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The Burau matrix and Fiedler’s invariant for a closed braid
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Abstract

It is shown how Fiedler’s ‘small state-sum’ invariant for a braidβ can be calculated from the
2-variable Alexander polynomial of the link which consists of the closed braidβ̂ together with the
braid axisA.  1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a recent paper [1] Fiedler introduced a simple invariant for a knotK in a line bundle
over a surfaceF by means of a ‘small’ state-sum, which keeps a count of features of the
links resulting from smoothing each crossing of the projection ofK on F . The invariant
takes values in a quotient of the integer group ring ofH1(F ). Fiedler gives a number of
applications of his general construction. In particular, whereK is a closed braid, and can
thus be regarded as a knot in a solid torusV , his method gives an invariant of a braid
β ∈Bn in Z[H1(V )] = Z[x±1]modulo the relationxn = 1. This invariant depends only on
the closure of the braid inV and hence gives an invariant ofβ up to conjugacy inBn. Its
behaviour under Birman and Menasco’s exchange moves has been used to help in detecting
when two braids may be related by such a move.

The purpose of this paper is to show how Fiedler’s invariant for a closed braidβ̂ can be
found in terms of the Burau representation ofβ , and hence from the 2-variable Alexander
polynomial of the linkβ̂∪A consisting of the closed braid̂β and its axisA. Its construction

1 This work was carried out during the low-dimensional topology program at MSRI, Berkeley in 1996-1997. I am
grateful to MSRI for their support.
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here from the Alexander polynomial can be compared with methods which yield Vassiliev
invariants of degree 1 in other contexts, and suggests possible interpretations of Fiedler’s
invariants as Vassiliev invariants of degree 1 in the line bundle.

Having seen how the special case of Fiedler’s invariant is related to an Alexander polyno-
mial I finish the paper with a suggestion of extracting similar invariants from the 2-variable
Alexander polynomial of a more general 2-component link. These might be regarded as
degree 1 Vassiliev invariants of one component of the link when considered as a knot in
the complement of the other component. It would be interesting to know if there was any
similar state sum interpretation of these invariants in the more general setting.

2. Burau matrices

I make use of the fact that the 2-variable Alexander polynomial∆
β̂∪A(t, x) of a closed

braid and its axis can be calculated as the characteristic polynomial, det(I − xB(t)), of the
reduced(n−1)× (n−1) Burau matrixB(t) of the braidβ , [2]. Since the fulln×n Burau

matrixB(t) is conjugate to
(
B(t) v
0 1

)
we can write

(1− x)∆
β̂∪A(t, x)= det

(
I − xB(t)).

Put t = eh in det(I − xB(t))= 1+ b1(t)x + · · · + bn(t)xn, and expand this as a power
series inh to give

det
(
I − xB(eh))= ∞∑

i=0

ai(x)h
i,

where each coefficientai(x) is a polynomial inx of degree at mostn.
When we seth= 0, and thust = 1, we must get∆A(x)×(1−xn) by the Torres–Fox for-

mula, since the two componentsA andβ̂ of the link have linking numbern. Hencea0(x)=
1− xn. Settingx = 0 shows also thata1(x)= f1x + f2x

2+ · · · + fnxn for some integers
f1, . . . , fn. We know that the determinant of the Burau matrix is(−t)w(β), wherew(β) is
the writhe of the braid, and sobn(t)= (−1)n(−t)w(β). Noww(β)= n− 1 mod 2 sinceβ
closes to a single component. Hencebn(eh)=−1−w(β)h+O(h2), giving fn =−w(β).
We shall relate the remaining coefficientsf1, . . . , fn−1 directly to Fiedler’s invariant.

3. Fiedler’s braid invariant

Fiedler’s invariantFβ for an n-braidβ which closes to a single curve is a symmetric
Laurent polynomial, which is even or odd depending on the parity ofn. Suppose that the
braid

β =
k∏
r=1

σ
εr
ir

has been given in terms of the Artin generatorsσi , whereεr =±1. Suppose that the product
reads from top to bottom in the braid and the strings are oriented downwards. For the
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rth crossing define a positive integerm(r) by smoothing the crossing and following the
‘ascending string’ at the smoothed crossing around the closed braid until it closes again
afterm(r) turns around the axis. Here the ascending string means the string which starts
from the end of the overcrossing, and is thus stringir for a positive crossing and string
ir + 1 for a negative crossing. Fiedler’s polynomialFβ(X) is defined as a sum over thek
crossings ofβ by

Fβ(X)=
k∑
r=1

εrX
2m(r)−n.

