size at φ1 = ψ1 = 0. The powers of the two tests are also identical at
φ1 = ψ1 = 0. No size corrections are made to the power functions of t(0). The reason for this is that the purpose of this
study is to determine the effects of autocorrelations on the properties of the t test. As such we presume that the researcher
ignores the possibility of autocorrelation in the process. In the case of Model 3 under both AR(1) and MA(1) errors, the true
size of the t(0) test increases and exceeds the nominal 0.05 level as φ1 andψ1 increase. The size inflation is quite substantial
in the case of AR(1) errors but relatively mild in the case of MA(1) errors. Table 2a also shows that the t(0) test is more
powerful than t(θ) in the entire region of the parameter space. The deviations in powers between the two tests can be
substantial in the case of AR(1) errors. In view of these observations it is also clear that if one accepts the null using t(0),
one will continue to do so using t(θ). In other words, the decision to accept Ho based on t(0) is a robust decision, a finding
consistent with that based on the local sensitivity analysis in the last section. In the case ofModel 4, the use of t(0) instead of
t(θ) does not seem to result in any size distortion, as Table 2b illustrates. On the other hand, there is a striking evidence that
the OLS based t(0) test lacks power when compared to t(θ). The drop in power caused by the use of t(0) is very substantial
for large values of φ1 andψ1. But this would suggest that rejecting the null based on t(0) should be a robust decision which
is again consistent with the findings in the last section based on the local sensitivity analysis.
In the case of Model 3, the limiting rejection probabilities of t(0) under AR(1) errors approach 0.5 as φ1 approaches 1

irrespective of the value of δ. The finding is consistent with the theoretical results obtained in Part (ii) of Theorem 5.1. For
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Table 2b
Comparison between t(0) and t(θ) under Model 4 (Nominal α = 0.05; n = 15; critical value t0 = −1.7959).

AR(1) Pr(t(0) ≤ t0) Pr(t(φ1) ≤ t0)
δ

φ1 0 1 2 10 0 1 2 10

0.000 0.050 0.240 0.591 1.000 0.050 0.240 0.591 1.000
0.100 0.051 0.241 0.595 1.000 0.050 0.242 0.597 1.000
0.200 0.051 0.238 0.589 1.000 0.050 0.248 0.609 1.000
0.300 0.051 0.234 0.577 1.000 0.050 0.255 0.628 1.000
0.400 0.050 0.228 0.561 1.000 0.050 0.266 0.652 1.000
0.500 0.047 0.218 0.540 1.000 0.050 0.279 0.681 1.000
0.600 0.044 0.209 0.510 1.000 0.050 0.295 0.713 1.000
0.700 0.040 0.192 0.478 1.000 0.050 0.313 0.747 1.000
0.800 0.034 0.176 0.442 1.000 0.050 0.333 0.781 1.000
0.900 0.028 0.158 0.399 1.000 0.050 0.355 0.815 1.000
1.000 0.028 0.139 0.348 0.998 0.050 0.380 0.847 1.000

MA(1) Pr(t(0) ≤ t0) Pr(t(ψ1) ≤ t0)
δ

ψ1 0 1 2 10 0 1 2 10

0.000 0.050 0.240 0.591 1.000 0.050 0.240 0.591 1.000
0.100 0.051 0.242 0.594 1.000 0.050 0.242 0.597 1.000
0.200 0.052 0.237 0.588 1.000 0.050 0.247 0.609 1.000
0.300 0.052 0.231 0.574 1.000 0.050 0.256 0.629 1.000
0.400 0.051 0.227 0.556 1.000 0.050 0.269 0.658 1.000
0.500 0.051 0.220 0.535 1.000 0.050 0.287 0.697 1.000
0.600 0.051 0.209 0.512 1.000 0.050 0.312 0.745 1.000
0.700 0.051 0.201 0.485 1.000 0.050 0.345 0.800 1.000
0.800 0.051 0.191 0.458 1.000 0.050 0.385 0.854 1.000
0.900 0.052 0.183 0.431 1.000 0.050 0.422 0.893 1.000
1.000 0.051 0.173 0.402 1.000 0.050 0.421 0.893 1.000

