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Abstract—The Fourier series of a smooth function on a compact interval usually has slow conver-
gence due to the fact that the periodic extension of the function has jumps at the interval endpoints.
For various symmetry conditions polynomial interpolation methods have been developed for perform-
ing a boundary correction. The resulting variants of Krylov approximants are a sum of a correction
polynomial and a Fourier sum of the corrected function [1-8]. In this paper, we review these methods
and derive estimates in the maximum norm. We further show that derivatives of the Krylov approx-
imants are again Krylov approximants of derivatives of the considered function. This enables us to
give a unified treatment of the problem of simultaneous approximation.
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1. INTRODUCTION

We start with a description of different forms of Fourier series of a 27-periodic sufficiently smooth
real valued function f depending on symmetry conditions [9)].
The trigonometric form is given by

o0

f= %ao(f) + Z (an(f) cosnz + by (f) sinnz).

n=1

The real Fourier coefficients are determined by

1 27

an(f) == =/, f(y) cosnydy, n=0,1,...,
1 27 .

bo(f) == - | f(y) sinnydy, n=12,....

The complex exponential form is given by

o]

f= Z cnlf) ens en(T) 1= ens

n=-—0o
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with complex Fourier coefficients

2w
enlf) 1= 5 /0 f@)e-n(y)dy, n=0,%1,....

We have
ao(f) =2co(f), an(f) —ibn(f) =2¢a(f), an(f) +iba(f) =2c_n(f), n=12,....

A Fourier series without any further symmetry conditions is called a waveform. As special cases,
two types of symmetries can occur:

I) f(-=z) = f(=)

Then the Fourier series is called an even waveform. Its Fourier series is given by the
Fourier cosine series

1 o0
f(2) =7 a0(f) + ;an(f) cosng
with the simplified Fourier coefficients
2 iy
an(f)z;r-/ f(y) cosnydy, n=0,1,....
0

(1) f(-2) = —f(2)

Then the Fourier series is called an odd waveform. Its Fourier series is given by the
Fourier sine series

o0
f(z) = bo(f) sinnz
n=1
with simplified Fourier coefficients .

bn(f)=-f}/0 f(y) sinnydy, n=12,....

A periodic function f is called antiperiodic if it satisfies the symmetry condition

1) f(z+m)=~f(2)

In this case the Fourier series is called a half-waveform. It possesses the form

o0

f= Z con-1(f) e2n-1

n=—00

with simplified Fourier coefficients

cnalf) =7 [ W e-mu@dy,  n=021,....

As in the general waveform case, the half-waveform can have two types of symmetries.

(Il') f(-z) = f(z), flz+m)=—f(z)

Then the Fourier series is called an even half-waveform. Its Fourier series is given by

o0
f(z)= Z a2n-1(f) cos(2n — 1)z
n=1
with the simplified Fourier coefficients

w/2
aom-1(f) = %/0 f(y) cos(2n — 1)y dy, n=12,....
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") f(~z)=-f(z), flz+7)=-f(z)
Then the Fourier series is called an odd half-waveform. Its Fourier series is given by the
Fourier sine series

f@) = ban1(f) sin(2n — 1)z

n=1

with simplified Fourier coefficients
4 7I'/2
b2n—1(f) = '7;/ f(y) Sin(Qn—l)y)dya n=12....
0

In general, these Fourier series converge slowly for smooth (sufficiently differentiable) functions
due to the fact that certain boundary conditions related to the symmetry assumptions are vio-
lated. There are different methods to accelerate the convergence of these series by polynomial
correction [1-8].

The aim of this paper is to present a unified derivation of these accelerating methods by
using only the Euler representation of a smooth function. In this way we obtain explicit integral
remainder representations in terms of the Bernoulli functions for all types of acceleration methods.
Moreover, using the concept of Korobov spaces we will derive simultaneous error estimates for
the acceleration methods.

2. WAVEFORMS

The first Bernoulli function By is given by
By(z):=m—z, 0<z<2m, Bi(0)=DB1(2r):=0, Bi(z)= Bi(z+2m).

It possesses the Fourier series

n=-00
n#0

The ¢** Bernoulli function By, ¢ = 2,3,..., is defined by

o0

By(z) = Z (in) e,.

n#0

For ¢ = 2,3,... we have
DB, = By-1. (2.1)

where D denotes the derivative. Ba, is even, By,._; is odd. Note that B, restricted to (0,27)
coincides with the ¢*® Bernoulli polynomial.
A 2r-periodic square integrable function f is said to be an element of the Korobov space £9,
g>1if
lea(£)I = O(In|™9),  In| - o0.

