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A b s t r a c t - - T h e  Fourier series of a smooth function on a compact interval usually has slow conver- 
gence due to the fact that the periodic extension of the function has jumps at the interval endpoints. 
For various symmetry conditions polynomial interpolation methods have been developed for perform- 
ing a boundary correction. The resulting variants of Krylov approximants are a sum of a correction 
polynomial and a Fourier sum of the corrected function [1-8]. In this paper, we review these methods 
and derive estimates in the maximum norm. We further show that derivatives of the Krylov approx- 
imants are again Krylov approximants of derivatives of the considered function. This enables us to 
give a unified treatment of the problem of simultaneous approximation. 

K e y w o r d s - - F o u r i e r ,  Sine, Cosine, Series expansion, Simultaneous approximation, Convergence 
acceleration. 

1. I N T R O D U C T I O N  

We start with a description of different forms of Fourier series of a 27r-periodic sufficiently smooth 
real valued function f depending on symmetry conditions [9]. 

The trigonometric form is given by 

1 o o  

f =  ~ao(f) + E (an(f)cosnx +bn(f) sinnx). 
n = l  

The real Fourier coefficients are determined by 

1 f02~ an(f) := - f(y) cosnydy, n = O, 1 . . . .  , 
7( 

1 fo 2~ bn(f) := - I(Y) sinnydy, n = 1 ,2 , . . . .  
7r 

The complex exponential form is given by 

f = Z Cn(f) en, en(X) := e mx 

We have been unable to communicate with the author(s) with respect to galley proof corrections. Hence, this 
work is published without the benefit of such corrections. (Ed.) 
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with complex Fourier coefficients 

1 ~0 2~ Cn(f) := ~ f (y )  e-n(y)  dy, 

We have 

n = O,:t=l,.... 

ao(f) = 2Co(f), a,(f)-ibn(f) = 2cn(f), an(Y) +ibn(f) = 2c_n(f), n = 1,2,.... 

A Fourier series without any further symmetry conditions is called a waveform. As special cases, 
two types of symmetries can occur: 

(r) f(-x) = f(x) 
Then the Fourier series is called an even waveform. Its Fourier series is given by the 

Fourier cosine series 

1 oo 

f ( x )  = ~ ao(f) + ~ an(f)  cosnx 
r~=l 

with the simplified Fourier coefficients 

an(f)  = ~r f (y )  cos ny dy, n = O, 1 , . . . .  

(I") f(-x)=-f(x) 
Then the Fourier series is called an odd waveform. Its Fourier series is given by the 

Fourier sine series 
oo 

f ( x )  = ~ bn(f) s innx 
n = l  

with simplified Fourier coefficients 

bn(f) = ~r f (y )  s innydy,  n 1 , 2 , . . . .  

A periodic function f is called antiperiodic if it satisfies the symmetry condition 

(II) f(x + z:) = -fl(x). 
In this case the Fourier series is called a half-wave form. It possesses the form 

c o  

:= C2n-1(/le2n-1 

with simplified Fourier coefficients 

lf0  c2n- l ( f )  = 7r f (y )e-2n+l(y)dy ,  n=O,=t : l , . . . .  

As in the general waveform case, the half-waveform can have two types of symmetries. 
(II') f(-x) = f(x), f(x + Tr) = -f(x). 

Then the Fourier series is called an even half-waveform. Its Fourier series is given by 

o o  

: ( x )  = a 2 n - l ( / )  cos (2n  -- 1)x 
n = l  

with the simplified Fourier coefficients 

a2n-l(:) 4/,~/2 
= - f (y )  cos(2n - 1)y dy, n = 1, 2 . . . . .  

71" J 0  
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(II") f ( - x )  = - f ( x ) ,  f(x+Tr) = - f ( x ) .  
Then the Fourier series is called an odd half-waveform. Its Fourier series is given by the 

Fourier sine series 
oO 

f (x)  = E b2n-l(f) sin(2n - 1)x 
n ~ l  

with simplified Fourier coefficients 

4 f/2 
b2n- l ( f )  = -~ Jo f(y) sin(2n - 1)y)dy, n - -  1 , 2 , . . . .  

In general, these Fourier series converge slowly for smooth (sufficiently differentiable) functions 

due to the fact that  certain boundary conditions related to the symmetry assumptions are vio- 
lated. There are different methods to accelerate the convergence of these series by polynomial 
correction [1-8]. 

The aim of this paper is to present a unified derivation of these accelerating methods by 
using only the Euler representation of a smooth function. In this way we obtain explicit integral 
remainder representations in terms of the Bernoulli functions for all types of acceleration methods. 
Moreover, using the concept of Korobov spaces we will derive simultaneous error estimates for 
the acceleration methods. 

2. W A V E F O R M S  

The first Bernoulli function B1 is given by 

BI(X) : = T r - x ,  0 < x < 2 7 r ,  BI(0) =B1 (2 7 r ) :=0 ,  Bt(z) =Bl(z+27r) .  

It possesses the Fourier series 

B I ( x )  = 

n = - - o 0  

n#O 

The qth Bernoulli function Bq, q = 2, 3 , . . . ,  is defined by 

B (x) = ( i n ) - % .  

he0 

For q = 2, 3 , . . .  we have 

DBq = Bq-1. (2.1) 

where D denotes the derivative. B2~ is even, B2<-1 is odd. Note that  Bq restricted to (0, 27r) 
coincides with the qth Bernoulli polynomial. 