Model 4, the limiting null rejection probability is a constant between 0 and 1, and the precise value of the limiting probability
depends on both the data and value of δ, as Part (iii) of Theorem 5.1 and Table 2b illustrate. Power comparisons in the cases
of Models 1 and 2, which are not reported here, are similar to those observed under Model 4. That is, the use of the OLS
based one-sided t test typically leads to no discernable difference in test size, but there is also clear evidence that the OLS
based test is less powerful than the GLS based test, particularly for large values of φ1 andψ1. For certain data matrices such
as that of Model 1, the limiting rejection probabilities of t(0) can drop to zero as φ1 → 1 in the case of AR(1) errors.
Again, the preceding discussion focuses on the results obtained for n = 15. The qualitative findings under n = 50 and

n = 100 are in fact very similar to those under n = 15 and are available upon request from the authors.

6. A rule of thumb for practical application

The preceding sections have provided a considerable amount of information on the likely consequences of using the OLS
based t(0) statistic when θ is non-zero. This section discusses a practical guide for the use of the sensitivity statistic τ in
practice. As is clear from (2.4), other things being equal, a large value of |τ | should be taken as an indication of sensitivity,
and vice versa. The following theorem enables the derivation of a ‘‘rule of thumb’’ for sensitivity based on an observed value
of τ .

Theorem 6.1. Suppose that y is evaluated at θ = 0 such that u ∼ N(0, σ 2In). Consider the following two cases:

(i) If δ2/H ′H is bounded, then t(0) = t̃(0)+ Op(n−1/2), where

t̃(0) =
H ′v − δ
√
H ′H

, (6.1)

and v = u/σ ∼ N(0, In).
(ii) If δ2/H ′H and the eigenvalues of A are bounded, then τ = τ̃ + Op(n−1/2), where

τ̃ = −
H ′AMv
√
H ′H
+
1
2

[
tr(AM)
n− k

−
H ′AH
H ′H

]
t̃(0). (6.2)

Proof. See Appendix A. �
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It is readily seen from Theorem 6.1 that as n → ∞, t(0) has an approximate N(−δ/
√
H ′H, 1) distribution with a

convergence rate ofOp(n−1/2), and τ has an approximate N(aτ , σ 2τ ) distributionwith a convergence rate ofOp(n
−1/2), where

aτ =
δ

2
√
H ′H

[
H ′AH
H ′H

−
tr(AM)
n− k

]
, (6.3)

and

σ 2τ =
H ′AMAH
H ′H

+
1
4

[
H ′AH
H ′H

−
tr(AM)
n− k

]2
. (6.4)

Note that in any given application, σ 2τ can be readily computed while aτ depends on the knowledge of δ in addition to
the data. Now, to assess the robustness of t(0) when θ deviates from 0, consider the probability Pr(|τ | > cτ (α)) = α.
Results of Theorem 6.1 facilitate the approximation of cτ (α) for a given α by the N(aτ , σ 2τ ) distribution. Note that under
Ho : δ = 0, aτ = 0, and cτ (α) can be approximated as cτ̃ (α) = cN(α)στ , where cN(α) is the upper α/2-quantile of the
N(0, 1) distribution. A value of |τ | greater than cτ̃ (α) can be taken to imply that t(θ) is sensitive to a change of θ from 0
(or equivalently, t(0) is not robust when θ deviates from 0) and vice versa. Clearly, the choice of α has an impact on the
ultimate conclusion; α should neither be too small nor too large if one wants to avoid being too optimistic or too pessimistic
about the robustness of t(0). In their evaluation of the F test, [4] suggested setting α to 0.5. Now, since cN(0.5) ≈ 0.6745,
we obtain the following ‘rule of thumb’ on the robustness of the OLS based t statistic t(0)when θ departs from 0:
Rule of thumb. The OLS based statistic t(0) is sensitive to a departure of θ from zero if |τ | > 0.6745στ .
This rule of thumb provides a practical guideline for the use of the sensitivity statistic by practitioners in a given