Thus the function B, is an element of £9.

We denote by C. the set of all 2m-periodic functions f on R such that all derivatives D7 f,
j = 0,...,q are continuous. Let PC%_ be the set of all 2m-periodic functions with piecewise
continuous D f, j =0, ...,¢q. Let I, be the set of all polynomials of degree < q. Any g € C[0, 27]
has a unique periodic extension which is in £! in view of the relation ¢, (Dg) = co(Dg) +in cn(g).
More general, if g € PC}, then g € £L.
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Moreover, it is shown in [10, p. 115] that g € C§, NC%2[0,27], ¢ = 0,1,... implies g € £9%2.

Since £9 is shift-invariant any function g € CZ_ N PCYL}? is also in £9+2. For more information

on Korobov spaces, see [10, pp. 107-115].
Let L! be the Banach space of all 2r-periodic functions which are absolutely integrable on
[0,27]. The 2m-periodic (or waveform) convolution of f,g € L! is defined by

27
(Fr0@) =5 [ fe-vawd

We have f * g € L'. By the periodic convolution property, we have

cn(f * g) =cn(f)cn(g)v n=0%1,.... (22)

Note that the convolution is antiperiodic if at least one factor is antiperiodic. If both factors are
even or odd, then the convolution is even. If one factor is even and the other is odd, then the
convolution is odd.

For f € C},,g € L! it follows that

D(f*g) = (Df) *g.

Let f € C?[0,27], ¢ =1,2,... be given. We set

27
Fif)a) = (B * DU)(@) = 5= [ Bule =)D (0) dy. (23)

Partial integration yields the following proposition.

PROPOSITION 2.1. Let f € C9[0,27], ¢ =1,2,... be given. Then we have the recursion formula

-1 _ —~1
Fq(f) = b f(27r)2ﬂ_ bt f(O) Bq + Fq—l(f)1 q= 2737 s (24)

(=L TO0 g, 4 ()

and the Euler decomposition [11, p.108f]

f=Mq(f)+Fq(f)

with the correcting polynomial (restricted on (0,27))

My(f)(@) := =) co(D?f) Bj(x)

i=0
1 27 g—1 DJf(Q.n-) _ DJf(O)
=5 ), fWdy- ; o Biz)eM, (0<z<2m) (25)

(where we set Bo(z) := —1) and the corrected function Fy(f) of the form (2.3).

The Krylov method for accelerating the convergence of the Fourier series of a given function
f € €90, 2n] is based on approximating the corrected function F,(f) by its n*® Fourier sum. The
ntt Fourier sum of the function f € C?|0, 27] is denoted by

n

Gu(f) = D el(f)en

k=-n

The sequence G, (f), n = 1,2,... converges in the square mean to f.
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The Krylov approzimant of f € C4[0,27] is defined by
Kon(f) = Mo(f) + Gn(Fy(f))- (2.6)
Note that by (2.5), (2.6) the remainder satisfies
f = Eqn(f) = Fo(f) — Gn(Fy(f))-

Gn(Fy(f)) is the nt? partial sum of the rapidly converging Fourier series of the corrected function

Fo(f).
PROPOSITION 2.2. Let f € C9t1[0,27], ¢ = 1,2,... be given. Then

If = Kgn(Fllo = O(n7%), 1 — o0

PROOF. It follows from the definition (2.3) of Fy(f) and from the convolution property (2.2) that

(i)~ 9k (Df), k=+1,4£2,...,
0, k=0

cu{Fo(1)) = ex(By)ex(D"1) = {
Since D9f € C[0,27], we have D?f € £!, and therefore,
ce(Df) = O(k™1), |k| — 0.

This implies
ce(Fy(f)) = O(k™971),  |k| — oo

Hence,
o0
[1Fa(f) = Ga(Fg(f)lleo = O ( > k“’“l) =0(n™).
k=n+1
Since f — Kqn(f) = Fq(f) — Gn(Fy(f)), the proof if complete. ]
Again let f € C9[0,27], ¢ = 1,2,... be given. Our next purpose is to investigate simultaneous

approzimation properties of the Krylov operator K ,(f) given by (2.6), i.e., we are interested in
the asymptotic behaviour of

ID?f = DI Kgn(f)lloo = ID?Fy(f) = DIGn(Fy(f))llw, 0<j<q
By (2.1), differentiation of the correcting polynomial M,(f) yields the polynomial
g—1
DM,(f) = =) co(D?*'f) B;,
j=0
i.e., DMy(f) is the correcting polynomial of degree ¢ — 1 of Df:
DMy(f) = Mq_1(Df).

