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Abstract

A method is presented to calculate the exact HI Coulomb potential between spherical and deformed nuclei in the framework
of the double folding model. We used realistic density distributions taking the deformations of the target into account. We
have compared between our calculations and one of the more recent analytical expressions based on assuming sharp surfac
of the interacting nuclei. We have found that the finite surface diffuseness affects strongly the HI Coulomb interaction in the
inner region and has a smaller effect in the tail region. Moreover, neglecting non-linear higher order terms in the analytical
expressions produces errors in the outer region of the Coulomb interaction.
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The interaction potential between two heavy ions, HI, is essential for understanding many physical aspects in
the HI scattering processes. The HI optical model potential consists of two parts, the real and the imaginary parts.
The real part includes the Coulomb interaction and it is important for calculating physical quantities as reaction,
fission, fusion cross-section, and fusion barrier distribution.

In HI calculations, it is usually assumed that the Coulomb potential between the two interacting ions is
equivalent to either the potential between a point charge and uniformly spherical charge distribution or the potential
between two uniformly charged spheres with radii equal to the half density radii of the interacting ions [1]. On the
other hand, many ions have a static deformed charge distribution in its equilibrium state. So, the deformation
degree of freedom in charge distributions should be considered. Attempts to calculate the electrostatic Coulomb
potential taking the deformation degree of freedom into account have been made by Wong [2] and Krappe [3].
A mathematical method has been given which allows finding analytical solutions for the Coulomb potential
between spherical as well as between deformed nuclei with diffuse surfaces [3,5].

In many cases the physical HI observable quantities are sensitive to a small region in the tail of the nuclear
potential where the Coulomb potential is expected to be model independent and generally is considered to be
Ve(R)=ZpZie?/R plus a small correction due to deformation. This is often used in literature. On the other hand
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the angular distribution of some alpha-particle and light HI scattering reactions have been found to be sensitive
to the real potential over the whole radial domain. Moreover, the fusion cross-section needs a correct nuclear
and Coulomb potentials in the surface region and just before this region [6—8]. At high energy, the effects of the
Coulomb force appear also. For example, the Coulomb effect on the pion production in heavy ion collisions where
it is modifies the pion momentum and the available phase space [9,10]. These examples show the importance of
accurate calculations of the electrostatic Coulomb force not only around the surface region but also in the inner
region.

The more recent work deals with this problem, for deformed target, was done by Takigawa et al. [4] where
they presented analytical expression of the Coulomb interaction between a spherical projectile and a deformed
target which are valid for any separation distance between them, and remove various shortcomings in the standard
formulas of point-sphere and two uniformly spheres interactions. Their formulae solve the cusp and discontinuity
problems in the form factors of the Coulomb excitation and in their derivatives in other conventional models. This
may help in many problems such as the system where the Coulomb radius is larger than the nuclear radius. In their
work the Coulomb potential was not compared with that calculated from the double folding model with realistic
density distributions. It is of interest to discuss if these available analytical expressions for the Coulomb potential
are enough or it is necessary to derive a more realistic, folded, Coulomb potential in some cases? This is one of the
aims for this Letter. We use realistic density distributions and the double folding model to derive the Coulomb Hi
potential for spherical-deformed nuclear pair. We compare our results with the results of the most recent work in
this subject [4].

In the study of the effect of nuclear intrinsic degrees of freedom on the fusion reactions at sub-barrier energies
using coupled channels method, the Coulomb coupling plays an important role. As a good approximation, for HI
fusion reactions one can replace the angular momentum of the relative motion in each channel by the total angular
momentum], no-Coriolis approximation, [6,11,12]. The coupled channels equations then read

m? d?>  J(J +1Dh? ZpZre?
[_EW “ouRZ Va(R) + —p— +nho — Ec.m}wn(R) + ; Vam (R)Ym(R) =0, (1)

Vam is the coupling form factor, which in the collective model consists of Coulomb and nuclear components. The
Coulomb part is given by

VE(R, @) = (Y| V(R, @) — VOR) |[Y), )

whereV (R, «) is the total Coulomb interaction taking into account the ensemble of intrinsic coordinates, denoted
by «, andV @ (R) is the bare Coulomb interaction between two spherical nuclei.