For a givenm we can then write the coefficient ofX2m−n as
∑
m(r)=m εr .

Theorem 1. Let the n-string braid β have Burau matrixB(t), and write det(I −
xB(eh))= a0(x)+ a1(x)h+O(h2). Fiedler’s polynomial forβ satisfies

Fβ(x
1/2)= (f1x + · · · + fn−1x

n−1)x−(n/2),

wherea1(x)= f1x + · · · + fn−1x
n−1+ fnxn.

Proof. Use the classical trace formula for the characteristic polynomial of a matrixB.
Suppose thatB has eigenvaluesλ1, . . . , λn. ThenBm has eigenvaluesλm1 , . . . , λ

m
n and

det(I − xB)=∏n
i=1(1− xλi). Hence

ln
(
det(I − xB))= n∑

i=1

ln(I − xλi)=−
∞∑
m=1

n∑
i=1

1

m
xmλmi

=−
∞∑
m=1

xm

m
tr(Bm),

as power series inx.
Now expand ln(a0(x)+ a1(x)h+ · · ·) as a power series inh, only as far as the term in

h. We get

ln(a0(x)+ a1(x)h+ · · ·)= lna0(x)+ ln

(
1+ a1(x)

a0(x)
h+O(h2)

)
= lna0(x)+ a1(x)

a0(x)
h+O(h2)

=−xn − x2n/2− · · · + h(f1x + f2x
2+ · · · + fnxn)

× (1+ xn + x2n + · · ·)+O(h2).

The trace formula above applied toB(eh) shows at once that tr((B(eh))m)=−mfmh+
O(h2) for 16m< n.

The proof will be completed by relating the term inh in the trace of this matrix to the
appropriate coefficient of Fiedler’s polynomial. It is thus enough to show that

tr
((
B(eh)

)m)=−m( ∑
m(r)=m

εr

)
h+O(h2) for 16m< n.
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The Burau representationρ :Bn→GL(n,Z[t±1]) is the group homomorphism defined
on the elementary braidσi by

ρ(σi)= Bi =


Ii−1 0 0

0
1− t t

1 0
0

0 0 In−i−1

 .
The Burau matrix for the given braidβ is then

B(t)= ρ(β)=
k∏
r=1

B
εr
ir
.

Now

Bi(eh)=


Ii−1 0 0

0
0 1

1 0
0

0 0 In−i−1

+ h


0i−1 0 0

0
−1 1

0 0
0

0 0 0n−i−1

+O(h2)

= Ti + hP+i +O(h2), say.

We can similarly writeB−1
i = Ti + hP−i +O(h2) where

P−i =


0i−1 0 0

0
0 0

−1 1
0

0 0 0n−i−1

 .
Then(

B(eh)
)m =( k∏

r=1

(Tir + hP±ir )
)m
+O(h2).

We can write a matrix of the formM =∏l
r=1(Cr + hDr) as

M = C1C2 · · ·Cl + h(D1C2 · · ·Cl +C1D2C3 · · ·Cl + · · ·
+C1C2 · · ·Cl−1Dl)+O(h2),

and then

trM = tr(C1C2 · · ·Cl)+ h
(
tr(D1C2 · · ·Cl)+ tr(C1D2C3 · · ·Cl)+ · · ·

)+O(h2).

The term inh can be rewritten as

tr(C2 · · ·ClD1)+ tr(C3 · · ·ClC1D2)+ · · · + tr(C1C2 · · ·Cl−1Dl)
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by cycling the matrices so that therth product ends with the matrixDr .
Apply this to find the term inh in tr((B(eh))m as the sum ofmk terms, each of which

is the trace of the product ofmk matrices of the formTir+1 · · ·Tir−1P
±
ir

with sign ±
according to the sign ofεr . For each of thek crossings of the original braid the matrix
Tir+1 · · ·Tir−1P

±
ir

occursm times in the sum. Thus

fm =−
k∑
r=1

tr(Tir+1 · · ·Tir−1P
±
ir
).

The proof of Theorem 1 will be completed by showing that

tr(Tir+1 · · ·Tir−1P
±
ir
)=

{−εr if m(r)=m,
0 otherwise.

The matrixTi is the permutation matrix for the transposition(i i + 1). Hence a product
of these matrices is also a permutation matrix,T say, whose permutation is the productπ

of the corresponding transpositions. Then the entries inT satisfy

Tij =
{

1 if i = π(j),
0 otherwise.