Similarly, we get
DFy(f) = Fo-1(Df),

i.e., DF,(f) is the corrected function of Df. Thus the Euler decomposition of Df is given by

Df = My_1(Df) + Fg—1(Df).
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Proceeding in this way we obtain
DIf = My j(Df) + Fp_j(Dif), j=0,...,q-1.

Now we note that the nt® Fourier sum projector G, and the operator of differentiation commute
on C}.. Since the Krylov approximant K, ,(f) of f is given by (2.6), we obtain

Dqu,n(f) :Mq—j(Djf)"f‘Gn(Fq—j(Djf)), 0<j<g

Thus an iterated application of Proposition 2.2 yields the simultaneous approximation properties
of the Krylov approximant.

THEOREM 2.1. Let f € C9*1[0,2n], ¢ = 1,2,... be given. Let

2 g-1 j Y
M@ =5 [ way- Y ZLED DO
=0

be the correcting polynomial on [0,2n] and Fy(f) = f — M,(f) be the corrected function with
n®® Fourier sum

i 2
GalF(N@) = 3 alFy(M)e™, exlg) = 5 /0 o(y) e v dy,

k=—n

Then we have for the derivatives of order j = 0,...,q — 1 of the Krylov approximant K, ,(f) =
My(f) + Gr(Fy(f)) the estimates:

IDIf = DIKgn(fllo = O(n™9%), 1 — oo

3. EVEN AND ODD WAVEFORMS

Now let f € C?"[0, 7], r = 1,2,... be given. Let g € C,, be the even 27-periodic extension
of the function D?" f € C[0,n]. If in addition f € C?"+1{0, 7], then the Fourier cosine series of g
converges uniformly and absolutely to g:

g(z) = %ao(f) + Zak(g) cos kz.
k=1

Let L} C L! be the subspace of even functions. The periodic convolution of f,g € L} reads
now as follows

(F20)@) = 5= [ Fe-vady+ 5 [ £ @r-v) g2 - )y

2 [ U+ s+ s dv

T

From the periodic convolution property (2.2), it follows that

an(f*g)——-QG'n(f)an(g), TL:O,I,,..,

For even f € C%,, g € L}, we have

D?(f xg) = (D*f) * g.
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Note that the Bernoulli functions Ba,, 7 = 1,2,... are even. Then we obtain the corrected
function of f € C¥ |0, 7):

Ful$)(©) = (Bar+0)@) = 7 [ 5 (Barle —0) + Bure +4) DV )y (3)

Note that the properties of the Bernoulli function Bj, imply that Fo.(f) is even. Thus the
corrected function Fy,.(f) defined by (3.1) on R is an even waveform.
Now partial integration yields the following.

PROPOSITION 3.1. Let f € C?"[0,7], r = 1,2,... be given. Then we have the recursion formula

For(f)(z) = —}Bzr(m — ) (D* 1 f)(x) - %Bzr(x) (D¥1H)(0) + For_a(f)(z), r=2,3,...,
Fif)(®) = = Bala =) (D)(r) = = Ba(a) (D)) + (@) — 3 aa().
We further have the Jones-Hardy decomposition of f:

f = M2r(f) +F21'(f) (32)

with the correcting polynomial (restricted on (0, 7))

r

Mo (7)) 1= Y (=3 Bate = 1) (DH=1 1)) + - Bay(@) (D 1))

=1

+—;—a0(f)€H2r (O<z<m) (3.3)

and with the corrected function Fy.(f) of the form (3.1).

REMARK 3.1. The correcting polynomial Ma,(f) was first introduced by Jones and Hardy [2],
without the constant term ao(f)/2, however. We have shown that the Jones-Hardy decomposition
is an immediate consequence of the Euler decomposition, which takes into account the specific
symmetry properties of D" f.

