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Abst rac t - -Severa l  oscillation criteria are established for the second-order damped nonlinear dif- 
ference equation 

A[an-l(Ayn-1) a] JrPn-l(Ayn-1) a "{- qn/(yn) = O, n > nO > O, 

where a > 0 is any quotient of odd integers, {p•} and {qn} are real sequences, and f E C(R, R) such 
that xf(x) > 0 for x # 0. Several examples which dwell upon the importance of our results are also 
included. © 1999 Elsevier Science Ltd. All rights reserved. 

i e y w o r d s - - D a m p e d ,  Difference equations, Oscillation, NonosciUation. 

1.  I N T R O D U C T I O N  

Consider the second-order damped nonlinear difference equation 

A [ a n _ l ( A y n - 1 ) ~ ] + p n - l ( A y n - 1 ) ~  + q n f ( y n )  = 0 ,  n > n o  > 0 ,  (1.1) 

where a is a positive quotient of odd integers, A is the forward difference operator defined by 

AYn = Yn+I - Y ~ ,  {an} is an eventually positive real sequence, {Pn} and {q~} are real sequences, 
and f is a real-valued continuous function on the real line R. 

A number of dynamical behaviors of solutions of second-order difference equations are possible. 

Here we will only be concerned with conditions which are sufficient for all solutions of (1.1) to be 

oscillatory. Our concern is motivated by several recent papers, especially those by Thandapani,  

GySri and Lalli [1], T o n g  and Agarwal [2-4], as well as Zhang and Chen [5]. In [1,5], the authors 

obtained oscillation criteria for a special case of (1.1) 

A2yn-1 -~ qnf(Yn) = O, n >_ no. (1.2) 
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In [4], the authors employed techniques similar to those in [1] and obtained oscillation criteria 
(see Theorems 3.3, 3.4, and 3.5(a)) for the equation 

A(an-l(Ayn-1) ~) + qnf(Yn) = O, n >_ no. (1.3) 

Unfortunately, the oscillation criteria in [4] are theoretical in nature since additional assumptions 
have to be imposed on the unknown solutions. For example, 

_>L 1/(~-x), a < l ,  

[Ayn[, <c~, a = l ,  for L > 0, 

<_ L 1~a-l, (7 > 1, 

where {Yn} is a solution of (1.3). Since solutions are unknown in general, these assumptions are, 
if not impossible, difficult to verify. 

Very recently, Wong and Agarwal [2] obtained two oscillation criteria for (1.1), but the coeffi- 
cient {qn} and the damping {Pn} are required to satisfy qn > 0 and ion > 0, for all n > no (see 
[2, Corollary 3.5]). 

We will bypass the above-mentioned difficulties for our equation (1.1) by means of techniques 
similar to those in Thandapani, Gyori and Lalli [1], Wong and Agarwal [4], and Zhang and 
Chen [5]. In the same time, we will also be able to extend and improve several results in [1-4, 
6--14]. 

By a solution of (1.1), we mean a nontrivial sequence {Yn} satisfying (1.1) for n > no. A solution 
{Yn} is said to be oscillatory if it is neither eventually positive nor negative, and nonoscillatory, 
otherwise. We shall denote N~ = {f~, f~ + 1, . . .  } and N~ = {/3, f~ + 1 , . . . ,  a}. 

Throughout, we shall assume the following. 

(a) uf(u) > 0, for all u ~ 0. 
(b) f(u) - f(v) = g(u,v)(u - v) 6, for all u,v # O, where g is a nonnegative function, 6 is 

a positive quotient of odd integers. This means that  any quantity raised to the (6 + a) 
power is positive. Also, if u > v, then f(u) >_ f(v). 

2.  S E V E R A L  L E M M A S  

LEMMA 2.1. (See [4, Lemma 2.1].) Let the function K(n,s ,y)  : Nno x Nno x R --~ R be such 
that for each fixed n and s, the function K(n, s, y) is nondecreasing. Furthermore, let { hn} be a 
given sequence and {un}, {vn} be sequences satisfying, for n E Nno, 

n - - 1  

un >_ (<_)hn + Z K(n, s, u,) (2.1) 
$ ~ n  0 

and 
n - - 1  

vn = hn + Z g(n ,  s, v,). (2.2) 
8~nO 

Then, Un > ( <_)Vn, for all n e Nno. 