application. With a given Amatrix (e.g., A = T (1) under Models 1–4 in Table 1), one may compute τ from (A.3) and στ from
(6.4) and check whether |τ | > 0.6745στ . One may also get some idea on howwell the rule of thumb works to warn against
the use of the OLS based test for Models 1–4 by contrasting the probability Pr(|τ | > 0.6745στ )with 0.5. For example, under
Model 3 with δ = 0, it is found that Pr(|τ | > 0.6745στ ) increases quickly to 1 as φ approaches 1 under AR(1) disturbances,
while it is steady around 0.5 for ϕ over [0, 1] under MA(I) disturbances. Judging from these observations, it is likely that
the rule of thumb would indicate that t(0) is sensitive to AR(1) misspecification especially when φ is near 1 but insensitive
to MA(1) misspecification. Under all four models, Pr(|τ | > 0.6745στ ) increases beyond 0.5 when δ increases from 0. In
other words, other things being equal, the likelihood of the rule of thumb indicating sensitivity increases as the constraint
becomes increasing misspecified. The above results are not shown here but are available upon request from the authors.

7. Conclusions

The main aim of this paper is to explore the consequences of using the OLS based t statistic in a regression model with
non-spherical errors. A sensitivity statistic τ has been introduced for this purpose. In contrast to the earlier contribution of
Banerjee andMagnus [4], all the theorems derived in the current paper hold under both the null and alternative hypotheses.
With AR(1) and MA(1) errors, it seems clear from our results based on both local sensitivity analysis and direct size and
power comparisons that rejecting the null hypothesis based on the one-sided t statistic can often be a robust decision to
covariance misspecification. This contrasts with the findings on the F test (or two-sided t test) that the decision to accept
the null is a robust one. Our results also indicate that autocorrelation does not necessarily weaken the power of the OLS
based t test. Another notable feature of this study is the extent to which the regressor matrix affects the results — sensitivity
depends on the data and the decision based on t(0) can be robust in one application and not so in another application.
We have also derived a rule of thumb as guideline for the use of the sensitivity statistic in practice. Finally, it should be
mentioned that throughout the analysis we have assumed that θ is a scalar. In the more general context when there are
several autocorrelation parameters the sensitivity statisticwill bemultivariate andmore difficult to treat. The latter situation
is an interesting point of departure that certainly warrants investigation.
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Appendix A. Proofs of theorems

Proof of Theorem 2.1. Using (2.3) and applying the chain rule in Calculus, we have

τ(θ) ,
dt(θ)
dθ
= −

t(θ)
2

{
Rκ(θ)R′

RS−1(θ)R′
+
λ(θ)

σ̂ 2(θ)

}
+

Rζ (θ)√
σ̂ 2(θ)RS−1(θ)R′

, (A.1)
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where κ(θ) = dS−1(θ)/dθ , λ(θ) = dσ̂ 2(θ)/dθ , and ζ (θ) = dβ̂(θ)/dθ . Using [10, Ch. 8, Theorem 3] we observe that

κ(θ) = −S−1(θ)X ′
(
dΩ−1(θ)/dθ

)
XS−1(θ). (A.2)

Now that S(0) = S and dΩ−1(θ)/dθ
∣∣
θ=0 = −A (see [3], equation 2.5). Setting θ = 0 in (A.2) we obtain κ(0) = S

−1X ′AXS−1.
In addition, λ(0) = λ = −y′MAMy/(n− k) and ζ (0) = −S−1X ′AMy (see [3], Theorems 2 and 3). Thus, setting θ = 0 in (A.1)
and writing H = XS−1R′ we obtain

τ = τ(0) = −
t(0)
2

{
H ′AH
H ′H

+ D
}
+ τ̃ , (A.3)

where t(0) = (Rβ̂(0)− r)/
√
σ̂ 2(0)RS−1R′, D = λ/σ̂ 2(0) and τ̃ = −H ′AMy/

√
σ̂ 2(0)H ′H .

Under model (2.1), we have β̂(0) = S−1X ′y = β + S−1X ′u,My = Mu and σ̂ 2(0) = y′My/(n − k) = u′Mu/(n − k).
Together with v = u/σ we obtain

t(0) =

√
n− k

[
H ′u− (r − Rβ)

]
√
u′MuH ′H

=

√
n− k

(
H ′v − δ

)
√
v′MvH ′H

(A.4)

and

τ̃ = −

√
n− kH ′AMu
√
u′MuH ′H

= −

√
n− kH ′AMv
√
v′MvH ′H

. (A.5)