A 2~-periodic square integrable function f is said to be an element of the Korobov space £q, 
q _ > l i f  

]cn(f)] = O(Inl-q), in[ ~ ~ .  

Thus the function Bq is an element of £q. 

We denote by C~r the set of all 27r-periodic functions f on R such that  all derivatives D3f, 
j = 0 , . . . , q  axe continuous. Let P C ~  be the set of all 27r-periodic functions with piecewise 
continuous DJf, j = 0 , . . . ,  q. Let IIq be the set of all polynomials of degree < q. Any g ~ C 1 [0, 2~r] 
has a unique periodic extension which is in gl  in view of the relation cn(Dg) = co(Dg) + in cn(g). 
More general, if g E T~C~r then g E g 1. 
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Moreover, it is shown in [10, p. 115] that  g • car f ' lcq+2[0,27r] ,  q = 0, 1 , . . .  implies g • Eg+2. 
Since £g is shift-invariant any function g • ¢~= n Pcq+2z= is also in £q+2. For more information 
on Korobov spaces, see [10, pp. 107-115]. 

Let L 1 be the Banach space of all 27r-periodic functions which are absolutely integrable on 
[0, 27r]. The 2r-periodic (or waveform) convolution of f ,  g • L 1 is defined by 

( . f ,  g ) (x)  = / ( z - y ) a ( u ) d y .  

We have f ,  g • L 1. By the periodic convolution property, we have 

Cn(f * g) = cn(f) cn(g), n = O, +1, . . . .  (2.2) 

Note that  the convolution is antiperiodic if at least one factor is antiperiodic. If both factors are 
even or odd, then the convolution is even. If one factor is even and the other is odd, then the 
convolution is odd. 

For f • C~,g • L 1 it follows that  

D( f  * g) = (D f)  * g. 

Let f • Ca[0, 27r], q = 1, 21... be given. We set 

1 f2~ Fa(f)(z ) := (Sq * Daf)(x) = ~ Jo Bg(z - y)Daf(y) dy. (2.3) 

Partial integration yields the following proposition. 

PROPOSITION 2.1. Let f • ca[o, 27r], q = 1,2,. . .  be given. Then we have the recursion formula 

Dq-lf(27r) - Dq-lf(O) Bq + Fq-t ( f ) ,  q = 2, 3 , . . .  (2.4) Fa(Y) = 

Fl(f)  = f(27r) - f(0) B1 + f - co(f) 
27r 

and the Euler decomposition [11, p.108f] 

: = + F (f) 

with the correcting polynoraial (restricted on (0, 27r)) 

Ma(f)(x) := - E c°(Da f)  Bj(x) 
j = 0  

_-- ~1 jof2~ f(Y) dy - zq-1 DJf(27r)27r_ D Jr(o) Bj(x) • IIq 
j = 0  

( 0 < x < 2 r )  (2.5) 

(where we set Bo(x) := -1)  and the corrected function Fq(f) of the form (2.3). 

The Krylov method for accelerating the convergence of the Fourier series of a given function 
f E ca[0, 27r] is based on approximating the corrected function Fq(f) by its n th Fourier sum. The 
n th Fourier sum of the function f E C q[O, 27r] is denoted by 

n 

Gn(f) := ~ ck(f)ek. 
k-~--n 

The sequence Gn(f), n = 1, 2 . . . .  converges in the square mean to f .  
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The Krylov approximant of f E C q [0, 2r] is defined by 

Kq,n(f) := Mq(f)  + Gn(Fq(f) ). (2.6) 

Note that  by (2.5), (2.6) the remainder satisfies 

f - Kq,n(f) = Fq(f) - G,~(Fq(f)). 

Gn(Fq(f))  is the n th partial sum of the rapidly converging Fourier series of the corrected function 

Fq(f).  

PROPOSITION 2.2. Let f E cq+l[0,27r], q = 1 ,2 , . . .  be given. Then 

IIf - Kq,n(f)lloo = O(n-q),  n -* c~. 

PROOF. It follows from the definition (2.3) of Fq(f) and from the convolution property (2.2) that  

(ik)-qck(Dqf),  k = ±1, ± 2 , . . . ,  
ck(Fq(f)) = ck(Bq)ck(Dqf) = O, k = O. 

Since D q f  E C1[0, 27r], we have Dqf E £1, and therefore, 

ck(Dqf) = (-9(k-1), Ikl--* ~ .  

This implies 

Hence, 

c k ( F q ( f ) )  = O ( k - q - 1 ) ,  I k l - ~  ~ .  

l iFo ( f )  - an(Fq(f))ll~ = o k - q - ~  = O ( n _ q ) .  
\ k = n + l  / 

Since f - Kq,n(f) = Fq(f) - Gn(Fq(f)),  the proof if complete. II 

Again let f E Cq[0, 27r], q = 1 ,2 , . . .  be given. Our next purpose is to investigate simultaneous 
approximation properties of the Krylov operator Kq,n(f) given by (2.6), i.e., we are interested in 
the asymptotic behaviour of 

IIOJY - D3Kq,n(f) l l~ = IID3Fq(f) - DJGn(Fq(f))II~, 0 < j < q. 