LEMMA 2.2. Suppose that {y,} is positive (negative) solution of (1.1) for n E N~o_X(1 < 
no < a), and there exist a positive sequence {Pn}, ni E N~o, and m > 0 such that 

an°-l(Ayn°-i)aPn°-lf(yno) + ~ [q'P" + P'-lps(Ay'-i)af(Y,) -- a s - l ( A y ' - l ) a A p ' - l  
8 ~ n O  (2.3) 
n l - i  as(Ays)a+~psg(Ys+i, Ya) >_ m, 

+ Z f(I/s)f(Y,+1) 
8~0 
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for all n E N ~ .  Then, 

anpn(Ayn) ~ <_ (>_) - m f ( y m ) ,  n • Nan. (2.4) 

PROOF. Set 
Wn = an(Ayn)apn, 

then 

Awn = A(an(AYn)a)Pn+l + an(Ayn)a Apn, 

so that,  in view of (1.1), we have 

AWn--1  Pn-lpn(Ayn-1)  a an- l (Ayn-1)aApn-1  
f(Yn) = --qnPn - f(Yn) + f(Yn) 

By summing from no to n, where n • Nnao, we have 

W n = Who-1 ~ - ~ [  Ps-lPs(AYs-1) a as - l (AYs-1)aAps]  
f(Yn+l) f(Yno-~ + qsPs + f(Ys) - f(Ys) 

8-~1~ 0 

+ ~ as(AYo)a+6P,g(Ys+I,Ys) (2.5) 

f(Ys)f(Ys+l) 
8 = 1 ~  0 

In view of (2.3), we see further that  

- ~ .  >_ mf(y.+l) + 
f (Yn+ l )as( Ay ,  )a+6 Psg(ys+ l, ys ) 

s=m f(Ys)f(Ys+l) ' (2.6) 

where n • Nna,. 

CASE 1. Suppose that  {yn} is positive. Then, (2.6) implies - w n  > 0, or equivalently Ayn < 0, 
n • Nnal. Let un = - w n  = -anpn(Ayn)  ". Then, (2.6) becomes 

:~-']~ f(yn+I)(-Ays)6 g(ys+x'y') (2.7) 
Un >_ mf(Yn+l)  + f(Ys)f(Ys+l) Us. 

8 ~ n l  

Define 
K(n, s, x) = f(Yn+I)(-AYs)$g(Y'+I' y') x, f(Y,)f(Ys+]) n,s • N~, x • R +. (2.8) 

Since Ayn < 0, n • N~,, we observe that for fixed n and s, K(n, s, x) is nondecreasing in x. With 
hn = mf(yn+l) ,  we apply Lemma 2.1 to get 

un >_ vn, n • Nan,, (2.9) 

where vn satisfies 

~_, f(yn+I)(-Ays)6g(y'+I'y') (2.10) 
vn = mf(yn+l)  + f(Ys)f(Ys+I) vs, 

8 ~ n 1  

provided Vn • R + for n • Nna,. From (2.10), we find 

f (Ys)f(Ys+l) vsJ s:m (2.11) 

---- (--/kYn+l)#g(Yn+2, Yn+l),on+l 
f(y.+l)f(u.+2) 
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On the other hand, 

[ Vn ] AVn Vn+lg(Yn+2, Yn+l)(Ayn+l) 5 (2.12) 
A ~ = f (Y-~-+l )  f(Yn+l)f(Yn+2) 

Equating (2.11) and (2.12), we obtain Avn = 0 and so vn = Vnl = my(y,1), n ~ N,~,. The 
inequality (2.4) is now immediate from (2.9). 

CASE 2. Suppose that  {9n} is negative. Then, (2.6) gives wn > 0, or equivalently Ayn > O, 
n 6 N~I. Let u ,  = wn = anpn(Ayn) ~. It  follows from (2.6) tha t  

-~ [- f(Yn+l)l(Ays)eg(Ys+l,  Ys) 
Un >_ -mf(Yn+l) + f(Ys)f(Ys+1) Us, 

8 ~ n l  

With  K(n,  s, x) defined as (2.8), we note that  for fixed n and s, K(n,  s, x) is nondecre~ing in x. 
Apply ing Lemma 2.1 w i th  hn = -mf (yn+x) ,  we get (2.9) where Vn satisfies 

Vn = - - m I ( Y n + l )  + 

As in Case 1, ~vn = 0 and hence Vn = Vnl = mf(yn , ) ,  n E N ~ .  Then inequality (2.9) 
immediately reduces to from (2.4). The proof is complete. 