In addition,D = λ/σ̂ 2(0) = −y′MAMy/y′My (see [3], Theorem 3). HenceD = −v′MAMv/v′Mv. Substituting the expression
of D and Eqs. (A.4) and (A.5) into (A.3) completes the proof of Theorem 2.1. �

Proof of Theorem 3.1. Define a =
√
(n− k)/H ′H , b = H ′AH/H ′H, l1 = aH ′v, l2 = aH ′AMv, q1 = v′Mv and q2 =

v′MAMv. Then (2.5) may be written as

τ =
1
2
(aδ − l1)

(
b− q−11 q2

)
q−1/21 − l2q

−1/2
1 . (A.6)

At θ = 0, v = u/σ ∼ N(0, In), and (3.1) may be obtained by observing the following. First, note that E0(l1) = 0
and l1 and (l2, q1, q2) are independent since cov(l1,Mv) = aH ′M = 0. Second, q1/21 and q2q−11 are independent and
E0(q2q−11 ) = E0(q2)/E0(q1). By the well-known Eckhart–Young (SVD) factorization, we have M = Q

′Q , where Q is an
(n − k) × n column orthonormal matrix. Define υ = Qν, we have υ ∼ N(0, In−k), q1 = υ ′υ ∼ χ2n−k, and q

1/2
1

and ϑ = υq−1/21 are mutually independent. Since q2q−11 = ϑ ′QAQ ′ϑ , q2q−11 is independent of q1/21 . It follows that
E0(q2) = E0(q2q−11 q1) = E0(q2q

−1
1 )E0(q1). Third, note that l2q

−1/2
1 = aH ′AQ ′ϑ and q1/21 are mutually independent. So,

E0(l2q
−1/2
1 ) = 0, since E0(l2) = 0 = E0(l2q

−1/2
1 )E0(q

1/2
1 ). On the basis of these observations, we have

E0 (τ ) =
1
2
aδ (b− E0(q2)/E0(q1)) E0

(
q−1/21

)
. (A.7)

By v ∼ N(0, In) and M2 = M , we obtain E0(q2) = tr(AM). Also, as q1 ∼ χ2n−k, it follows that E0(q1) = n − k and
E0(q

−1/2
1 ) = 1

√
2
Γ ( n−k−12 )/Γ ( n−k2 ). Eq. (3.1) follows by substituting these expressions in (A.7).

Using the above results, we also obtain from (A.6) that

E0
(
τ 2
)
= E01 − aδE02 +

1
4
E03, (A.8)

where E01 = E0(l22q
−1
1 ), E02 = E0{(b− q

−1
1 q2)q

−1
1 l2} and E03 = {a

2δ2 + E0(l21)}E0(q
−1
1 ){b

2
− 2btr(AM)/(n− k)+ E0(q−21 q

2
2)}.

Now, note that E0(l22) = a
2H ′AMAH and l22q

−1
1 and q1 are independent. It follows that E0(l

2
2) = E0(l

2
2q
−1
1 )E0(q1) = E01E0(q1).

Thus we obtain

E01 = E0
(
l22
)
/E0 (q1) = H ′AMAH/H ′H. (A.9)

One can easily show that

E02 = E0
{(
b− q−11 q2

)
q−11 l2

}
= 0. (A.10)

In fact, writing f (v) =
(
b− q−11 q2

)
q−11 l2, we have f (v) + f (−v) = 0 by the definition of (l2, q1, q2). In addition,

E0f (v) = E0f (−v) as v and−v both follow the N(0, In) distribution. Thus, 2E0f (v) = 0 and (A.10) follows.
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One may alternatively prove (A.10) by noting the following. Since q2l2q
−3/2
1 and q−1/21 are independent, E0(q2l2q

−3/2
1 ) =

E0(q2l2)/E0(q
3/2
1 ). Using [11, Ch.3, Theorem 3.2d.2], we can show that E0(q2l2) = 0. So, E0(q2l2q

−3/2
1 ) = 0. Also, recall that

E0(l2q
−1/2
1 ) = 0 and that l2q

−1/2
1 and q1/21 are independent. Therefore,

E02 = bE0(l2q
−1/2
1 q−1/21 )− E0(q2l2q

−3/2
1 q−1/21 )

= bE0(l2q
−1/2
1 )E0(q

−1/2
1 )− E0(q2l2q

−3/2
1 )E0(q

−1/2
1 ) = 0.