The Jones-Hardy approzimant of f € C¥(0,7], r = 1,2,..., is defined by

Korn(f) := Mar(f) + Gn(Far(f)). (34)

PROPOSITION 3.2. Let f € C**+2[0,7],r =1,2,.... Then
If ~ Karn(flloo = O(n™*71), n— 0.

PROOF. If we extend D?" f evenly and 27-periodically to the function g € Cy, N ’PC%,r then

Pr(@) = 7 [ 5 (Burla = 4) + Barlo +4) D $0)dy = (Bur + g)(@),

which implies by the periodic convolution property (2.2)

(ik)~2ep(g), k=41,£2,...,

ck(Far(f)) = cx(Bar) ck(Dg) = {0, k=0.

Since g € C,, N PC?%, it follows that g € £2, and hence,

cx(9) = O(k™?), [kl — oo.
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Consequently,
ce(Far(f)) = O(k™%72%),  |k| - oo.
Hence,
| For (f) — Gn(Far(f))loo ——O< Z k=2 2) =O(n~2-1).
k=n+1
Since f — Korn(f) = For(f) — Gn(For(f)) the proof is complete. 1

In view of deriving simultaneous approximation properties of the Jones-Hardy approximant,
we have to investigate the derivative of the Jones-Hardy decomposition. In contrast to the Euler
decomposition we obtain a new type of decomposition, which corresponds to Fourier expansions
of odd periodic functions. Recall that for f € C27[0, 7], we have f = My (f) + Far(f) with (3.1)
and (3.3). Differentiating Ma,(f) and Fy.(f), we get by (2.1) that

DMz (£)(@) = 3 (=3 Bayma(e = 0) (D5 1)(m) + 2 By (@) (0¥ 1)00)).
J=1

DE()(@) = 1 [ 5 (Barea(o =) + Bara(a + ) D" ) dy

Setting h := Df, we obtain the Lanczos decomposition [1] of h € C?*~1[0, 7], r = 1,2,...:
h = Nor_1(h) + Har—1(h) (3.5)

with the correcting polynomial

r

Nar_1(B)(@) i= 3 (~% Boja(x — ) (DY *h)(m) + £ Boys () (D2f-2h)(0)) €Ty (3.6)
Jj=1

and with the corrected function

s
Hores0)@) = - [ 5 (Brs@=9) + Borcslo +0) D7 )y (30)
Note that properties of the Bernoulli functions imply that Ha,_;(h) as defined by (3.7) on R is
an odd waveform.

Thus, the Jones-Hardy decomposition yields an even waveform as polynomially corrected func-
tion with a rapidly converging Fourier series while the Lanczos decomposition gives an odd wave-
form as polynomially corrected function, again with a rapidly converging Fourier series. The
Lanczos decomposition may be obtained by differentiating the Jones-Hardy representation.

The Lanczos approzimant of h € C* 1[0, n], r = 1,2,... is now defined by

L2r—1,n(h) = Ngr_l(h) + Gn(H2:,-_1(h)). (38)
PROPOSITION 3.3. Let h € C**+1[0,7], 7 =1,2,.... Then
IR = Lor-1n(B)llco = O(n™%7),  n— oo. (3.9)

PRrOOF. Note first that (3.5) and (3.8) imply
h — Lar-1,n(h) = Har—1(h) — Gn (Har-1(h)) .
If we extend D271k evenly and periodically to the function g € C,, then we have by (3.7)

Hyr_1(h) = Bar_1 * g. (3.10)
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As in the proof of Proposition 3.2, it follows that g € £2. This implies
cr(g) = O(k™2),  [k| = oo.
Since by (2.2) and (3.10), we have
cx(Har-1(h)) = ci(9) (K)'™", Kk #0,
we can conclude
ck(Har—1(h)) = O(k™%"Y),  |k| — oo.
Hence,
| Har—1(h) = Ga(Har—1())lloo = 0( D ) = O(n™),
k=n+1

By (3.9) the proof is complete. ]

We will now apply the preceding results to derive simultaneous approximation properties of
both the Jones-Hardy and Lanczos approximants. Recall that for f € C%[0, 7], h € C*~1[0, ],
r=1,2,..., we have

f=Max(f) + F2r(f) (Jones-Hardy),

h = N2r—1(h‘) + H2r—1(h') (Lanczos).
In particular,
Df = Nar_1(Df) + Har-1(Df).