In early studies it has been reported that the higher order Coulomb couplings are not important in heavy-ion
fusion reactions [6,13,14]. Linear Coulomb coupling were used and still in the major literature. The study of effect
of higher order Coulomb couplings was taking place in more recent work [15]. It is found that, considering the
guadrupole deformation, the second order Coulomb coupling noticeably modifies the fusion barrier distribution for
some interactions, for exampfeS + 168Er interaction.

Krappe [3] had proposed a method to solve the six-dimensional Coulomb interaction integration not in the
ordinary space but by means of Fourier transformations. This gives the Coulomb potential in the form of a multipole
sum. In each term the interaction integral is evaluated in Fourier space utilizing the simple structure of the Fourier
transform of the folded distribution. The result is a one-dimensional integral for each multipole term. It is valid
also for overlapping charge distributions. Based on this method an expression for the Coulomb interaction between
spherical-deformed nuclei is given in the form [4],

V(ﬁ’a):V(O)(R)+V(l)(k,a)+v(2)(§,a)+~-~, (3)
where

VOR)=ZpZr2FOR) (4)
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is the bare Coulomb interaction,

VO(R.a) =Zpzre? Y FP RV}, (2R)a, (5)
Ao

is the linear Coulomb coupling, and

= 2
VAR a)=ZpZre? Y D FPRY], (2R @iy / AR Yo Y Vi (6)
AL, hy. 2 Ao
is the second order Coulomb coupling.
These expressions are done under the approximation of uniformally charged objects with a sharp surface for

projectile and target and using expansion with respect to the deformation parameters.
The form factors are defined by

Ji(kRp) ji(kRT) J

FOR) = 1;8 / jo(kR)

kRp kRt k. (7)
0
18 1 (kR
FYR) == / kR AERD) Ry ai, ®)
T kRp
0
and
@ _33/ J1kRp) | . kRt dj;,(kRt)
F; (R)—n Jr(kR) Ry ]A(kRT)'i‘—z ARy dk. 9

Now, when considering an axially symmetric quadrupole and hexadecapole deform@tiand 4, for the target
nucleus and applying the angular momentum algebra we obtain the following expressions for the linear and the
leading second order Coulomb couplings

V(R 0) = Zp Zre?[ Fy” (R)2Y20(0, 0) + F,” (R)BaYao(®, 0)], (10a)

, 1[5 3 /1
V@ (R,0) = szrez{ |:F2(2)(R)?, | Y20(6.0) + Ff)(R)?,/; Y006, 0)],35
6 /1 20 [5
(2 2 /= 2 2
+ [Fz (R)7 - Y20(0,0) + F,~(R) =V 7 Y40(0, 0)

15/ 5
+ Féz)(R)l—l\/ 13, Yeol®. 0)};‘32/34}- (10b)

In the double-folding model, the interaction Coulomb potential between spherical-deformed or deformed-
deformed nuclei with separation distanRdetween their centers is given by

Ve(R) = / / drydis % op (F1)or (72). (11)

whereS = R + 7 — 1. pp and pr denote the nuclear charge distribution in the projectile and target nuclei
normalized to the total charge,e andZre, respectively.

The integral given by Eqg. (11) is a six-dimensional integral that is too difficult to handle. We can simplify it
by use of Fourier transformation. Restricting our derivation to be for spherical-deformed nuclear pair with the
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Fig. 1. A sketch of the interaction between two interacting deformed-spherical nuclei. The axis of symmetry of the deformed nucleus makes an
angleg with the beam.

coordinates that shown in Fig. 1, we shall deﬁh(aﬁ, B,s) as
G(R.B.s) =/pr(13 +)op (7 +5) dF (12)

wherep is the orientation angle of the deformed nucleus (the angle between the symmetry axis of the target nucleus
and the separation vecta).
Noting that the projectile nucleus is spherical and taking the Fourier transformatignwé get

pp(F475) = / FTD 5k di (13)

and

. 1 LiRE =\ =
ppk) = 273 /e ’kx,op(x) dx. (14)
Expanding the plane wave ¥ into its multipole components then substituting into Eq. (12) one gets
. 1 - - .
G(R, B, s) =53 f dr dk x%dx pr (R + S"))e*’k'seﬂ " pp(x) jolkx). (15)
T