COROLLARY 2.1. Let {Yn}, n = nl - 1 , n l , . . . ,  be a positive solution of (1.1) and 

P' (2.13) Pn = 1 -  , an - Pn > O, n > n 0 .  
l = n  0 

I[ 
n 

l iminf E q'P* > -oo ,  (2.14) 
n--~CX;) 

B ~ n l  

and 
oO 

1 
( . . , , . ) 1 / .  = (2.15) 

, = n  1 

then 
oo as(Ays)a+6psg(ys+ h y,) (2.16) 
E f(Ys)f(Y,"I-1) < 00. 

" = n l  

PROOF. Otherwise, 
oo as(Ays),,+6psg(ys+l,ys) 

/(y,)f(y,+1) = oo. 
B ~ n  1 

Hence there exists n~ > nl such that  

ano_l( Aynol l )a  pno_ 1 ~ n;-1 
f(Yno) + qsPs + E as(AYs)'+'~PsB(Ys+I'Ys) > m, 

• =no ,=no f(Ys)f(Ys+l) - 

where m > 0 is a constant. Since our choice of Pn makes PBPs+I -- asAp,  = 0, Lemma 2.2 implies 
that  

an(AYn)~pn <_ --mf(y~l), for n > n~. (2.17) 

Since a =odd/odd ,  by (2.17) we have 

. 1 for n > n~. (2.18) Ayn <_ - (mY(Ynl) )11"  (Pnan) 1/~'' 

In view of (2.15), relation (2.18) implies that  {Yn} is negative eventually, which is a contradiction• 
The proof is complete. 
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COROLLARY 2.2. Assume that (2.15) holds. If 

o O  

, . q .  = ~ .  (2 .19 )  

8--nO 

where {Pn} is defined by (2.13), then every solution of (1.1) is oscillatory. 

REMARK 1. Corollary 2.2 extends Corollary 3.4 of Wong and Agarwal [2]. In particular, when 
p,, = 0 and 6 = 1, Corollary 2.2 reduces to Theorems 3.5(a) and 2.1 of [2,4], respectively, and 

also extends Corollary 2.2 of [5]. 

We now consider the case that  limn-.c¢ ~-]~s=non qsPs exists. 

LEMMA 2.3. Let (2.13) be satisfied. Suppose that 

(i) liml~l__,oo if(Y)[ = c~; 
(ii) limn-.o~ ~sn__,~o qsPs exists. 

Let {Yn} be a nonoscillatory solution of (1.1), then 

oo asps(Ays)a+6g(y,+l,y,) < oo, (2.20) 
f(Ys)f(Vs+l) 

8~rt. 0 

lim anpn(AYn)a = 0, (2.21) 
- - - ~  /(y.+l) 

and 
anp,(ZXy,) ~ oo oo (2.22) 

f (Yn+ l )  = Z qsPs + Z a'ps(Ays)a+~g(Ys+l'Y') 
s=n+l ,=n+ l  f ( Y s ) f ( Y , + l )  ' 

[or sut~ciently large n, where {Pn} is defined by (2.13). 
PROOF. Let {Yn} be a nonosillatory solution of (1.1). Without loss of generality, assume yn > 0 
for n >_ no. By Corollary 2.1 it follows that  (2.20) holds. Similar to the proof of Lemma 2.2, it 
follows that  (2.5) holds. We rewrite (2.5) as 

~ [  A a as_l(Ays_i)aAps_l] wn _ Who-1 Ps-lPs( Ys-1) _ 
f(Yn+l) f(Yno) s""~o Lqsps 4- f(Ys) ~ J 

- ~ asp'(AY')~+~g(Ys+I'Ys) 
f(Ys)f(Ys+l) 

8~-nO 

oo oo asps(Ays)a+6g(y,+l, y,) 
Who-1 (2.23) 

- / (y.o) Z q,P,- ~ :(ys)/(y,+l) 
8 = n O  8 = n O  

oo ~ a,p,(hv,)~+~g(y,+l, y,) 
+ ~ q,P, + ._. /(y,)/(y,+,) 

s----n+l s=n+l 
oo c¢ asps(Ays)a+6g(ys+l,ys) 

= 134- Z qsP" 4- Z f (Ys ) f (Y ,+ l )  ' 
s=n+l s=n+l 

where 
oo asps(Ays)a+6g(ys+l, Ys) Who-1 (2.24) 

/3 = f(Yno) qsPs- Z f(ys)f(Ys+l) 
8~12  0 8~---nO 

We claim tha t /3  = 0. 