Next we differentiate the Lanczos decomposition for h € C2"~1(0, 7], r = 2,3,.... From (3.7)
and (2.1), it follows that

1 /™1
DHar—y(h)(z) = ;/ 5 ((Bar—2(z — y) + Bar—a(z +)) D> 'h(y) dy,
0
i.e., we have
DHar_1(h) = Far_o(Dh).
Similarly, we get by (3.6) and (2.1):

r

DNyr_1(h)(z) = Z (—% sz_2(IL‘ —-m) (D 2]'—2h)(7l') + % Baj.o(x) (D 2.7'-—2/7,)(0))

=2

+ (-3 C0am+ 2 como)

r~1
- (—% Bar(=) (D Dh)(r) + = B (a) (D?k‘th)«J)) +3 ao(Dh),
k=1

i.e., we have
DNs,._1(h) = Ma,..o(Dh).
This shows
Dh = Ma,_o(Dh) + Far_o(Dh).
We recollect the different decompositions and their differentiated forms for f € C?"[0,7], r =
1,2,... and he CT~10,7], r =2,3,...:
f =M (f) + For(f) (Jones-Hardy),
h = Nar_1(h) + Hzr—1(h) (Lanczos),
Df = Nop_1(Df) + H2»—1(Df) (Lanczos),
Dh = My,..o(Dh) + Fy,._o(Dh) (Jones-Hardy).

A repeated application of Propositions 3.2 and 3.3 yields the following.
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THEOREM 3.1.
(a) Let f € C¥+2[0,7),r =1,2,... be given. Let

2n T
Mar()@) = 5= [ 10+ Y (=3 Bue = m) (09 10)m) + £ Buy@) (0% 1)0))

=1

be the correcting polynomial on [0, 7] and Fa.(f) = f — Ma.(f) be the corrected function
with nt® Fourier sum

GalFar (1)) = § aaFarl D) + 3 a(Farl 1) coskz, an(a) = 2 [ g(s) coshyd.
k=1

Then we have for the derivatives of order j = 0,...,2r of the Jones-Hardy approximant
Korn(f) = Mar(f) + Gn(Far(f)) the estimates:

ID?f = DI Karn(Hlloo = O™, n— 00,

(b) Let h € C*+1[0,7], r =1,2,... be given. Let

Ngr_l(h)(.’l,‘) = Z (—-71?32_,'_1(1! - 7r) (D2j—2h)(1f) + %sz_l(l') (Dzj—zh)(0)>

i=1

be the correcting polynomial on [0,7] and Har_1(h) = h — Na,_1(h) be the corrected
function with n*? Fourier sum

n . 2 rd
Gn(Har-1(h))(2) = ) bi(Hzr-1(R)) sinkz, bi(g) = ;/ 9(y) sinky dy.
k=1 0
Then we have for the derivatives of order j = 0,...,2r — 1 of the Lanczos approximant
L2r—1,n(h) = Nar_1(h) + Gn(H2r-1(h)) the estimates:

D'k~ DiLar_1 n(h)lloo = O(~2+),  n— co.

4. HALF-WAVEFORMS

Now let f € C%0,n], ¢ = 1,2,... be given. Let g € C,, be the antiperiodic extension of
D9f € C[0,n]. Then the corrected function Fg(f) reads as follows

FiN(E) = (By* @) = 1 [ Boa(a =) D1 (0) dy (41)
with the (g — 1) Euler function

Ep1() = % (By(@) - By(z+7)), g=12,....

Recall that

DE,.1=E, 3 q=23,.... (4.2)
We obtain the following proposition.
PROPOSITION 4.1. Let f € C?0,x], g =1,2,... be given. Then we have the recursion formula

_ D1 f(m) + DI71£(0)
m

Fif) =
F(n=-L{0210g

Eq1+ Fgo(f), ¢=23,...
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and the Boole decomposition [11, p. 110f]

f=Mq(f)+Fq(f) (4.3)
with the correcting polynomial
1 pi DIf(0
my(p) =3 2O PO e,
=0

and the corrected function Fy(f) of the form (4.1).

Note that the properties of the Euler function Eq_, imply that F,(f) is antiperiodic, thus the
corrected function Fy(f) is a half-waveform.

The Krylov method for accelerating the convergence of the half-waveform of f is based on
approximating the corrected half-waveform F,(f) by its (2n —1)*" Fourier sum. The antiperiodic
(2n — 1)t Fourier sum of f € C9[0, 7] is given by

Gan-1( Z cak-1(f) e2x-1

k=-n+1

with the simplified Fourier coefficients

cak-1(f) = / f(y) e1—2n(y) dy, n=0,41,.