By (2.1), differentiation of the correcting polynomial Mq(f)  yields the polynomial 

q--1 

DMq(f)  = - ~-~ co(DO+l f )  Bj,  
j=0  

i.e., DMa( f )  is the correcting polynomial of degree q - 1 of D f: 

DMq(f )  = Mq_l(Df) .  

Similarly, we get 
DFq(f)  = Fq- l (Df ) ,  

i.e., DFq(f)  is the corrected function of Dr. Thus the Euler decomposition of D f  is given by 

D f  = Mq- I ( D f )  + Fq- l (Df ) .  



38 G. BASZENSKI et al. 

Proceeding in this way we obtain 

DJ f = Mq- j (DJ  f )  + Fq_j(DJ f ) ,  j = O, . . . , q  - 1 .  

Now we note that  the r~ th Fourier sum projector Gn and the operator of differentiation commute 
on C21r. Since the Krylov approximant Kq,~(f) of f is given by (2.6), we obtain 

DJKq,~(f)  = Mq_j(DJ f )  + Gn(Fq_j(DJ f ) ) ,  0 < j < q. 

Thus an iterated application of Proposition 2.2 yields the simultaneous approximation properties 
of the Krylov approximant. 

THEOREM 2.1. Let f E cq+1[0,271"], q = 1 ,2 , . . .  begiven. Let 

1 [ 2 ~  q-1 DJf(2~r) - D Jr(o) 
Mq(f ) (x)  = -~  Jo f ( y ) d y  - ~ 27r B~(x) 

j = 0  

be the correcting polynomial on [0, 21r] and Fq(f) = f - Mq(f)  be the corrected function with 
n th Fourier sum 

Gn(Fq(f))(x) = ck(Fq(f)) e ikx, ck(g) = ~ g(y) e -iky dy. 
k = - n  

Then we have for the derivatives of order j = 0 , . . . ,  q -  1 of the Krylov approximant Kq,n(f)  = 
Mq(f )  + Gn(Fq(f) ) the estimates: 

liD Jr - D3 Kq,n(f)l l~ = O(n-q+J), n --+ c~. 

3. E V E N  A N D  O D D  W A V E F O R M S  

Now let f E C2~[0,7r], r = 1 ,2 , . . .  be given. Let g C C2~ be the even 27r-periodic extension 
of the function D2rf E C[0, ¢r]. If in addition f E c2r+l[0, 7r], then the Fourier cosine series of g 
converges uniformly and absolutely to g: 

1 
g(x)  = a 0 ( f )  + ak(g) cos kx. 

k = l  

Let L01 C L 1 be the subspace of even functions. The periodic convolution of f ,  g E L~ reads 
now as follows 

1/: 1/: 
( f  • g)(x) = ~ f ( x  - y) g(y) dy + ~ f (x - (27r - y)) g(27r - y) dy 

i~0~I lr ~ ( f ( x  y ) + f ( x + y ) ) g ( y ) d y .  

From the periodic convolution property (2.2), it follows that  

a n ( f * g ) = 2 a n ( f ) a n ( g ) ,  n = 0 , 1 , . . . .  

For even f • C22,r, g • L~, we have 

D 2 ( f ,  g) = (D2f) * g. 
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Note that the Bernoulli functions B2~, r = 1,2,... are even. Then we obtain the corrected 

function of f E C 2r [0, ~']: 

l f o ~ l  F2r(f)(x) = (B2r * g)(x) = ~ ~ (B2r(x - y) + B2r(x + y)) D2rf(y)  dy. (3.1) 

Note that  the properties of the Bernoulli function B2r imply that  F2r(f) is even. Thus the 
corrected function F2r(f)  defined by (3.1) on R is an even waveform. 

Now partial integration yields the following. 

PROPOSITION 3.1. Let f E c2r[0, r], r = 1, 2 , . . .  be given. Then we have the recursion formula 

1 1 S2r(x) F2r(f)(x) = - B 2 r ( X  - 71") ( D 2 r - l f ) ( T r )  - ( D 2 ~ - l f ) ( 0 )  + F2r-2(f)(x),  r = 2, 3 . . . .  , 
7r 7r 

1 
i B2(x) (Df)(O) + f(x) - ~ ao(f). I B2(x - 7r) (Df)(r) - F2(f)(z) = 7 

We further have the Jones-Hardy decomposition d f: 

f = M2r(f)  + F2r(f)  (3.2) 

with the correcting polynomial (restricted on (0, ~r) ) 

M2r(f)(x)  ( -1B2 j ( x -Tr ) (D2 j - l f ) (Tr ) . . . [ -~B2 j ( x ) (D2 j - l f ) (O) )  

+ ½ ao(f) c H ~  (0 < z < ~) (3.3) 

and with the corrected function F2~(f) of the form (3.1). 

REMARK 3.1. The correcting polynoraial M2r(f)  was first introduced by Jones and Hardy [2], 
without the constant term ao(f) /2, however. We have shown that the Jones-Hardy decomposition 
is an immediate consequence of the Euler decomposition, which takes into account the specific 
symmetry properties of D2~ f . 

The Jones-Hardy approximant o f f  E C2r[0, r], r = 1 ,2 , . . . ,  is defined by 

g 2 , , , ( / )  := M2~(I) + a,~(Y2~(f)). (3.4) 

PROPOSITION 3.2. Let f E C2r+2[0, 7r], r = 1, 2 , . . . .  Then 

Ill - g2~,n(f)Hoo = O(n-2r-1) ,  n --* oo. 