Inserting this into Eq. (11) then integrating over the solid angle of the vectansik, VC(I_é, B) becomes
o0 0
Vc(R, B) =8/fsds jo(ks)kzdkfdfpf(ﬁ+7)jo(kr)/x2dx Jjo(kx)pp(x) (16)
00

the integration over can be performed analytically.
The charge density distribution of the deformed nucleus is then assumed to be

p(r)=—"22 (17)

—R(®) *

14 ¢ a®
where the half density radius of this Fermi distribution is given by

R(6) = Ro[1+ B2Y20(8, 0) + BaYa0(9, 0) + BeYe0(0, 0) + - - -] (18)
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B2, B4 and Bg are the quadruple, hexadecapole and hexacontatetrapole deformation parameters, respectively, and
the angled is measured from the symmetry axis of the deformed nucjeyis. determined from the condition

/p(?) dF = Ze. (19)

The reaction0-238 is chosen as an example to show the deviation between the exact HI Coulomb potential
between spherical and deformed nuclei given by Eq. (16) and the recent analytical expression derived in Ref. [4].
The values of radiuRo, the diffusenesa and the deformation parameters BU-nucleus are taken from
Refs. [15,16]. The correction due to deformation dependent part of the Coulomb potential is defined in the present
work as

VE(R, B) =V (R, B) — VO(R), (20)

whereV©(R) is the bare Coulomb interaction between two spherical nuclei which has an analytical expression
given by Eq. (4). We compare between the results of calculating this quantity using the folding model and the
analytical expression in Ref. [4]. In the first caBéR, ) = Vc(R, 8) given by Eqg. (16) while the approximate
expression is obtained wher®(R, g) = VD(R, B) + V@ (R, p) given by Eq. (10). In Ref. [4] the authors
expanded the Coulomb heavy-ion potential between deformed target and spherical projectile in terms of the
deformation parameters of the deformed target. The first term of this expansion is the Coulomb potential between
two uniformly charged spheres. The form factors, in Ref. [4], which depend on deformation parameters vanish
at heavy-ion separation distan®= 0. In our estimation of the error in form factors derived in Ref. [4], we
subtracted the spherical potential given by Eq. (4) from the folding potential calculated by Eq. (16). We expect
that the quantity’S°"(R, B) Calculated in the present Letter does not vanisR at0. This is mainly because the
presence of surface diffuseness. Also the effect of deformation parameters on the Coulomb interdctio at
decreases its value by small amount compared to that calculated for two charged spheres with sharp surfaces.

Fig. 2 showsV (R, B) calculated in the present Letter and that calculated in Ref. [4] for three values of the
orientation angleg, of the deformed target. Two values of the quadrupole deformation parameters were assumed
and both the linear and quadratic termginare taken into consideration. In Fig. 2 the hexadecapole deformation
did not consider.

Fig. 3 is the same as Fig 2 but a positive value for the hexadecapole deformation parameter is assumed to be
present. The figure presents a comparison of our calculations and that of Ref. [4] when the term @gfilains
included in the analytical formula Eq. (10). Fig. 4 is the same as Fig. 3 exceisthalts opposite sign.

We define the percentage error in the analytical formula by

[Ve(R, B) = VORI - [VP(R, B) + VAR, B)]
r= Ve(R. ) — VO(R) -

The value fory is presented on Table 1 for three different orientation angtesand for several values of
the separation distancR. The table presentg for 8> = 0.289 and the three values @f = 0, +0.087. In all
calculations the quadratic term containifgfs is included.

Concerning the internal region of the Coulomb HI interaction, the figures and the table described above show
a large difference between the folding model prediction and the analytical formula in Ref. [4]. Also they show
some deviation between the two approaches in the physically significant surface and tail regions. We found that
the inclusion of thes284 term do not improve the error in some cases. A significant difference between the folding
model, considered in the present work, and the different approaches for calculating the Coulomb potential studied
in Ref. [4] is that all the form factors of these approaches have the same valRexférfm while our calculations
have deviations compared to them in the rang® ef 9 fm.