The sequence Ga,—1(f) converges in the square mean to f for n — oo.
As in the waveform case the Krylov approzimant of f € C9(0,7], ¢ =1,2,... is defined by

Kq,2n—1(f) = Mq(f) +G2n—l(Fq(f))' (44)
Again by (4.3), (4.4) the remainder satisfies

f = Kyan-1(f) = Fy(f) — Gan-1(F(f))-

Gan—1(F,(f)) is the (2n—1)*" partial sum of the rapidly converging Fourier series of the corrected
half-waveform F(f).

PROPOSITION 4.2. Let f € C*1[0,n], ¢ =1,2,... be given. Then
If — Kq2n-1(f)llc = O(n77),  n— oo

PROOF. We extend D?f € C1[0, 7] antiperiodically to g € PC},. Hence, it follows that

1 m
Fif)@) = 3 [ Baale - ) D) dy = (By+ (o). (45)
Since g € £!, the proof of Proposition 2.2 can be applied to the present situation. ]
Assume that f € C9+1[0,7], ¢ = 1,2,.... Our next purpose is to investigate simultaneous

approzimation properties of the Krylov operator K, on—1(f) for half-waveforms, given by (4.4).
Taking into account the properties (4.2) of the Euler functions, differentiation of the correcting
polynomial M,(f) yields the polynomial

q-2

DI(Df)(n) + DI(Df)(0
Z (f)(7r7r (Df)(0)

=0

DM,(f) :=

Ej € Hq_g,
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i.e., DM,(f) is the correcting polynomial of Df:
DM,(f) = Mg—1(Df). (4.6)

Similarly, we get
DFy(f) = Fg-1(Df). (4.7)

Thus the Euler decomposition of Df is given by
Df = My_1(Df) + Fg_1(Df).
Proceeding this way, we obtain
Dif =M, j(D'f)+Fpj(D?f), j=0,...,¢g—1
Again the Fourier sum projector and the operator of differentiation commute on C3,:
DGop—1 = Gop-1D. (4.8
Then (4.4) and (4.6)—(4.8) imply that
DiKgon-1(f) = My—3(D?f) + Gon-1(Fy-;(D’f)), 0<j<g.

Thus an iterated application of Proposition 4.2 yields the simultaneous approximation properties
of the Krylov approximant.

THEOREM 4.1. Let f € C9t1[0,7], ¢ =1,2,... be given. Let

9-1
M) = 3 PO DO

=0

be the correcting polynomial on [0,7] and F,(f) = f — My(f) be the corrected function with
(2n — 1)®* Fourier sum

Con-1(Fg(M)(@) = 3 cap-1(Fy(f) 12, car1(g) = = / " gly) eV gy,
k=—n+1 TJo

Then we have for the derivatives of order j = 0,...,q—1 of the Krylov approximant K 2n_1(f) =
My(f) + Gan—1(Fy(f)) the estimates:

ID?f = D?Kgon-1(f)llc = O(n™9*7),  n— co.

5. EVEN AND ODD HALF-WAVEFORMS

Now we consider f € C*" [0,%],r =1,2,.... Let g be the even antiperiodization of D?" f, that
means

9(2)=D¥f(z), 0<z<Z, ¢(3)=0 g)=g@) gz+m)=-g().

Then we have g € PC,, and
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As in (4.1) the correctecd function Fy.(f) of f reads as follows

Far()(o) = (Brr @) = £ [ Bara(a - ) alw) dy

o (/21 (5.1)
= ;/0 §(E2r—1(x"y) + Epr_1(z + 1)) (D f)(y) dy.
Then we obtain with integration by parts:
PROPOSITION 5.1. Let f € C>" [0,%], 7 =1,2,.... Then we have the recursion formula
2 ™ or—2 m
=2 5aa (5= 5) (0329 (3
2
- ; Eg.,.__l(.’L') (D2T_lf) (0) + F21‘—2(f)($)’ r= 2,3’ veey
2 T T 2
B(f)@) == Eo (c-3) (N (5) - ZB:@) (DHO) + f(2)
and the Boole decomposition of f:
f = My (f) + For(f) (5.2)

with the correcting polynomial (restricted on (0, %))

Mo (f)(z) := %Z (Bas-1(2) (DH11)(0) - Bayez (v - 2) (D¥7%F) ()

=1

€ Ilar_y (0 <zr< %) (5.3)

and with the corrected function F,.(f) given by (5.1).