PROOF. If we extend D 2r] evenly and 2~r-periodically to the function g E C2. n 7)C2~ then 

l f o ~ l  F2r(f)(x) = -~ -~ ( (B2 r ( x - y )+  B2r(X +y) )D2r f (y )dy= (B2r*g)(x), 

which implies by the periodic convolution property (2.2) 

ck(F2r(f)) = ck(B2r)ck(Dqg) = { ~i, k)-2rck(g)' 

Since g E C2, A 7)C22, it follows that g E £2, and hence, 

ck(g)  = O ( k - 2 ) ,  Ikh -~  o~. 

k = +1, :k2 . . . . .  
k - -O.  
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Consequently, 

Hence, 

ck(F2r(f)) = O(k-Zk-2), I/el - - ,  ~ .  

llF2,.(f) - Gn(F2,.(f))IIoo = 0 k -2~-2 = O(n-2~-l). 

\ k = n + l  / 

Since f - K2r, n(f) = F2r(f)  - Gn(F2r(f)) the proof is complete. II 

In view of deriving simultaneous approximation properties of the Jones-Hardy approximant, 
we have to investigate the derivative of the Jones-Hardy decomposition. In contrast to the Euler 
decomposition we obtain a new type of decomposition, which corresponds to Fourier expansions 
of odd periodic functions. Recall that for f E C2~[0, ~r], we have f = M2r(f)  + F2r(f)  with (3.1) 
and (3.3). Differentiating M2r(f)  and F2r(f),  we get by (2.1) that 

DM2r(f)(x) = ~ ( - 1 B 2 j - l ( x  - Tr) (D2J-l f)(Tr) + 1B2j-I(x) (D2J-l f)(O)) , 
j--1 

l f o ~ l  DF2r(f)(x) = -~ ~ ((B2~-I(x-y) ÷B2r-l(x+y))D2"f(y)dy. 

Setting h := Dr, we obtain the Lanczos decomposition [1] of h E C2r-1[0, ~r], r = 1, 2 , . . .  : 

h =N2~- l (h )  + H 2 r - l ( h )  (3.5) 

with the correcting polynomial 

N2r-l(h)(x) := ~ ( - 1  B2 j - I (x -7 r ) (D~J-2h) (Tr )+  1 B 2 j - I ( x ) ( D 2 j - 2 h ) ( O ) ) E H 2 r - 1  (3.6) 
j = l  

and with the corrected function 

1 f o ~ l  H2r-l(h)(x) = -~ ~ ((B2~-I(X - y) + B2r- I (x  + y)) D2r-lh(y) dy. (3.7) 

Note that  properties of the Bernoulli functions imply that H2r_l(h) as defined by (3.7) on R is 
a.n odd waveform. 

Thus, the Jones-Hardy decomposition yields an even waveform as polynomially corrected func- 
tion with a rapidly converging Fourier series while the Lanczos decomposition gives an odd wave- 
form as polynomially corrected function, again with a rapidly converging Fourier series. The 
Lanczos decomposition may be obtained by differentiating the Jones-Hardy representation. 

The Lanczos approximant of h E C2r - l [0 ,  71"], r = 1, 2 , . . .  is now defined by 

PROPOSITION 3.3. 

L2r-l,n(h) := N2r-l(h) + Gn(H2r-l(h)). 

Let h E C2~+1[0,1r], r = 1 ,2 , . . . .  Then 

]]h - L2r_l,~(h)ll~ = O(n-2~), n --~ oo. 

(3.s) 

(3.9) 

PROOF. Note first that  (3.5) and (3.8) imply 

h - L2r-l,n(h) -- H2r- l (h)  - Gn (H2r-l(h))  • 

If we extend D2r-lh evenly and periodically to the function g E C2~ then we have by (3.7) 

H2r- l (h)  = B2~-1 * g. (3.10) 
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As in the proof of Proposition 3.2, it follows that g E £2. This implies 

ck(g) = O(k-2 ) ,  Ikl- , '  ~ .  

Since by (2.2) and (3.10), we have 

ck(H2r-l(h)) = ck(g) (ik) 1-2r, k 7~ 0, 

we can conclude 

Hence, 

ck(H2~-l(h)) = O(k-2r-1) ,  Ikl - - ,  ~ .  

41 

This shows 

i.e., we have 

D f  = N2r- l (Df )  + H2r- t (Df) .  

Next we differentiate the Lanczos decomposition for h E C2~-1[0,1r], r = 2, 3 , . . . .  From (3.7) 
and (2.1), it follows that 

DH2r-l(h)(x)  = 1 ~o ~ 
1 
~ ((B2~-2(x - y) + B2~-2(x + y)) D 2~-lh(y) dy, 

i.e., we have 
DH2~-l(h) -- F2~_2(Dh). 

Similarly, we get by (3.6) and (2.1): 

) DN2~-I(h)(z)  = - B2j-2(z  - r ) ( D 2 J - 2 h ) ( r )  + - B2j-2(z) (D2J-2h)(0) 
j = 2  71" 

+ ( - l ( - l ) h ( ~ r ) + l ( - 1 ) h ( O ) ) - ~ .  