As pointed out in Ref. [4], both the point sphere and sphere—sphere models differ significantly in the internal
region of the Coulomb potential compared to the more accurate analytical expression derived in Ref. [4]. The
folding model predictions differ in the same region than the best analytical formula. This differeViE&'itr, 8)

100 (21)
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Fig. 2. (a) Comparison betwedr’fo”(R, B) calculated in the present Letter, bold lines, and that calculated in Ref. [4], regular lines, for three
values of the orientation anglg,= 0°, 45° and 90, of the deformed target with, = 0.289. (b) Comparison betwear°"'(R, g) calculated

in the present Letter, bold lines, and that calculated in Ref. [4], regular lines, for three values of the orientatiop arifle45° and 90, of

the deformed target witho = 0.342.

can be more than 250% depending on the orientation angle and the deformation parameies.Hofm, the
table shows that there exist maximum error of about 13% between our calculations and the results of Ref. [4]. This
difference becomes too small &sincreases to the extreme tail region.

The difference between the present calculations based on the folding model and the analytical expressions
derived in Ref. [4] can be explained in the following way. In Ref. [4], the interacting nuclei were assumed uniformly
charged objects with sharp surfaces. This assumption is the main reason for the large deviation, in the internal
region, between the present calculations and those in Ref. [4]. Fig. 5 fGWeR, B) (for = 0° andg = 90°)
derived from Eq. (16) when both the projectile and target nuclei have diffuseness paramet8i@1 fm. This
very small value of diffuseness parameter produces almost uniformly charged objects. In this case the difference
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Fig. 3. Comparison betweeVIgO”(R,ﬂ) calculated in the present Letter, bold lines, and that calculated in Ref. [4], regular lines, for three
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values of the orientation anglg,= 0°, 45° and 90, of the deformed target witi, = 0.289 andg4 = 0.087.
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Fig. 4. Comparison betweeVIgO”(R,ﬂ) calculated in the present Letter, bold lines, and that calculated in Ref. [4], regular lines, for three

values of the orientation anglg,= 0°, 45° and 90, of the deformed target with, = 0.289 andg4 = —0.087.

Table 1

Values for percentage error in the analytical formula, X(%), defined by Eq. (21)

Bp=0.2898, = 0.0

Bp = 0.289 8, = 0.087

o = 0.289 84 = —0.087

R p=0° 45° o p=0° 45° o p=0° 45° oo
3 1238 1054 907 1237 1048 913 1231 1058 904
5 2580 1215 714 2851 1169 770 2262 1257 693
7 —2349 1843 412 -1974 1559 446 —3399 2171 388
9 —290 ~1341 131 —288 —2503 135 —267 —973 141
10 —49 —24.4 9.0 —24 -394 87 -5.0 -164 108
11 37 51 77 76 ~132 72 22 05 97
12 64 -0.1 75 107 -6.0 71 46 48 94
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Fig. 5. Comparison betweerCO"(R, B) calculated in the present Letter (for two values of diffuseness paramet€).6049 (solid lines) and
a = 0.01(dashed lines)) and that calculated in Ref. [4] (dotted lines). The calculations are made at two orientatigh-ajland 90, of the
deformed target witl8, = 0.289 andg4 = 0.087.

between the folding model potential and the results of Ref. [4] became small in both the surface and internal regions
(as shownin Fig. 5). This is because if one allows for a surface diffuseness of the nuclei, some of the charges before
the surface immigrate to larger distances. Since the Coulomb force is proportional to the inverse of the distance
between the interacting charges, the value of Coulomb interaction between uniformly charged objects is larger in
the internal region than its value for objects with diffused surfaces. Although the sharp surface assumption affects
strongly the internal region, it has less effect on both the surface and tail regions. For orientatiorpaadles

andp = 90°, Fig. 5 shows that the sharp surface assumptions reduce the error in the Coulomb form factors in the
surface region with small amount. In this case the rest of the produced error is most probably due to neglecting the
non-linear higher order terms of deformation parameters.
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