Now, writing l21 = a
2v′HH ′v, it is straightforward to see that E0(l21) = a

2H ′H . Recall that q1 and q2q−11 are independent.
Therefore, E0(q−21 q

2
2) = E0(q

2
2)/E0(q

2
1). Clearly, E0(q

2
1) = (n− k)(n− k+ 2) and E0(q

−1
1 ) = (n− k− 2)

−1. Using [11, Ch.3,
Theorem 3.2b.2], and recognizing that v ∼ N(0, In) andM2 = M , we can show that E0(q22) = 2tr((AM)

2)+ (tr(AM))2. Thus,
it follows that

E03 =
a2(δ2 + H ′H)
n− k− 2

{
b2 −

2btr (AM)
n− k

+
2tr((AM)2)+ (tr(AM))2

(n− k)(n− k+ 2)

}
=
(n− k)∆
n− k− 2

(
1+

δ2

H ′H

)
. (A.11)

Substituting (A.9)–(A.11) into (A.8) yields (3.2) directly. �

Proof of Theorem 3.2. In (2.5), write A = T (1) and τ = τ(0). Then we have

τ(0) = −
t(0)
2

{
D1+

H ′T (1)H
H ′H

}
− γ (0), (A.12)

where t(0) is defined as in Theorem 2.1, γ (0) =
√
(n− k)/H ′HH ′T (1)Mv/

√
v′Mv, and D1 = −v′MT (1)Mv/v′Mv. Observe

from [3] the following result:

D1
P.
−→

{
d1 ifMi 6= 0,
D(1)(η) ifMi = 0. (A.13)

Applying Theorem B.1 in Appendix B, we have

γ (0)
p.
−→


γ̄ (0)ξ/|ξ | ifMi 6= 0 and H ′T (1)Mi 6= 0,
0 ifMi 6= 0 and H ′T (1)Mi = 0,
γ (1)(η) ifMi = 0 and H ′T (1)MJ̄ 6= 0,
0 ifMi = 0 and H ′T (1)MJ̄ = 0,

(A.14)

where ξ ∼ N(0, 1). It is easy to see from (A.12) through (A.14) and (A.19) (see the proof of Theorem 5.1) that

τ(0)
p.
−→



τ̄ (0)ξ/|ξ | ifMi 6= 0,H ′i 6= 0 and H ′T (1)Mi 6= 0,
τ̄1(0)ξ/|ξ | ifMi 6= 0,H ′i 6= 0 and H ′T (1)Mi = 0,
−γ̄ (0)ξ/|ξ | ifMi 6= 0,H ′i = 0 and H ′T (1)Mi 6= 0,
0 ifMi 6= 0,H ′i = 0 and H ′T (1)Mi = 0,
τ (1)(η) ifMi = 0,H ′i = 0 and H ′T (1)MJ̄ 6= 0,
τ
(1)
1 (η) ifMi = 0,H ′i = 0 and H ′T (1)MJ̄ = 0.

(A.15)

Except for the cases of (3.9) and τ0 = 0 in (3.8), Theorem 3.2 follows readily from (A.15). We observe from (A.12) that for
any ρ > 0 and real τ0 that

Pr (τ (0) ≤ τ0) = Pr (ρτ(0) ≤ ρτ0)

= Pr

(
−
1
2

√
n− k
H ′H

ρH ′v − ρδ
√
v′Mv

[
D1+

H ′T (1)H
H ′H

]
− ργ (0) ≤ ρτ0

)
. (A.16)

Setting τ0 = 0 in (A.16) yields

Pr (τ (0) ≤ 0) = Pr
(
−
H ′v − δ
2

[
D1+

H ′T (1)H
H ′H

]
− H ′T (1)Mv ≤ 0

)
. (A.17)

Note thatH ′i = 0. Sowe haveρH ′v = ρH ′P̄η+Op(ρ2) upon settingρ =
√
1− φ21 in (B.4) and (B.6), i.e.,H

′v = H ′P̄η+Op(ρ)

as φ1 → 1. Similarly, by the condition H ′T (1)Mi = 0 we have H ′T (1)Mv = H ′T (1)MP̄η + Op(ρ) as φ1 → 1. Moreover, note
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that D1
p
−→ d1 when Mi 6= 0 (see (A.13)). Therefore, Pr (τ (0) ≤ 0) → Pr

(
−d∗(H ′P̄η − δ)− H ′T (1)MP̄η ≤ 0

)
, which gives

the second equation in (3.8).
To prove (3.9), note thatMi = 0 and thus by setting V = M and u = v/σ in (B.10), we have v′Mv

p.
−→ η′P̄ ′MP̄η asφ1 → 1.