)1 ---- ~ '  - B2k(z-w)(D2k--1Dh)(r )+  1 B2k-l(Z) (D2k-lDh)(O) +-~ ao(Dh), 
k=l  7r 

In particular, 

DN2~-I(h) = M2~_2(Dh). 

Dh = M2r-2(Dh) + F2r-2(Dh). 

We recollect the different decompositions and their differentiated forms for f E C2~[0, 7r], r = 
1 ,2 , . . .  and h E C2~-1[0,~r], r = 2 ,3 , . . . :  

f = M2r(f)  + F2r(f) (Jones-Hardy), 

h = N2r- l (h)  + H2~-l(h) (Lanczos), 

O f  = N2r- l (Df )  + H2r- l (Df )  (Lanczos), 

Dh = M2~-2(Dh) + F2~-2(Dh) (Jones-Hardy). 

A repeated application of Propositions 3.2 and 3.3 yields the following. 

Hg2r-l(h)-Gn(H2r-l(h))[[oo =(~( ~-~ k-2r-ll =O(n-2r ). 
k=nq-1 

By (3.9) the proof is complete. | 

We will now apply the preceding results to derive simultaneous approximation properties of 
both the Jones-Hardy and Lanczos approximants. Recall that for f E C2~[0, zr], h E C2r-l[0, ~r], 
r -- 1, 2 , . . . ,  we have 

f -- M2r(f)  + F2r(f) (Jones-Hardy), 

h = N2r- l (h)  + H2r- l (h)  (Lanczos). 
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THEOREM 3.1. 

(a) Let f E C2r+2[0,~r], r = 1,2,... be given. Let 

1 f2,r 
M2r(f)(x)= ~ Jo f (y)dy+ ~ ( - 1 B 2 j ( x - ~ r )  ( D ' J - l f ) 0 r ) +  1B2,(x ) (D2J-lf)(O)) 

jffil 

be the correcting polynomial on [0, lr] and F2r(f) = f - M2r(f) be the corrected function 
with n th Fourier sum 

Gn(F2,(/))(x) = ao(F2r(f)) + ak(F2r(f)) coskx, ak(g) = ~r g(y) coskydy. 
kffil 

Then we have for the derivatives of order j = 0,...  ,2r of the Jones-Hardy approximant 
g2r, n(f )  = M2r(/)  + Gn(F2r(f)) the estimates: 

IID~Y - D~ K2~,,(f)[Ioo = 0(n-2~-1+~),  n --* oo. 

(b )  Let  h ~ C 2 ~ + 1 [ 0 , r ] ,  r = 1 , 2 , . . .  be given. Let  

N2~-l(h)(x) = ~ ( - 1 B 2 j - l ( x -  ~r) (D'J-'h)Or) + 1B2j-l(x) (D2j-2h)(O)) 
j=1 

be the correcting polynomial on [0,1r] and H2~-l(h) = h -  Ng_~_l(h) be the corrected 
function with n th Fourier sum 

n 2 / 0  ~ Gn(H2r-l(h))(x) = Zbk(H2r-l(h))  sinkx, bk(g) = -~ g(y) sinkydy. 
k=l 

Then we have for the derivatives of order j = 0 , . . . ,  2r - 1 of the Lanczos approximant 
L2r-l,n(h) = N2r-l(h) + Gn(H2r-l(h)) the estimates: 

IIDJh - /TL2~-l , ,~(h) l loo = O(n-2~+~), n --* oo. 

4. H A L F - W A V E F O R M S  

Now let f E cq[0,~r], q = 1,2 , . . .  be given. Let g E C2~ be the antiperiodic extension of 
Dqf  E C[0, ~r]. Then the corrected function Fq(f) reads as follows 

1 E~_~(x - y) D ' I ( y )  dy (4.1) F~(I ) (~)  = (Bq • g)(~) = ~ 

with the (q - 1) th Euler function 

E q - l ( X )  :---- ~ (Sq(T.) - Sq(x - t -  TP)), q~-  1 , 2 , . . . .  

Recall that 
DEq_1 = Eq-2, q = 2,3, . . . .  (4.2) 

We obtain the following proposition. 

PROPOSITION 4.1. Let f E cq[0,~], q = 1 ,2 , . . .  be given. Then we have the recursion formula 

F¢(f) = Dq-l f(Ir) + Dq-l f(O) Eq_l + Fq_2(f), q = 2 , 3 , . . .  
?r 

FI(/) = f(~') + f(O) Eo '[- f 
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and the Boole decomposition [11, p. llOf] 

f = Mq(f) + Fg(f) 

with the correcting polynomial 

q-1 
Mq(f) := E D3 f(Tr) + D' f(O) E j e l'Iq-1 

7r 
j=0 

(4.3) 

n 

C2n- l ( f )  := y ~  C2k-l(f) e2k-1 
k = - n + l  

with the simplified Fourier coefficients 

c2k-l(f)  := - I(Y) el-2n(y) dy, 
7r 

n = 0 , + 1 , . . . .  

The sequence G2n- l ( f )  converges in the square mean to f for n --* oo. 
As in the waveform case the Krylov approximant of f E Cq[0,Tr], q = 1 ,2 , . . .  is defined by 

Kq,2n-l(f) := Mq(f) + G2n-l(Fq(f)). (4.4) 

Again by (4.3), (4.4) the remainder satisfies 

f -- Kq,2n_l(f) = Fq(f) - G2n_l(Fq(f) ). 