Note that F»,(f) is an even antiperiodic function. Thus the corrected function Fy.(f) of f is
an even half-waveform.

The Shaw method [4] for accelerating the convergence of the related even half-waveform Fo,.(f)
of f € C?" [0, %] is based on approximating Fp,(f) by its (2n — 1)® Fourier sum

Gon-1(F2r(f))(z) = Z agk-1 (For(f)) cos(2k — 1)z

k=1
with
4 1r/2
azk-1(Far(f)) = ;/ For(f)(y) cos(2k — 1)ydy, k=12,....
0
The Shaw approzimant of f € C? [0,%], 7 =1,2,..., is now defined by
Soran-1(f) := Mar(f) + Gon-1(For(f)) (5.4)
PROPOSITION 5.2. Let f € C*"*1[0,%], r =1,2,... be given. Then we have
I1f = Szr2n-1(f)llec = O(n™"), n — 00.

PROOF. Let g € PCL, be the even antiperiodization of D?" f. Then

For(f) = Barxg
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is an even antiperiodic function such that ¢z (For(f)) =0, k = 0,+1,.... By (2.2), we have
cak—1 (Far(f)) = cok-1(Bar) cok-1(g) = (i(2k = 1)) > cak-1(g),  k=0,%£1,....
Since g € PC1,, it follows that g € £1, and hence,
cak-1(9) = O((2k ~1)71), [k — oo

Note that
azk-1(9) = 2c2x-1(9) = 2¢1-2(9), k=1,2,....

Consequently,
cak-1(For(£))) = O((2k - 1)7>1).

By (5.2) and (5.4), we obtain
F- S2r,2n—1(f) = F?r(f) - G2n—1(F2r(f))a

and hence, the estimate

> aak_1(Far(f)) cos(2k — 1)z

k=n+1

1 £(z) = Szr2n-1(f)(z)lloc =

e ]
oo

> |a2k—1(F2r(.f))|H =0(n"%), n-— oo

k=n+1

<

This completes the proof. 1

In order to derive simultaneous approximation properties of the Shaw approximant, we have
to investigate the derivative of the decomposition formula (5.2). In contrast to (5.2) we obtain
now a new type of decomposition which corresponds to Fourier expansions of odd antiperiodic
functions.

As already stated, we have for f € C* [0,F], r = 1,2,... the decomposition f = My.(f) +
Fo.(f) with (5.1) and (5.3). Differentiating Ma,.(f), we get by (4.2) that

DM (£)@) = = S (D~ 1)(0) Byj-afa) = = S (D721) (3) Byoa (2 - 3)
=1 j=2
r-1 r-1
- %Z(D%Df)(o) Ear(z) - %Z(D%—lDf) (2) Eas (- )
k=0 k=1

forr=2,3,... and
2
DM(f) = —D{(0) Eo.

We set h:= Df. Then he C?~1[0,2],r=1,2,.... Introducing

2 = p _ T T
Lor—a(h)(a) = = kzﬂ(D”‘h)(O) Ba(c) - = kZﬂ(D”‘ 1R) (5) Ea_1 (m - 5) . r=2.3,...,
Ly(h) = 2 h(0) B,

we obtain
DMz (f) = Lor_1(Df).

Note that Lg,-1(h) restricted to (0, §) is a polynomial of degree < 2r — 2.
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Differentiating For(f), we get by (4.2)

x/2
DE()@) =2 [ 5 (Bar-ale =) + Baroale + 1) D S) .

Defining for h € C?~1[0,%], 7 =1,2,...

2 (™%
Uzr-1(R)(2) = = /o 3 ((Bar—2(z — y) + Ear—2(z + y)) D¥1h(y) dy, (5.5)

we obtain
DF,.(f) = Uzr-1(Df)
for f € C? [0,%], 7 =1,2,.... We summarize:

PROPOSITION 5.3. Let h € C*~! [0, -’é], r=1,2,... be given. Then we have the decomposition
formula

h = Ly,_1(h) + Ugr—1(h) (5.6)

with the (restricted to (0, %)) correcting polynomial La,_1(h) € Il2,_2 and the corrected function
Usr—1(h).