Accordingly, we obtain by setting a = H and u = v/σ in (B.9) of Appendix B that ρH ′v/
√
v′Mv

p.
−→ H ′iξ/

√
η′P̄ ′MP̄η. In

addition, it is readily seen from the last two items in (A.14) that ργ (0) = Op(ρ) regardless of whether H ′T (1)MJ̄ = 0. By
these arguments and the second item in (A.13), we have from (A.16) that

Pr (τ (0) ≤ τ0)→ Pr

(
−
1
2

√
n− k
H ′H

H ′iξ√
η′P̄ ′MP̄η

[
D(1)(η)+

H ′T (1)H
H ′H

]
≤ 0

)
. (A.18)

The probability value on the right-hand side of (A.18) is 1/2 because ξ d=−ξ . This proves (3.9) and completes the proof of
the theorem. �

Proof of Theorem 5.1. The proof of Theorem 5.1 relies heavily on Theorem B.1 presented in Appendix B, which gives the
limiting properties of the t statistic under ARMA(1,1) disturbances and φ1 → 1. Now, if Mi 6= 0, then it can be shown

that 1/
√
v′Mv

P.
−→ 0 when φ1 → 1, where v is defined as in (2.5). In fact, it can be seen from (B.8) in Appendix B that

1/
√
v′Mv = Op(ρ), whereρ =

√
1− φ21 . IfMi = 0,then it follows from (B.10) in Appendix B that v

′Mv = η′P̄ ′MP̄η+Op(ρ).

Note that H ′H > 0, so H ′i = 0 implies H ′J 6= 0. Putting ψ1 = 0, a =
√
(n− k)/H ′HH and V = M in Theorem B.1 of

Appendix B, it follows from (B.2) that

t(0)
P.
−→

t̄(0)ξ/|ξ | ifMi 6= 0 and H ′i 6= 0,
0 ifMi 6= 0 and H ′i = 0,
t(1)(η) ifMi = 0 and H ′i = 0.

(A.19)

With the exception of the fifth item in (5.1) and (5.2), other results in Theorem 5.1 follow readily from (A.19). To prove
the fifth item in (5.1), note from Theorem 2.1 that Pr (t(0) ≤ 0) = Pr

(
H ′v ≤ δ

)
. Now, Appendix B shows that the condition

H ′i = 0 impliesH ′v = H ′P̄η+Op(ρ). Hence the fifth item in (5.1) follows. In order to show (5.2), note from Theorem 2.1 that
Pr (t(0) ≤ t0) = Pr(

√
(n− k)/H ′H

[
ρH ′v − ρδ

]
≤ ρt0

√
v′Mv) for any ρ > 0. Given the conditionsMi = 0 and H ′i 6= 0 in

(5.2), we obtain from (B.9) and (B.10) in Appendix B that Pr (t(0) ≤ t0)→ Pr(
√
(n− k)/H ′HH ′iξ ≤ 0) = 1

2 for any real t0.
This verifies (5.2) and completes the proof of Theorem 5.1.

Proof of Theorem 6.1. The proof of Theorem 6.1 requires the following lemma from [12]:

Lemma 1. For arbitrary a ∈ (0,∞) and x ∈ [0, 1],

a1−x ≤
Γ (a+ 1)
Γ (a+ x)

≤ (a+ x)1−x. (A.20)

Lemma 1 gives bounds for the gamma ratio. These bounds are useful for proving Theorem 6.1.
(i) Denote t∗(0) = t(0)− t̃(0). To verify Part (i) of Theorem 6.1, we only need to show E0[t2∗ (0)] = O(n

−1). Clearly,

E0
[
t2
∗
(0)
]
= E0

[
t2(0)

]
+ E0

[
t̃2(0)

]
− 2E0

[
t(0)t̃(0)

]
. (A.21)