G2n-  1 ( tq  ( f ) )  is the ( 2 n -  1)th partial sum of the rapidly converging Fourier series of the corrected 
half-waveform Fq ( f ). 

PROPOSITION 4.2. Let f E Cq+l[0, Tr], q = 1 ,2 , . . .  be given. Then 

]]f - Kq,2n-l(f)][oo = O(n-q), n ~ c~. 

PROOF. We extend Dqf E C 1 [0, 7r] antiperiodically to g E PC~,. Hence, it follows that  

Fq(f)(x) = -Trl fo ~ Eq-l(x - y) Dq f(y) dy = (Bq * g)(X). (4.5) 

Since g E E l, the proof of Proposition 2.2 can be applied to the present situation. | 

Assume that  f E cq+l[0, Tr], q = 1 ,2 , . . . .  Our next purpose is to investigate simultaneous 
approximation properties of the Krylov operator Kq,2n-l(f) for half-waveforms, given by (4.4). 
Taking into account the properties (4.2) of the Euler functions, differentiation of the correcting 
polynomial Mq(f) yields the polynomial 

q-2 
DMq(f) := E DJ(Df)Or) + DJ(Df)(O) E~ 6 n~_~, 

7t" 
j=O 

and the corrected function Fq(f) of the form (4.1). 

Note that  the properties of the Euler function Eq-1 imply that  Fq(f) is antiperiodic, thus the 
corrected function Fq(f) is a half-waveform. 

The Krylov method for accelerating the convergence of the half-waveform of f is based on 
approximating the corrected half-waveform Fg(f) by its (2n - 1) th Fourier sum. The antiperiodic 
(2n - 1) th Fourier sum of f E cg[0,~r] is given by 
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i.e., D M q ( f )  is the correcting polynomial of D f: 

D M q ( f )  = M q - I ( D f ) .  

Similarly, we get 

DFq(f) = Fq_l (Df ) .  

Thus the Euler decomposition of D f  is given by 

D f  = M q _ z ( D f )  + Fq- z (Df ) .  

Proceeding this way, we obtain 

(4.6) 

(4.7) 

D J f = M q _ j ( D J f ) + F q _ j ( D J f ) ,  j = 0 , . . . , q -  1. 

Again the Fourier sum projector and the operator of differentiation commute on C~: 

DG2n-z = G2n-ID.  (4.8) 

Then (4.4) and (4.6)-(4.8) imply that  

DJKq,2n_l ( f )  = U q _ j ( n J f )  + G2n_ l (Fq_ j (nJ f ) ) ,  0 <_ j < q. 

Thus an iterated application of Proposition 4.2 yields the simultaneous approximation properties 

of the Krylov approximant. 

THEOREM 4.1. Let f E Cq+l[0,~r], q = 1 ,2 , . . .  begiven. Let 

q-1 D j  f(~r ) + DJ f(O) E j ( x  ) 
Mq( f ) (x )  = E 7T j=O 

be the correcting polynomial on [0,r] and Fq(f)  = f - Mq( f )  be the corrected [unction with 
(2n - 1) st Fourier sum 

1 g(y) e -i(2k- 1)y dy. G2n- l (Fq( f ) ) ( x )  = C2k-i(Fq(f)) e i(2k-1)x, c2k-l(g) = 7r 
k = - n + l  

Then we have [or the derivatives of order j = 0 , . . . ,  q -  1 o[ the Krylov approximant Kq,2n- 1 ( f )  = 
i q (  f ) + G2n- l ( Fq( f ) ) the estimates: 

IlnJ f - D3Kq,2~_i(f)ll~¢ = O(n-q+~), n -~ oc. 

5. E V E N  A N D  O D D  H A L F - W A V E F O R M S  

Now we consider f E C 2r [0, ~], r = 1, 2 , . . . .  Let g be the even antiperiodization of D2rf ,  that  
means 

g(x) = D2~f(x) ,  0 <_ x < g ,  g = O, g ( - z )  = g(z),  g(x + ~r) = - g ( x ) .  

Then we have g E ~C2~ and 
71" 71" 

, - ,  ÷ 
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As in (4.1) the correctecd function F2r(f) of / reads as follows 

1[ 
F 2 , ( / ) ( x )  = (B2r * g ) (x )  = -~ E 2 , - l ( X  - y) g(y)  dy 

(5.1) 
2 [,~12 1 

= r J o  - 2 ( E 2 " - I ( x - y ) + E 2 r - I ( x + Y ) ) ( D 2 " / ) ( y ) d y "  

Then we obtain with integration by parts: 

PROPOSITION 5.1. Let / E C 2r [0, ~], r = 1 ,2 , . . . .  Then we have the recursion formula 

f2,( / ) (x)=-~r ~ ( 9 2 " - 2 / )  

_ 2_ E2r-I(X) ( 9 2 " - 1 / )  (0) + F~r-2(f)(=), r = 2, 3 , . . . ,  
7r 

2 Eo ( x 21 (f) (~ )  - 2El(x)(Df)(O)-4-/(x)  F2( / ) ( z )  - 

and the Boole decomposition of f :  

f -- M2r(f)  + F2, ( f )  (5.2) 

with the correcting polynomial (restricted on (0, ) 

2 r 7r 

j=l 

• 1~2,_1 0 < x < (5.3) 

and with the corrected [unction F2,( f )  given by (5.1). 