Note that by the properties of the Euler functions U,,._,{h) defined by (5.5) on R is an odd
half-waveform.

The approximant Vp_1,2q-1(h) of h € C?"~1[0,%], r =1,2,... is defined by

Var—1,2n-1(h) := Lar_1(h) + Gan—-1(Uzr—1(h)). (5.7)

Since Upr—1(h) defined by (5.5) on R is odd and antiperiodic, we have

Gan-1(Uzr-1(R))(z) = D _ bok—1(Uar—1(h)) sin(2k — 1)z

k=1
with
4 1I'/2
bat-r(Uara(B)) = 2 /o Uzr—1(h)(y) sin(2k — 1)y dy.

PROPOSITION 5.4. Let h€ C? [0,%], r =1,2,... be given. Then

|h = Var—1,2n-1(h)]lc = O(n~2"*1),  n — oo
PROOF. Let g be the odd antiperiodization of D2 1k, that means

g(x) = D' Mh(), 0<z<z, g0 =0g(-a)=—g(z),  g(z+m)=—g(x)

9(3-7)=9(3+):

Uzr-1(h) = Bar—1 * g.

Then we have g € PC}, and

It is easy to see that

Then,
cok(Usr—1(h)) =0, k=0,+1,....

From the periodic convolution property (1.2) it follows that

cak—1(Uzr-1(R)) = cax—1(Bar—1) c26-1(g) = O((2k — 1)~%"), |k| — oo.
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Thus Us,1(h) € E2". Further, we have
bok—1(Uzr—1(h)) = 2icok—1(Uazr-1(h)), k=1,2,....
Hence, we obtain
NU2r—1(h)(z) — Gan-1(Uzn-1(h))(Z)l|oo

o0
S bok_1(Uar—1(h)) sin(2k — 1)z
k=n+1

=0(n~ 2+, p oo

>

Further, by (5.6) and (5.7), we have
h - V2r—1,2n—1(h) = U2r—1(h) - G?n—l(U2'r—1(h))-

This completes the proof. 1

Now we apply the preceding results to the simultaneous approximation of both approximants.
Recall that for f € C? [O, %], hec?-! [0, %], r =1,2,... we have the decomposition formulas

f =M (f) + Far(f),
h = L2r_1(h) + Uzr_l(h).

In particular, we have
Df = Lop_1(Df) + Uar—1(Df).

Differentiating La,—1(h) and Ua,—1(h) for h € C¥*~1[0,%], r = 2,3,... we obtain after simple
calculations:
DLjr_1(h) = Ma,_2(Dh), DUs,_1(h) = F3r_2(Dh),

ie.,
Dh = Mzr_z(Dh) + Fzr_z(Dh).
A repeated application of Propositions 5.2 and 5.4 yields the following

THEOREM 5.1.
(a) Let feC¥+1[0,2],r=1,2,... be given. Let

r

110 = 25 (B0 90 - s (- ) 03 (3)

j=1

be the correcting polynomial on [0, %] and F,(f) = f — M2r(f) be the corrected function
with (2n — 1)®* Fourier sum

n 4 1r/2
Gon-1(For(f))(z) = Zazk_l (For(f)) cos(2k — 1)z, a2k—1(g9) = ;/0 9(y) cos(2k — 1) ydy.
k=1
Then we have for the derivatives of order j = 0,...,2r — 1 of the Shaw approximant

Sor2n—1(f) = M2 (f) + Gon—1(Far(f)) the estimates:
ID? f = DI S2r2n-1(Hlleo = O(n™2"+),  n— o0.

(b) Let he C?* [0,%],r=1,2,... be given. Let

Lyr-1(h)(z) = Z(Dz"h) 0) Ear(a) — = Z(Dzk ') (3) Bak-1(z - %)
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be the correcting polynomial on [0, %] and Ua,_1(h) = h — La,_1(h) be the corrected
function with (2n — 1)** Fourier sum

Gan-1(Uzr—1(R))(x) = D bak_1(Uzr_1(h)) sin(2k — 1) z,
k=1

4 /2 )
bak—1(g) = = /0 9(y) sin(2k — 1)y dy.

Then we have for the derivatives of order j = 0, ..., 2r—2 of the approximant Vo, _1 2,—1(h)
= L2r—l(h) + G2n—1(L2r—1(h)) the estimates:

|Dih = DIVar_1 2n-1(h)|loo = O(n~2 ) n — .
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