If/3 < 0, we choose n2 so large that  

_< - ~ ,  n >_ n2 

$ ~ n 2  



22 W.-T. LI AND X.-L. FAN 

and 

£ asps(Ay.)~+6g(Ys+I,Ys) 
Y(v,)Y(vs+l) < --4" l i e n 2  

We take no = nl  = n2 in Lemma 2.2, so that  all assumptions of Lemma 2.2 hold. 
From Lemma 2.2 and (2.18), we obtain 

1 
Ay n < -(mf(yn2)) x/a (anPn)l/a, for n _> n2, 

which contradicts the positivity of {Yn} since (2.15) holds. 
If/7 > 0, from (2.23) we have 

lim anPn(Ayn)a = 1~ > O, 
n--,ee f(Yn+l) 

which implies that  Ayn > O, eventually. Hence there exists nl  >- no such that  

anPn( Ayn) a 
> ~,  n > na. (2.25) 

Y(v.+~) - 

Therefore, 

£ asps(AY.)~+'g(Ys+,,Ys)>8 £ (AY.)~g(Ys+I,Y8) ~ £ Af(ys )  (2.26) 

• =n, /(vD/(v.+I) - 5 ~=,,, /(v.) = 5 .=,,, f(v,) " 

Define 
r(t) = f(yn) + (t - n)A/(y~) ,  n < t < n + 1. 

Note that  since Ayn > 0, Assumption (b) implies tha t  Af(yn) > 0. It is easy to see that 

r'(t) = Af(yn) and f(yn) < r(t) < f (yn+l )  for n < t < n + 1. Hence 

f f"+' f-+, ,,(,) 
A/(yn )  n+l h / ( y . )  dt = r'(t) dt > dr. 
f(Yn) = .n f(Yn) .n f(Yn) - .n r(t) 

From (2.26), we obtain 

oo a.ps(Ays).+,g(ys+l,ys) ~ asps(Ays)*Af(ys) 
oo > Z f (Ys) f (Ys+l )  = "'" 

>-5 sT.) =5 

- 5 r ( O  dt = in  t , r ( , ' , l ) )  " 
8~W,I "" 8 

Hence ln(r(t))  < oo, which implies that  f(Yn) < oo, as n --* oo. Due to Condition (i) and 

the fact that  {Yn} is increasing eventually, if {Yn} is unbounded, then limn--.oo Yn = OO. Hence 
f(Yn) --* oo as n --* oo, which is a contradiction. Therefore, {Yn} is bounded. 

On the other hand, from (2.25) and the monotonicity of f ,  we get 

anpn(Ayn) ~ >- 5f(Yn+l) >- 5f(Ynl+l), 

and so 

Ayn >- f(Yn,+l) (anPn)lla, n >- nl. 

By (2.15), it follows that  limn-+¢¢ Yn = co, which contradicts the boundedness of {Yn}. The proof 

is complete. 
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3. MAIN RESULTS 

In this section, we will give several new sufficient conditions for oscillation of all solutions 

of (1.1). 

THEOREM 3.1. Let (2.15) be satisfied. Suppose that 
(H1) o<f~co d -co a ~ < for every > O; 
(H2) ~sco--no q,P, exists and 

n--.colim ~ (asps)ll ~ qiPs = oo, (3.1) 
s = n o  \ i = s + l  

where {Pn} is defined by (2.13). 

Then every solution of (1.1) is oscillatory. 

PROOF. Suppose to the contrary. Without loss of generality, we assume that (1.1) has an even- 
tually positive solution. Under our assumptions Lemma 2.3 is true. Let {y~} be an eventually 
positive solution of (1.1). Then (2.16) holds. Since f is nondecreasing and (Ayn)a+6 >_ 0 by 
Assumption (b), the second sum in (2.22) is nonnegative. Hence 

Ayn 1 co 
_ qsPs 

f(Y"+l)l/~ > (anpn)l/~ \s=n+l 

Summing it from no to n, we obtain 

f ( y s + l ) i / a  >_ (asps)l~ a qiPs (3.2) 
s=no s=no i=8+1 

We define r(t) = yn + (t - n)Ayn, n < t < n + i. If Ay,~ >_ O, then yn __ r(t) < Yn+1 and 

Ayn r(t) Ayn (3.3) 
f ( Y n + l ) l / a  <-- f(r(t))l/a < f(yn)l/'-----" ~ • 

If Ay,  < 0, then Y,+I < r(t) < Yn and (3.3) also holds. 

From (3.2) and (3.3) we obtain 

f co dy fn+x dr(t) " Ays 
(no) f(u) 1 / - - - 7  > > - ,,no f(r(t)) 1/a - f(Ys+l) lla 

$ = n  0 

s=no (asps)l/a qi+lPs+l 
\ i - - - -S  / 

Let 
f co dr 

G ( y )  = f ( r ' ) l / a  ' 

then (3.4) implies that 

G(y(no))  >_ (a,ps) l /~ q~ps , (3.5) 
s=no i=s+l 

which contradicts (3.1). Similarly, we can prove that (1.1) does not posses an eventually negative 
solution. The proof is complete. 