Note that  F2 , ( f )  is an even antiperiodic function. Thus the corrected function F2 , ( / )  of / is 
an even half-waveform. 

The Shaw method [4] for accelerating the convergence of the related even half-waveform F2r( /)  
of / • C 2" [0, ~] is based on approximating F2r(f) by its (2n - 1) st Fourier sum 

n 

G2n-I(F2r(f))(X) = E a2k-1 ( F 2 r ( f ) )  cos(2k - 1)x  
k=l 

with 

a2k-1 (F2r(/))  4 --/~/2 = - F2,(I)(y) cos(2k - 1)ydy, k = 1 , 2 , . . . .  
7 r j  o 

The Shaw approximant of / • C 2r [0, ~], r = 1 ,2 , . . . ,  is now defined by 

S2,,2n-l(f)  := M2r(/)  + G2n-l(F2,( /))  (5.4) 

0 ~ PROPOSITION 5.2. Let f • C 2r+l [ , ~ ] ,  r = 1,2 , . . .  be given. Then we have 

I I / -  $ 2 , . 2 n - 1 ( / ) l l o ¢  = O ( n - 2 r ) ,  n ~ co.  

PROOF. Let g • P C ~  be the even antiperiodization of D2r/. Then 

F2~(/) = B2~ * g 
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is an even antiperiodic function such tha t  CZk (F2r ( f ) )  = 0, k = 0, 4 -1 , . . . .  By  (2.2), we have 

C2k-1 (F2r ( f ) )  = C2k-l(Bzr) C2k-l(g) = (i(2k - 1)) -2r  c2k-l(g), k = O, 4-1,. . . .  

Since g E p C I ~ ,  it follows tha t  g E g l ,  and hence, 

C2k-l(g) = O((2k - 1 ) - 1 ) ,  [k[ ~ oo. 

Note  tha t  

Consequently,  

a2~-l(g)=2C2k-l(g)=2Cl-2k(g), k = 1 , 2 , . . . .  

for r = 2, 3 , . . .  and 

F - S2r,2n-l(f) = F2r(f) - G2n-I(F2.r(f)), 

and hence, the es t imate  

1)x oo 
llf(z) - S2r,2n-l(f)(x)lloo = E a2k-l(F2r(f)) cos(2k - 

k=n+l 
OO 

-< k=~+l la2k-l(F2,.(/))[ = O(n  -2")  n --~ oo. 

This  completes  the proof. | 

In order  to  derive simultaneous approximat ion propert ies of the Shaw approximant ,  we have 
to  investigate the  derivative of the decomposit ion formula (5.2). In contrast  to  (5.2) we obta in  
now a new type  of decomposi t ion which corresponds to  Fourier expansions of odd antiperiodic 
functions. 

As already stated,  we have for f e C 2r [0, ~] ,  r = 1 , 2 , . . .  the decomposi t ion f = M 2 r ( f )  + 
F 2 r ( f )  with (5.1) and (5.3). Differentiating M2r ( f ) ,  we get by (4.2) t ha t  

r 

- (-;) DM2r(f)(x) = lr2 E ( D 2 J _ l f ) ( 0 )  E2j -2(x)  - 2r E ( D 2 J - 2 / )  E2j-z x - 7 
j--1 j=2 

r-1 2 r -1  2 7r 
- - -  E l :  

k=O k= 1 

DM2(f) = 2Dr(O) Eo. 
7r 

We set h := Dr. Then  h E C 2r-1 0 ~ [ , g ] ,  r = 1 , 2 , . . .  In t roducing 

r -1  
2 2 

L2r-l(h)(x) := - E(D2kh)(O) E2k(x) - - 
7r 7r k=0 
2 

L l (h )  := - h(0) E0, 
7 r  

v-1 

k=l 

we obta in  

DM2r(f) = L2r-l(Df).  

Note t ha t  L 2 r - l ( h )  res t r ic ted  to  (0, ~) is a polynomial  of degree < 2r - 2. 

r = 2 , 3  . . . . .  

c 2 k - l ( t 2 r ( f ) ) )  = O((2k - 1 ) -2r -1) .  

By  (5.2) and (5.4), we obta in  
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Differentiating F2r(f),  we get by (4.2) 

DF2,(f)(x) = 2 [ , / 2  1 ~ Jo 2 ( (E2"-2(x - Y) + E2~-2(x + Y) ) D2V(y )  dY" 

Defining for h 6 C 2~-1 [0, ~], r = 1, 2 , . . .  

U 2 r _ l ( h ) ( x  ) -- 2 f ~ r / 2  1 JO ~ ((E2r-2(x - y) + E2r-2(x + y)) D2r-th(y)dy, 

we obtain 

(5.5) 

DF2,.(.f) = U~,--I(D.f) 

for f 6 C 2r [0,-~], r = 1 ,2 , . . . .  We summarize: 

PROPOSITION 5.3. Let h 6 C 2~-x [0,-~], r = 1, 2 , . . .  be given. Then we have the decomposition 
formu/a 

h = L2r-l(h) + U2r-l(h) (5.6) 

with the (restricted to (0, ~ ) ) correcting polynomial L2r-l(h)  6 II2~-2 and the corrected function 
U2~-l(h). 

Note that  by the properties of the Euler functions U2r-x(h) defined by (5.5) on R is an odd 
half-waveform. 