The matrixT = Tir+1 · · ·Tir−1 above is thus a permutation matrix with permutationπ
(m)
r ,

say. Notice that the permutation corresponding to the productT Tir is conjugate to the
permutation of the braidβm. Under the assumption thatβ closes to a single curve this will
be themth power of ann-cycle, and will hence not fix any number when 16m< n. Hence
π
(m)
r cannot carryir to ir + 1 or vice versa, in this range.
If the rth crossing is smoothed and the stringsir andir +1 are followed upwards around

the braidm times, withm< n, they will not pass through the smoothed crossing. They then
become the stringsπ(m)r (ir) andπ(m)r (ir + 1), respectively when they return to the level of
the bottom of therth crossing. Now whenεr =+1 the ascending string at therth crossing,
which is stringir , returns to positionir after the permutationπ(m)r if and only ifm=m(r).
Similarly whenεr =−1 the ascending string, in this case stringir + 1 returns to position
ir + 1 exactly whenm=m(r).

The matricesP±ir have only two nonzero entries. Suppose first thatεr = +1. Then

tr(T P+ir ) is the sum of two terms. The off-diagonal entry gives a contribution only if the

permutation matrixT maps it onto the diagonal. This requiresπ(m)r (ir) = ir + 1, which
was excluded above. The diagonal entry contributes−1 if and onlyπ(m)r (ir)= ir , which is
the condition thatm=m(r). Thus whenεr =+1 we get a contribution of−εr to the trace
if and only ifm=m(r), and zero otherwise.

A similar argument holds whenεr = −1. Again the off-diagonal entry does not
contribute to the trace, while the diagonal entry contributes+1 if and only ifπ(m)r (ir+1)=
ir + 1. This corresponds once more to the condition thatm=m(r), and so in each case we
have a contribution of−εr if and only ifm=m(r). The total coefficient ofh in tr((B(eh)m)
is then−m∑m=m(r) εr , showing thatfm =∑m=m(r) εr as claimed. This completes the
proof of Theorem 1. 2
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4. Determination from an Alexander polynomial

If we are given the Alexander polynomial of the closed braidβ̂ and its axisA as a
2-variable polynomial we can recover Fiedler’s invariant for the braid. First multiply by
1− x, wherex is the variable for the axis. This gives the characteristic polynomial of
the Burau matrix forβ , up to multiplication by a power ofx and a power oft , and a
sign. Putt = eh and expand as a power series inh with coefficients depending onx. Then
multiply by a power ofx and a sign to make the constant term 1− xn. The result will be
the characteristic polynomial used above, up to a power oft = eh. Extract the coefficient
f0+f1x+· · ·+fn−1x

n−1+fnxn of h. This will contain the Fiedler polynomial as before
in the termsf1x + · · · + fn−1x

n−1, while the remaining terms will come from a factor of
tf0 and will satisfyf0+ fn =−w(β).

A similar interpretation looks plausible for the coefficients of the linear terms in
h1, . . . , hk when the Alexander polynomial of a closed braid withk components and its
axis is expanded in terms of the meridian generatorx for the axis and meridiansti = ehi

for the components. This polynomial can again be written in terms of the characteristic
polynomial of a suitable ‘colored’ Burau matrix. The eventual coefficient ofhi should then
have contributions from the overcrossings of the corresponding component of the closed
braid, as in the Fiedler polynomial above.

As a possible extension to the case of a general linkLwith two componentsX andT say,
we might putt = eh in the Alexander polynomial∆X∪T (x, t) of L and consider only the
termsa0(x)+a1(x) h up to degree 1 inh. The polynomiala0(x) is∆X(x)(1−xn)/(1−x),
wheren is the linking number ofX andT , and∆X(x) is the Alexander polynomial ofX.
Now considera1(x) as a polynomial modulo the ideal generated bya0(x). This is an
invariant ofL as it is unaffected by any ambiguity of powers ofx andt in the Alexander
polynomial. This seems to me to be the nearest analogue to Fiedler’s invariant for the link
componentT with meridiant when regarded as a knot in the complement ofX; in the case
of a closed braid we takeX as the braid axis andT as the closed braid. It looks likely to
be a Vassiliev invariant of type 1 for knots in the complement ofX. There is not, however,
any obvious candidate for a state-sum construction of this invariant along Fiedler’s lines
when the componentX is knotted.
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