Since v ∼ N(0, In), we have H ′v/
√
H ′H ∼ N(0, 1), v′Mv ∼ χ2n−k, and H

′v and v′Mv are independent. It thus follows that

E0
[
t2
∗
(0)
]
= 2εn

{
1+

δ2

H ′H

}
, (A.22)

where

εn = 1−

√
n− kΓ

( n−k−1
2

)
√
2Γ

( n−k
2

) +
1

n− k− 2
. (A.23)

By Lemma 1, we observe that 1/(n− k− 2) ≥ εn ≥ 1/(n− k− 2)+ 1−
√
(n− k)/(n− k− 2) = o(1)/(n− k− 2), namely

εn = O(n−1). Part (i) of Theorem 6.1 thus follows.
(ii) To prove Part (ii) of Theorem 6.1, it is sufficient to show that

τ̂ ,
t(0)
2
v′MAMv
v′Mv

−

√
n− k
√
v′Mv

H ′AMv
√
H ′H

=
t̃(0)tr [AM]
2(n− k)

−
H ′AMv
√
H ′H
+ Op(n−1/2). (A.24)
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It follows from v′Mv ∼ χ2n−k that E0
[
1−
√
n− k/

√
v′Mv

]2
= 2εn = O(n−1). Accordingly,

√
n− k/

√
v′Mv = 1 +

Op(n−1/2). Hence, to verify (A.24), it is sufficient to show that

v′MAMv
v′Mv

=
tr [AM]
n− k

+ Op(n−1/2). (A.25)

Clearly,

E0

{
v′MAMv
v′Mv

−
tr [AM]
n− k

}2
= E0

{
v′MAMv
v′Mv

}2
−
2tr [AM]
n− k

E0

{
v′MAMv
v′Mv

}
+
tr2 [AM]
(n− k)2

. (A.26)

From the proof of Theorem 3.1 we observe that

E0

{
v′MAMv
v′Mv

}
=
tr [AM]
n− k

(A.27)

and

E0

{
v′MAMv
v′Mv

}2
=
tr2 (AM) + 2tr (AM)2

(n− k)(n− k+ 2)
. (A.28)

Substituting (A.27) and (A.28) into (A.26), we obtain

E0

{
v′MAMv
v′Mv

−
tr [AM]
n− k

}2
=
tr2 (AM) + 2tr (AM)2

(n− k)(n− k+ 2)
−
tr2 [AM]
(n− k)2

=
2

(n− k)(n− k+ 2)

[
tr (AM)2 −

tr2 (AM)
n− k

]
≥ 0. (A.29)

Since the eigenvalues of A are bounded, it follows that tr (AM)2 ≤ (n− k)µ2 for some constant µ2 <∞. Thus, we observe
(A.25) from (A.27).

Appendix B. Some results on the limiting properties of the t statistic

In this Appendix we derive some results on the limiting properties of the t statistic under the case of an ARMA(1,1)
process as φ1 → 1. The results given here are vital to the proof of Theorem 5.1 but are also of independent interest. The
similar conclusions were given by Banerjee andMagnus [3] for F statistic. Now, let u be an n× 1 vector of disturbances with
mean zero and covariance matrix σ 2Ω, a be an arbitrary n × 1 non-zero vector, and V be a positive semi-definite n × n
symmetric matrix with non-zero rank. We define the t ratio as

γ =
a′u
√
u′Vu

. (B.1)

Theorem B.1. Suppose that the elements in u are generated by a stationary ARMA(1,1) process, i.e., ut = φ1ut−1+ψ1εt−1+ εt
where εt ’s are iid N(0, σ 2) variables, |φ1| < 1 and |ψ1| < 1. When φ1 → 1, we have the following results:

(i) If Vi = 0 implies a′i = 0, then

γ
P.
−→


a′i
√
i′Vi

ξ

|ξ |
if Vi 6= 0 and a′i 6= 0,

0 if Vi 6= 0 and a′i = 0,
a′P̄η√
η′P̄ ′V P̄η

if Vi = 0 and a′J 6= 0,

(B.2)

where, again, ξ ∼ N(0, 1), (ξ , η′)′ ∼ N(0, In), P̄ = J̄P , J̄ ′ = [0(n−1)×1|In−1], and P is an (n− 1)× (n− 1) lower triangular
matrix such that the (i, j)th element of PP ′ ismin{i, j} − ψ1(1+ δij)/(1+ ψ1)2, and δij is the Kronecker sign.