The approximant V2r_l,2n_l(h ) of h 6 C 2r-1 [0, ~], r = 1,2,... is defined by 

V2r-1,2,-1(h) := L2r-t(h) + G2n-l(U2r-*(h)). (5.7) 

Since U2r-l(h) defined by (5.5) on R is odd and antiperiodic, we have 

with 

n 

G2n-l(U2r-l(h))(x) = Z b2k-l(U2r-l(h)) sin(2k - 1) x 
k=l  

b2k-l(U2r-l(h)) 4 [~/2 = - U2r-l(h)(y) sin(2k - 1) ydy. 
7 r j  0 

PROPOSITION 5.4. Let h 6 C 2r [0, ~], r = 1,2 , . . .  be Even. Then 

IIh - V2r_l,2,_1(h)lloo = O(n-2r+1), n ~ co. 

PROOF. Let g be the odd antiperiodization of D2r - lh ,  that  means 

?r 
g(x) = D2r-lh(x), 0 < x < 2'  g(O) = 0 ,g ( -x )  = -g(x) ,  

Then we have g e :PC~. and 

It is easy to see that 

Then, 

7T 

U2r-l(h) = B2~-1 * g. 

c2k(V2r-l(h)) = 0, k = 0, + l , . . . .  

From the periodic convolution property (1.2) it follows that 

C 2 k - l ( U 2 r - l ( h ) )  = C 2 k - l ( B 2 r - 1 )  e 2 k - l ( g )  ----" O ( ( 2 k  - 1 ) - 2 r ) ,  

g(z  + . )  = - g ( z ) .  

Ikl --* oc. 
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Thus U2~-1(h) E ~2~. Further, we have 

b2k-l(U2r-l(h))  = 2ic2k-l(U2r-l(h)),  

Hence, we obtain 

[IV2,-l(h)(x) - V2n-l(U=,,-1(h))(x)Hoo 

k = 1 , 2 , . . . .  

= k=Zn+lb2k-l(U2r-l(h)) s i n ( 2 k -  1)x oo : O ( n - 2 r + l ) '  n --+ (XL 

i,e., 

D f  -- L 2 r - l ( D f )  + U2r- l (Df ) .  

Differentiating L2r- i (h)  and U2r-l(h) for h E C 2r-1 [0, ~], r -- 2,3,... we obtain after simple 
calculations: 

n i 2 r - i ( h )  = M2r-2(Dh),  DU~.r-l(h) = F2r-2(nh) ,  

IID3 f - DJ S2r,2n_l (f)lloo : O(n-2r+J), 

(b) Let h e C 2r [0, ~], r = 1, 2 , . . .  be given. Let 

r - 1  r - 1  

L2r- l (h) (x )  = 2 Z ( D 2 k h ) ( O ) E 2 k ( x )  2 
7f 7r 

k = 0  

Dh = M2r-2(Dh) + F2r-2(Dh). 

A repeated application of Propositions 5.2 and 5.4 yields the following 

T H E O R E M  5 . 1 .  

0 ~ --= (a) Let f E C 2r+1 [ , ~], r 1, 2 , . . .  be given. Let 

2 r 7f 

j = l  

be the correcting polynomial on [0, ~] and F2r(f)  = f -  M2r(f)  be the corrected function 
with (2n - 1) st Fourier sum 

72 

G2n- l  ( f 2 r ( f )  )(x) = ~ a2k-1 ( f 2 r ( f )  ) cos(2k - 1)X,  

k = l  

a2k-l(g) 4 :~/2 = - g(y) cos(2k - 1) ydy.  
7r J 0  

Then we have for the derivatives of order j = 0 , . . . ,  2r - 1 of the Shaw approximant 

S2r,2n-l( f )  = M2r(f)  + G2n-l(F2r(f))  the estimates: 

n ---~ O O .  

-;) 
k = l  

In particular, we have 

Further, by (5.6) and (5.7), we have 

h - V2r- l ,2n- l (h  ) --~ U 2 r - l ( h )  - G2,- l (U2r- l (h ) ) .  

This completes the proof. | 

Now we apply the preceding results to the simultaneous approximation of both approximants. 
Recall that  for f E C 2r [0, ~], h E C 2r-1 [0, ~], r = 1 ,2 , . . .  we have the decomposition formulas 

/ = M2r(/) + F2r(/), 

h = L2r- l (h)  + U2r-t(h). 
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be the  correcting polynomial  on [0, ~] and  U 2 r - l ( h )  = h - L 2 r - l ( h )  be the  cor rec ted  

[unction wi th  (2n - 1) st Fourier sum 

n 

G 2 n - l ( U 2 r - l ( h ) ) ( x )  = Z b 2 k - l ( U 2 r - l ( h ) )  s in(2k - 1) x, 
k=l  

b2k-l(g)  4 / ,~ /2  = - g(Y) sin(2k - 1) y dy. 
71"jo 

Then  we have  [or the  derivatives o f  order j : 0 , . . . ,  2 r -  2 o f  the  approx imant  V2r- 1,2n- 1 (h) 

= L 2 r - l ( h )  + G 2 n - l ( L 2 r - l ( h ) )  the  es t imates :  

[[DJh - DJV2r- l ,2n- l (h) l lc~  = O ( n - 2 r + j + l ) ,  n ~ oo. 
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