REMARK 2. Theorem 3.1 improves Corollary 3.5 of Wong and Agarwal [2] by dropping the two 
conditions: 

(i) {Pn} is eventually nonnegative; and 
(ii) {an} is eventually nondecreasing. 
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In particular, when p ,  - 0 and 6 = 1, Theorem 3.1 concludes Theorem 2.2 of [2] and Theorem 
3.1 of [51. 
EXAMPLE 1. Consider the superlinear difference equation 

A [(n - 1)2Ayn_l] - 3(n - 1)Ayn-1 + l ynpsgny ,  = 0, n _> 3, (3.6) 

where 7 > 1 is constant. Then Pn = 1-I~=1(1 - (P ja i ) )  -1 = 6 /n (n  + 1)(n + 2), 

~ 6 ~ 1 ~-~(s+1)(s+2) 
Z qsPs = Z (s - 1)s(s + 1) < ~ '  - -  = 6s = o<z, 
s=2 s=2 s=2 a s p s  s = l  

and 
1 c¢ ~ (s + 1 ) ( s+  2 ) ~  1 

Z q'Ps= =oo. 
s== astos s (s  - 1 ) s ( s  + ]) i=s+1  s=2 i = s + l  

By Theorem 3.1, this equation is oscillatory. But the results of [2, Corollaries 3.4 and 3.5] are 
not applicable to the equation since p= - n  < 0 and c¢ = ~s=2  qsPs < oo. 

In Corollary 2.2 and Theorem 3.1, we require that  

anApn - PnPn+l = 0 

for n > no. Such a condition is not required in the following results. 

THEOREM 3.2. Let a = ~. Suppose that g(u,v)  > # > 0 t'or u # v and that there exists a 
positive sequence {ton} such that (2.15) and (2.19) hold and 

anlXPn >_ PnPn+l, n >_ no, (3.7) 

Pn+]P2n < c¢, (3.8) 
an n~rto 

an(Apn)2 < c¢. (3.9) 
ton+ I 

n ~ n o  

Then every solution of (1.1) is oscillatory. 

PROOF. To the contrary, let {Yn} be a nonoscillatory solution of (1.1) which may (and do) 
assume to be eventually positive, i.e., Yn > 0 for n > no - 1. For the sake of convenience, let 

wn = an(Ayn)aton for n _> no. Then wnAyn = anton(Ayn) ~+1 > 0 for n >_ no, and 

Awn = A[an(Ayn)a]Pn+l + an( Ayn)a Apn,  (3.10) 

so that,  in view of (1.1), we have 

Awn pn(AYn)a ton+l an(AYn)a Aton 
f(Yn+l) = --qn+lton+l -- f(Yn+l) + f(Yn+l) 

Since 

I (Yn) I (Y .+I )  

therefore, by summing from no to n - 1, we have 

rt--1 [q a.(Z~v-)~to- ps(~vs)~to.+~ a.(ZXYs)~ZXtos] 
f(Yn) + Z s+lPs+I + f(Ys+X) f (Ys+ l )  J 

S:---Et 0 (3.11) 
n- I  astosg(ys+l,ys)(Ays)2a ano(Ayno)atono 

+ ~ f(vs)f(v,+~) = . f (V.o)  S~nO 
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Using Schwartz's inequality, we have 

Ps(AY,) ap.+l < K2 Z (3.12) 
\s=no f(Ys+l) - s=no [f(~la+l)]2 ' 

and 2 n-  1 

• =no f(~8+1) )<-K2Z,=no [f(Y'+l)]~ ' 

where 

as Ps+l 
8 . ~ n O  8-~l'l.O 

Now, we use g(u,v) > # > 0 for u ¢ v, (3.12) and (3.13) in (3.11) to get 

n - I  n - - i  
a n(Ayn) On asp.(AY,) 2a 

f(Yn) + Z qs+IPs+1 + # Z f(Ys)f(Ys+l) 
$ ~ n O  8 ~ n O  

-(K1 + K2) \,=no [f(Ys+l)] 2 ) -< an°(Ayn°)aPn°f(Yno) 