(ii) If Vi = 0 but a′i 6= 0, then for any real γ0, both Pr(γ > γ0) and Pr(γ ≤ γ0) tend to 12 .

Proof. According to the proof of Theorem B.1 in [3] the matrix (1 − φ21)Ω(φ1) can be expressed as (1 − φ
2
1)Ω(φ1) = LL

′,
where

L = L0 + ρL1 −
1
2
ρ2L2 + ρ3L3 + O(ρ4) (B.3)
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as φ1 → 1, ρ =
√
1− φ21 , L0 = [i|0n×(n−1)], L1 = diag (0, P) , L2 = [l|0n×(n−1)] with the components of l being

l1 = ρ/(1 + ρ)2, ls = s − l1 − 1 for 2 ≤ s ≤ n, L3 = diag(0, L̄3), and L̄3 is an (n − 1) × (n − 1) lower triangular
matrix. It is readily seen that when φ1 → 1,

a′L =


a′L0 + O(ρ) if a′i 6= 0,(
0, ρa′P̄

)
+ O(ρ2) if a′i = 0 and a′J 6= 0,

O(ρ2) if a′i = 0 and a′J = 0,
(B.4)

and

L′VL =
{
diag(i′Vi, 0(n−1)×(n−1))+ O(ρ) if Vi 6= 0,
diag(0, ρ2P̄ ′V P̄)+ O(ρ3) if Vi = 0. (B.5)

Clearly, γ = a′v/
√
v′Vv, where v = u/σ . Since ρv = L(ξ , η′)′ with ξ ∼ N(0, 1) and (ξ , η′)′ ∼ N(0, In), we have

ρa′v = a′L(ξ , η′)′ (B.6)

and

ρ2v′Vv = (ξ , η′)L′VL(ξ , η′)′. (B.7)

Now, Theorem B.1 can be verified using (B.4)–(B.7).
Case (i). Consider item 1 in (B.2). It follows from (B.7) and the first item in (B.5) that

ρ2v′Vv = i′Viξ 2 + Op(ρ). (B.8)

Additionally, it follows from (B.6) and the first item in (B.4) that

ρa′v = a′iξ + Op(ρ). (B.9)

Accordingly, the first item in (B.2) follows from (B.1), (B.8) and (B.9).
Next consider item 2 in (B.2). Given that a′J 6= 0, it follows from the second item in (B.4) that ρa′v = ρa′P̄η + Op(ρ2).

So we obtain from (B.1) and (B.8) that γ = Op(ρ). In the case of a′J = 0, it follows from the third item in (B.4) that
ρa′v = Op(ρ2). We therefore observe from (B.1) and (B.8) that γ = Op(ρ2). This proves the second item in (B.2).
To consider item 3 in (B.2), note that by (B.7) and the second item in (B.5),

ρ2v′Vv = ρ2η′P̄ ′V P̄η + Op(ρ3). (B.10)

Since a′i = 0 and a′ J̄ 6= 0, ρa′v = ρa′P̄η + Op(ρ2) (see the proof of item 2 in (B.2) above). Combining this with (B.10), the
third item in (B.2) follows immediately.

Case (ii). Note that Pr(γ ≤ γ0) = Pr(a′v ≤ γ0
√
v′Vv). It follows from (B.9) and (B.10) that Pr (γ ≤ γ0) = Pr(a′iξ +Op(ρ) ≤

ργ0

√
η′P̄ ′V P̄η + Op(ρ)) → Pr(a′iξ ≤ 0) = 1

2 and Pr (γ > γ0) = 1 − Pr (γ ≤ γ0) → 1
2 . This completes the proof to

Theorem B.1. �

Two aspects of Theorem B.1 are of particular interest and deserve mention here. First, Theorem B.1 covers all possible
cases except for the trivial case of Vi = 0, a′i = 0 and a′ J̄ = 0. This case is trivial because it leads to a = 0. Second, the
normality assumption is not necessary. Although the proof is not given here, it can be readily shown that TheoremB.1 carries
over to the wider disturbance term assumption of elliptical symmetry.
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