Note that  

n-1 asp,(Ay,)2a ( K I +  K 2 ) ( ~  a'p'+I(Ay')2a ~1/2 

" Z f(Ys)f(Ys+l) [f(Ys+l)] 2 ) 
8=nO \8-~-nO 

remains bounded below as n -* c~. Thus, taking (2.19) into account, we observe from (3.14) that  

a.(Ay.)~O. 
" -*  - -  O 0  

f(Yn) 

as n --* cx~. Hence, there exists an integer M _> no such that  

Av.  < o, n >_ M. (3.15) 

We rewrite (3.11) as 

an(Ayn)aPn a,p,g(y,+t, y,)(Ays)2" 
f(Yn) + ~ f(Y.)f(Y,+l) 

s..~ M 

ano(AYno)aApno M-I (a, Ap. -- p.p,+l)(Ay,) a ,=-I 
= f(Yno) + E f(Y,+l) -- Z qs+IPs+l (3.16) 

8~-nO 8~nO 

M-1 A 2a n-1 (asAps _ psps+l)(Ay.) a a,p,gCy,+l,y,)( y,) 
+ Z fCv,+l) - Z fCY.)fCY,+l) ' 

s = M  8 : n o  

and use (3.7), (3.11), and (3.15) to find an integer M1 >_ M such that  

n - - 1  

an(AYn)aPnf(yn) + E aspag(Ys+l,f(ys)f(ys+l)Ye)(AYs)2a <- --m, n > M1, 
o = M  

where m is a positive constant. Hence, 

n - 1  f(Yn)g(Y.+l, Ys)(-(AYs) *') 
un >_ -mf (yn)  + E f(Ys)f(Y,+I) us, n 7> M1, 

8"= M 
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where un = -anPn(Ayn)  a. By Lemma 2.1, we obtain 

Un ~ Vn , 

where Vn satisfies 

n-1 f(Yn)g(Ys+l, Ys)(--mys) ?3 
Vn = - m f ( y n )  + ~ ~ s (3.17) 

$----M 

provided that  vs E R +, for all s > M1. Dividing (3.17) first by f(Yn) and then applying the 
difference operator A, it is easy to verify that  Avn =-- O. Therefore, 

Un >_ Vn = - C  = --raf(yM,), n >_ M1, 

and 

Ayn <_ --[mf(yMt)]l/a ( a ~ n )  l /a ,  n >_ > M1. 

Summing the last inequality from M1 to n - 1, we have 

n- -1  

1 (3.18) Yn <-- YMa -- [mf(yM1)] l/a E (a ,p , ) ' / -"  
s=M1 

By (2.15), we have Yn -*  oo, which yields a contradiction to the fact that {yn} is eventually 
positive. The proof is similar to the case when {Yn} is eventually negative. This completes the 
proof. 

From Theorem 3.2, we can obtain different sufficient conditions for oscillation of all solutions 
of (1.1) by different choices of {pn}. 

Let {Pn} be defined by (2.13). Then we can obtain Corollary 2.2 in Section 2. 
If we let 

Pn = n, n >_ no, 

then we have the following oscillation criterion, which extends Theorem 1 of Thandapani  and 

Lalli [13], an =- 1, a = 1. 

COROLLARY 3.1. Let  a = 5. Suppose that (2.15), (2.19), (3.7), (3.8), and (H1) in Theorem 3.1 
hold for Pn = n. Suppose further that  g(u,v) _> # > 0 / o r  u ~ v. Then every solution of (1.1) is 
oscillatory. 

Define 

Pn = ha, r~ >_ no, 

where a is a constant such that  0 < a < 1, then the following result extends Theorem 2 of 
Thandapani  and Lalli [13], an =- 1, a = 1. 

COROLLARY 3.2. Let  a = 5 and Pn = na(O -< ot < 1). Suppose that (2.15), (2.19), (3.7)-(3.9) 
hold and that g(u,v) _> # > 0 t'or u ~t v. Then every solution of (1.1) is oscillatory. 

THEOREM 3.3. Let a = 5. Suppose that g(u,v) > # > 0 for u ~t v and that  there exists a 
positive sequence {Pn} such that (2.15), (2.19), and (3.7) hold and 

o o  

(Pn+lPn - a n a P n )  < oo. (3.19) 
a n P n  n ~ n  0 

Then every solution of (1.1) is oscillatory. 

PROOF. We proceed as in the proof of Theorem 3.2 and obtain (3.11). Then, we use Schwartz's 
inequality to get 

(P,P,+I - a ,Ap , ) (AY , )  a K2 asP,,(AY,) 2a 

..=no -< ,=no  
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where 
OC 

K2= (ps+ips- asAps) 2 
a s p s  

S=nO 

Hence, an inequality similar to (3.14) holds. The rest of the proof follows that  of Theorem 3.2. 

The proof is complete. 

We remark that ,  by Theorem 3.3, we can obtain different sufficient conditions for oscillation 
of all solutions of (1.1) by different choices of (Pn}. As space is limited, we omit it. 

In the following theorem, we are not require assumption (3.8) and (3.9) or (3.19), but we 
require the condition 

qn > O, an-1 - P,~-I > O, n > no. (3.20) 

THEOREM 3.4. Let  a = 5. Suppose that g(u, v) >_ # > O, for all u # v. Suppose further that 
there exists a positive sequence {Pn} such that  (2.15), (3.7), and (3.20) hold and that  

oo [ ( a s _ l A p s _ l _ P s _ l p s ) 2 ]  =oo.  (3.21) 
E qsPs - 4#as- lPs-1  J 

Then every solution of (1.1) is oscillatory. 

PROOf. Let {Yn} be a nonoscillatory solution of (1.1) without loss of generality, and assume 
that  Yn > 0 for n > no - 1. We assert tha t  Ayn >_ O, for all large n. 

CASE 1. Assume that  {Ayn}  is oscillatory. 

(a) Suppose tha t  there exists nl  _> no such that  Ynl-t  < 0. Let n = nl  in (1.1), and then 
multiply the resulting equation (1.1) by Aynl_l ,  to obtain 

A ( a n , _ l ( A y n l _ l ) a ) A y n x _ l  ----- - p m _ l ( A y n l _ l )  a+l - qn~f (yn , )Aynl_ l  

>- - P n , - l ( t y n l - 1 ) a + l .  

Hence, on using an - p .  > 0 for n _> no, we get 

a n l ( A y n , ) a A y m _ l  > (am_l  - - p m _ l ) ( A y m _ l )  a+l > O, 

which implies tha t  

Ayn 1 < O. 

By induction, we obtain Ayn < 0, for all large n > nl  - 1, contradicting the assumption 
that  {Ayn}  oscillates. 

(b) Suppose tha t  there exists nl  such that  Aynl_l  ---- 0. Then, letting n = nl  in (1.1) leads to 

am (Ay  m)a = --qm+lf(Ym-t-1) < 0, 

which implies tha t  Ayn 1 < 0, i.e., Case l(a).  We have seen that  this contradicts the 

assumption tha t  {Ayn} is oscillatory. 

CASE 2. Assume that  Ayn < 0 for n >_ no. Then we have (3.11) holds. By (3.21) we have 

q s P s  - 4 ~ a s - l P s - 1  J - -  
S ~ n O  S ~ n O  

as n --* ¢x~. Thus, relation (3.16) and Lemma 2.1 imply that  (3.17) holds, and hence, we 
have (3.18) holds. By (2.15), we have Yn ~ - c ~  as n ~ or, which yields a contradiction to 
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the fact that {Yn} is eventually positive. Thus, we prove that Ay,  _> 0, for all large n. Further- 
more, 

\ f (Yn-l)  / = A (an_l(Ayn_l) a) f"]~n) J¢- an-l(Ayn-1)aA \ f (-~n-l)J  

Pn-lPn(AYn-1) a , Apn 1 
= -- an_l(Ayn_l) 

-q,,P,, f(u,,) + 

an-lPn-l(Ayn-1)2" g(Yn, Yn-1) 
f(Yn-1)f(Yn) 

(an_lApn_l -- Pn_lPn)(Ayn_l) a #anPn-l(Ayn-1) 2a 
<-- -qnPn + 

f(Yn) f(Yn-1)f(Yn) 

=--  [qn~On -- f (Yn-1)(an-lApn-l--Pn-lPn) --I2 

< _ f q . p .  
- L - J 

--< --[qnPn- (an-lApn-14an.Pn_l~ Pn-lPn)2]J ' 

for all large n, where the last inequality holds since f is nondecreasing and (Ay.)~ > 0 and 

i2  = [ (  uf (Yn--1)  ~1/2 an-lP'n-l(Ayn-1)a 
[ \ a , - l p , - l f ( y , ) )  f(Yn-1) 

1 ( f(Yn-1) ~1/2 ]2 
--2 k u a . ~ _ l f ( y n ) ]  (an-1/~pn-1 -- Pn-1On) - 

Summing the above inequality from a sufficiently large integer N to n, we obtain 

~ [q.p _ (a , -1Ap.-1--P.- lP.)  ~] 

s=N 4as#ps-1 J 

< aN-lPN-I(AyN-1) ~ a,~p.(Ay.) ~' < aN-lPN-I(AyN-X) " 
-- f(YN-1) f(Yn) -- f(YN-1) ' 

which contradicts (3.8). The case where {Yn} is eventually negative is similarly proved. The 
proof is complete. 

From Theorem 3.4, we can obtain different sufficient conditions for oscillation of all solutions 
of (1.1) by different choices of {pn}, 

Let 

Pn = n~, n >  no, 

where A > 1 is a constant. By Theorem 3.4, we have the following result. 

COROLLARY 3.3. Let a = 6. Suppose that g(u, v) >_ I~ > O, [or all u ~t v. Suppose/arther that 
there exists a positive sequence {Pn} such that (2.15), (3.7), and (3.20) hold. Suppose farther 
that 

[q ssA - {as-1 [8A.= (A: I)~! ---.Ps-18A}2.] = 
• =no 4 # a , - l ( S  - -  I )  A J eo 

for some A > i. Then every solution of (1.1) is oscillatory. 
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If we choose 
p n = A ~ ,  A > I ,  n > _ l ,  

where ?% 

A n = E  1 ~ ,  n >_ 1, 
as $~no 

then we obtain the following corollary. 

COROLLARY 3.4. Let a = 6. Suppose that  g(u, v) >_ # > 0, for MI u ~ v. Suppose further that 
there exists a positive sequence {Pn} such that  (2.15), (3.7), and (3.20) hold. Suppose further 
that 

~-~ [ q s A : _  {as- l  rA~ A x 1 - AXe21 L 8 - ' ~ s - l J  ~_~'s-i 8 /  / 
s=no 4ttas_lA~_ 1 j = 0¢ 

for some A > 1. Then every solution of (1.1) is oscillatory. 

EXAMPLE 2. Consider the discrete Euler equation 

A2Yn-I + ~ Y n  = 0, n > 2, (3.22) 

where 7 > 1/4. If we take Pn = n for n ~ no > 0, then 

1 
s=no 4as-l t tps-:  J s=no 4(s -- 1) j 

~ 4-r(s - 1) - (s  - 1) - 1 
= 

_: 
= ~ :  4 ( s  1 ) s  ' ~ '  

$~11, 0 8~1 ' t  0 

as n --* c¢. By Theorem 3.4, every solution of (3.22) is oscillatory. It is known [5] that  when 
_< 1/4, (3.22) has a nonoscillatory solution. Hence, Theorem 3.4 is sharp. 

EXAMPLE 3. Consider the damped nonlinear difference equation 

/'n -- 1 A ~ (V/2- i) (n -- I) "y 
A~--~ Yn-:)- n2 Ay._,+--(y.+y3)=O,n2 n > _ l .  (3.23) 

Then 
g ( u , v ) = l + ( u +  + v 2>_1= #. 

If we take Pn = n, then 
oo 1 c¢ n + l  

E - - E  = c ¢ ,  
n=no a n P n  n = l  ?~2 

and 

s=no 4as- l~Ps-I  J s=l 

s=l  

where ~/ > 1/2. Thus, Theorem 3.4 asserts that  every solution of (3.23) is oscillatory. But 
the results in [4] fail to apply to equation (3.23) since Pn = -(V/~ - 1)u/(n + 1) 2 < 0 and 

n - 1  • E~°=no qsPs <- E~O=no q. = E~o=no "Yl s2 < oo, where Pn = rIi=l (~ + I)/(i + v~) < I defined as 
in [2, Corollary 3.4]. 
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4. R E M A R K S  

REMARK 1. Our result (Theorem 3.1) deals with superlinear equation (1.1). It remains to 
analyze (1.1) in which the function f ( x )  is the sublinear [4]. Such an analysis will be the subject 
of the forthcoming paper. 

REMARK 2. Due to the fact that the nonlinearlity of the damping is taken as c, our results 
cannot apply for instance the simple (but important) equation 

A [ a n - l ( A y n - 1 ) a ] + P n - l ( A y n - i ) + q n f ( y n ) = O ,  n > _ n o > O .  

I t  is i n t e r e s t i n g  q u e s t i o n  t o  cons ide r  t h e  m o r e  gene ra l  e q u a t i o n  

A[an-l (Ayn-1)~]  + P n - I ( A y n - 1 )  a2 + qnf(Yn) = O, n > no >_ O, 

where a l ~  a2. Perhaps, this is very difficult because of the fact that {qn} is allowed to be 
oscillatory. 

REMARK 3. Theorem 3.4 should be niced without condition (3.20), i.e., without the information 
that (Ayn)~ >_ O. 
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